
Brief Announcement: Sorting on Skip Chains�

Ajoy K. Datta1, Stéphane Devismes2, and Lawrence L. Larmore1

1 School of Computer Science, University of Nevada Las Vegas, USA
2 VERIMAG UMR 5104, Université Joseph Fourier

1 Introduction

Sorting values on a chain of processes is a well-known problem, and a number of al-
gorithms has been published [1,2]. We consider here a generalization of this problem,
where the processes that have values, called major processes, are separated from each
other by any number of intermediate processes, called relay processes, which do not
have their own values, although they can read and write the major values while doing
their job of relaying those values.

More precisely, we consider a chain network of n processes. Some of those pro-
cesses, including the two end processes, are major processes, and the rest are relay
processes. We call this structure a skip chain. The problem is then to sort the values
held by the major processes. We call this problem the skip chain sorting problem.

We propose a silent self-stabilizing distributed algorithm for the skip chain sorting
problem. Our algorithm is written in the locally shared memory model and works under
an unfair daemon. Its stabilization time is O(md) rounds, where m is the number of
major processes and d is the maximum number of processes in the chain from one major
process to the next. Note that md = O(n) if the spacing between major processes is
roughly equal.

2 Formal Statement of the Problem

We are given a chain of processes. Some of those processes, including the two end
processes (which we call L and R) are major processes, and the rest are relay processes.
We call this structure a skip chain. We assume that only major processes have values,
and the problem is to sort those values. The specification of the skip chain sorting
problem is given below.

1. In an arbitrary configuration of a skip chain, there is a canonical value V (x) asso-
ciated with each major process x. This value may or may not be stored at x.

2. At each step, the multiset of canonical values does not change, although the canon-
ical values of two different major processes can be exchanged.

3. Every computation eventually results in a legitimate configuration, where the fol-
lowing conditions hold:
(a) The canonical values of the major processes are in increasing order from left

to right.
(b) The canonical value of each major process x is stored at x.
(c) No action is enabled.

� The full version of this paper is available at tinyurl.com/3dydywq. This work has been
partially supported by the ANR project ARESA2.

X. Défago, F. Petit, and V. Villain (Eds.): SSS 2011, LNCS 6976, pp. 443–444, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

tinyurl.com/3dydywq


444 A.K. Datta, S. Devismes, and L.L. Larmore

We assume that n is the number of processes in the chain, m is the number of major
processes, and d is the relay chain length, which is the maximum number of processes
in the chain from one major process to the next. For example, if all processes are major
processes, then d = 2, and d = n if only the two end processes are major.

3 Overview of the Solution

We give an algorithm, skip chain sort (SCS) essentially a distributed version of the
well-known algorithm bubblesort, which satisfies the requirements listed above.

SCS is self-stabilizing, which implies that it converges to a legitimate configuration
regardless of the initial configuration. Given any skip chain S, let C be the set of all
configurations of SCS on S. A certain subset N ⊆ C consists of what we call normal
configurations. These configurations are those where the states of all processes are cor-
rect, except that the canonical values may not be sorted. N is closed under the actions
of SCS and is an attractor of C.

The first phase of SCS, which we call error correction, results in a normal configu-
ration. The second phase of SCS sorts the canonical values of the major processes, and
eventually halts in a legitimate configuration, where each major process stores its own
canonical value, and no process is enabled to execute.

Every major process x, except L, contains two embedded relay processes, which we
call x.l relay and x.r relay (at the end, each major node stores its canonical value in its
right relay); L contains only one embedded relay process, L.r relay. We call the other
relay processes free relay processes. If x is any process, then we define Right Major(x)
and Left Major(x) to be the nearest major processes to the right and left of x (if any)
respectively.

If x is a major process, we define the right relay chain of x to be the chain of relay
processes starting with x.r relay and ending with Right Major(x).l relay; the left relay
chain of x is simply defined to be the right relay chain of Left Major(x).

Two values can only be swapped by a major process if it holds both. If x is a major
process and y = Right Major(x), then V (x) and V (y) can be compared, and possi-
bly swapped, by y. The mechanism is to move V (x) along the right relay chain of
x to y.l relay, while V (y) is at y.r relay. The values are then compared and possibly
swapped. Afterward, the new value of V (x) can move back to x, while the new value of
V (y) can move to Right Major(y). After at most

(
n
2

)
such comparisons, the canonical

values will be sorted.
SCS uses color waves to control the movement of the values along the relay chains.

A value moves to the left at the crest of a wave of color 0, and to the right at the crest
of a wave of color 1. Two additional colors, 2 and 3, complete the color wave cycle to
avoid ambiguity between waves. Additionally, there is an “error color,” E.

When the canonical values are sorted, a silence wave, generated by the rightmost
process, moves to the left, eventually causing all execution to cease.

References
1. Flocchini, P., Kranakis, E., Krizanc, D., Luccio, F., Santoro, N.: Sorting and election in anony-

mous asynchronous rings. Journal of Parallel and Distributed Computing 64, 254–265 (2004)
2. Sasaki, A.: A time-optimal distributed sorting algorithm on a line network. Information Pro-

cessing Letters 83, 21–26 (2002)


	Brief Announcement: Sorting on Skip Chains
	Introduction
	Formal Statement of the Problem
	Overview of the Solution
	References




