
Optimal Probabilistic Ring Exploration by
Semi-Synchronous Oblivious Robots?

Stéphane Devismes1, Franck Petit2, and Sébastien Tixeuil

1 VERIMAG UMR 5104, Université Joseph Fourier, Grenoble (France),
stephane.devismes@imag.fr

2 INRIA, LIP UMR 5668, Université de Lyon / ENS Lyon (France)
franck.petit@ens-lyon.fr

3 Université Pierre et Marie Curie - Paris 6, INRIA Grand Large, France
sebastien.tixeuil@lip6.fr

Abstract. We consider a team of k identical, oblivious, semi-synchro-
nous mobile robots that are able to sense (i.e., view) their environment,
yet are unable to communicate, and evolve on a constrained path. Previ-
ous results in this weak scenario show that initial symmetry yields high
lower bounds when problems are to be solved by deterministic robots.
In this paper, we initiate research on probabilistic bounds and solutions
in this context, and focus on the exploration problem of anonymous un-
oriented rings of any size. It is known that Θ(logn) robots are necessary
and sufficient to solve the problem with k deterministic robots, provided
that k and n are coprime. By contrast, we show that four identical proba-
bilistic robots are necessary and sufficient to solve the same problem, also
removing the coprime constraint. Our positive results are constructive.

1 Introduction

We consider autonomous robots that are endowed with visibility sensors (but
that are otherwise unable to communicate) and motion actuators. Those robots
must collaborate to solve a collective task, namely exploration, despite being
limited with respect to input from the environment, asymmetry, memory, etc.
In this context, the exploration tasks requires every possible location to be visited
by at least one robot, with the additional constraint that all robots stop moving
after task completion.

Robots operate in cycles that comprise look, compute, and move phases. The
look phase consists in taking a snapshot of the other robots positions using its
visibility sensors. In the compute phase a robot computes a target destination
based on the previous observation. The move phase simply consists in moving
toward the computed destination using motion actuators.

The robots that we consider here have weak capacities: they are anonymous
(they execute the same protocol and have no mean to distinguish themselves

? This work has been supported in part by the ANR projets R-Discover (08-ANR-
CONTINT) and SHAMAN.

2

from the others), oblivious (they have no memory that is persistent between two
cycles), and have no compass whatsoever (they are unable to agree on a common
direction or orientation).

Related works. The vast majority of literature on coordinated distributed robots
considers that those robots are evolving in a continuous two-dimentional Euclid-
ian space and use visual sensors with perfect accuracy that permit to locate other
robots with infinite precision, e.g., [1–6].

Several works investigate restricting the capabilities of both visibility sensors
and motion actuators of the robots, in order to circumvent the many impossibil-
ity results that appear in the general continuous model. In [7, 8], robots visibility
sensors are supposed to be accurate within a constant range, and sense noth-
ing beyond this range. In [8, ?], the space allowed for the motion actuator was
reduced to a one-dimentional continuous one: a ring in [8], an infinite path in [?].

A recent trend was to shift from the classical continuous model to the dis-
crete model. In the discrete model, space is partitioned into a finite number
of locations. This setting is conveniently represented by a graph, where nodes
represent locations that can be sensed, and where edges represent the possibility
for a robot to move from one location to the other. Thus, the discrete model
restricts both sensing and actuating capabilities of every robot. For each loca-
tion, a robot is able to sense if the location is empty or if robots are positioned
on it (instead of sensing the exact position of a robot). Also, a robot is not able
to move from a position to another unless there is explicit indication to do so
(i.e., the two locations are connected by an edge in the representing graph). The
discrete model permits to simplify many robot protocols by reasoning on finite
structures (i.e., graphs) rather than on infinite ones. However, as noted in most
related papers [9–12], this simplicity comes with the cost of extra symmetry
possibilities, especially when the authorized paths are also symmetric (indeed,
techniques to break formation such as those of [5] cannot be used in the discrete
model).

Assuming visibility capabilities, the two main problems that have been stud-
ied in the discrete robot model are gathering [9, 10] and exploration [11, 12]. For
gathering, both breaking symmetry [9] and preserving symmetry are meaningful
approaches. For exploration, the fact that robots need to stop after exploring all
locations requires robots to “remember” how much of the graph was explored,
i.e., be able to distinguish between various stages of the exploration process since
robots have no persistent memory. As configurations can be distinguished only
by robot positions, the main complexity measure is then the number of robots
that are needed to explore a given graph. The vast number of symmetric situ-
ations induces a large number of required robots. For tree networks, [12] shows
that Ω(n) robots are necessary for most n-sized tree, and that sublinear robot
complexity (actually Θ(log n/ log log n)) is possible only if the maximum degree
of the tree is 3. In uniform rings, [11] proves that the necessary and sufficient
number of robots is Θ(log n), although it proposes an algorithm that works with
an additional assumption: the number k of robots and the size n of the ring are
coprime. Note that all previous approaches in the discrete model are determinis-

3

tic, i.e., if a robot is presented twice the same situation, its behavior is the same
in both cases.

Our contribution. In this paper, we consider the semi-synchronous model in-
troduced in [13]. It is straighforward to see that the necessary conditions and
bounds exposed in [11] for the deterministic exploration still hold in the semi-
synchronous model. Here we propose to adopt a probabilistic approach to lift
constraints and to obtain tigher bounds. By constrast with the deterministic
approach, we show that four identical probabilistic robots are necessary and
sufficient to solve the exploration problem in any anonymous unoriented ring of
size n > 8, also removing the coprime constraint between the number of robots
and the size of the ring. Our negative result show that for any ring of size at
least four, there cannot exist any protocol with three robots in our setting, even
if they are allowed to make use of probabilistic primitives. Our positive results
are constructive, as we present a randomized protocol with four robots for any
ring of size more than eight.

Outline. The remaining of the paper is divided as follows. Section 2 presents the
system model that we use throughout the paper. Section 3 provides evidence that
no three probabilistic robots can explore every ring, while Section 4 presents our
protocol with four robots. Section 5 gives some concluding remarks.

For space consideration, several technical proofs are omitted, see the technical
report for details ([14], http://hal.inria.fr/inria-00360305/fr/).

2 Model

Distributed System. We consider systems of autonomous mobile entities called
agents or robots evolving into a graph. We assume that the graph is a ring of
n nodes, u0,. . . , un−1, i.e., ui is connected to both ui−1 and ui+1 — every
computation over indices is assumed to be modulus n. The indices are used for
notation purposes only: the nodes are anonymous and the ring is unoriented,
i.e., given two neighboring nodes u, v, there is no kind of explicit or implicit
labelling allowing to determine whether u is on the right or on the left of v.
Operating in the ring are k ≤ n anonymous robots.

A protocol is a collection of k programs, one operating on each robot. The
program of a robot consists in executing Look-Compute-Move cycles infinitely
many times. That is, the robot first observes its environment (Look phase).
Based on its observation, a robot then (probabilistically or deterministically)
decides — according to its program — to move or stay idle (Compute phase).
When a robot decides a move, it moves to its destination during the Move phase.

The robots do not communicate in an explicit way; however they see the
position of the other robots and can acquire knowledge from this information.
We assume that the robots cannot remember any previous observation nor com-
putation performed in any previous step. Such robots are said to be oblivious
(or memoryless). The robots are also uniform and anonymous, i.e, they all have

4

the same program using no local parameter (such that an identity) allowing to
differentiate any of them.

Computations. We consider a semi-synchronous model similar to the one in [13].
In this model, time is represented by an infinite sequence of instants 0, 1, 2, . . .
At every instant t ≥ 0, a non-empty subset of robots is activated to execute a
cycle. The execution of each cycle is assumed to be atomic: Every robot that is
activated at instant t instantaneously executes a full cycle between t and t+ 1.
Atomicity guarantees that at any instant the robots are on some nodes of the
ring but not on edges. Hence, during a Look phase, a robot sees no robot on
edges.

We assume that during the Look phase, every robot can perceive whether
several robots are located on the same node or not. This ability is called Multi-
plicity Detection. We shall indicate by di(t) the multiplicity of robots present in
node ui at instant t. More precisely di(t) = j indicates that there are j robots in
node ui at instant t. If di(t) ≥ 2, then we say that there is a tower in ui at instant
t (or simply there is a tower in ui when it is clear from the context). We say a
node ui is free at instant t (or simply free when it is clear from the context) if
di(t) = 0. Conversely, we say that ui is occupied at instant t (or simply occupied
when it is clear from the context) if di(t) 6= 0.

Given an arbitrary orientation of the ring and a node ui, γ
+i(t) (respectively,

γ−i(t)) denotes the sequence 〈di(t)di+1(t) . . . di+n−1(t)〉 (resp., 〈di(t)di−1(t) . . .
di−(n−1)(t)〉). The sequence γ−i(t) is called mirror of γ+i(t) and conversely. Since
the ring is unoriented, agreement on only one of the two sequences γ+i(t) and
γ−i(t)) is impossible. The (unordered) pair {γ+i(t), γ−i(t)} is called the view of
node ui at instant t (we omit “at instant t” when it clear from the context). The
view of ui is said to be symmetric if and only if γ+i(t) = γ−i(t). Otherwise, the
view of ui is said to be asymmetric.

By convention, we state that the configuration of the system at instant t is
γ+0(t). Any configuration from which there is a probability 0 that a robot moves
is said to be terminal. Let γ = 〈x0x1 . . . xn−1〉 be a configuration. The config-
uration 〈xixi+1 . . . xi+n−1〉 is obtained by rotating γ of i ∈ [0 . . . n − 1]. Two
configurations γ and γ′ are said to be indistinguishable if and only if γ′ can be
obtained by rotating γ or its mirror. Two configurations that are not indistin-
guishable are said to be distinguishable. We designate by initial configurations
the configurations from which the system can start at instant 0.

During the Look phase of some cycle, it may happen that both edges incident
to a node v currently occupied by the robot look identical in the snapshot, i.e., v
lies on a symmetric axis of the configuration. In this case, if the robot decides to
move, it may traverse any of the two edges. We assume the worst case decision
in such cases, i.e., that the decision to traverse one of these two edges is taken
by an adversary.

We call computation any infinite sequence of configurations γ0, . . . , γt, γt+1,
. . . such that (1) γ0 is a possible initial configuration and (2) for every instant
t ≥ 0, γt+1 is obtained from γt after some robots (at least one) execute a cycle.

5

Any transition γt, γt+1 is called a step of the computation. A computation c
terminates if c contains a terminal configuration.

A scheduler is a predicate on computations, that is, a scheduler defines a
set of admissible computations, such that every computation in this set satisfies
the scheduler predicate. Here we assume a distributed fair scheduler. Distributed
means that, at every instant, any non-empty subset of robots can be activated.
Fair means that every robot is activated infinitively often during a computation.
A particular case of distributed fair scheduler is the sequential fair scheduler:
at every instant, one robot is activated and every robot is activated infinitively
often during a computation. In the following, we call sequential computation any
computation that satisfies the sequential fair scheduler predicate.

Problem to be solved. We consider the exploration problem, where k robots col-
lectively explore a n-sized ring before stopping moving forever. More formally, a
protocol P deterministically (resp. probabilistically) solves the exploration prob-
lem if and only if every computation c of P starting from a towerless configuration
satisfies:

1. c terminates in finite time (resp. with expected finite time).
2. Every node is visited by at least one robot during c.

The previous definition implies that every initial configuration of the system
in the problem we consider is towerless. Using probabilistic solutions, termination
is not certain, however the overall probability of non-terminating computations
is 0.

3 Negative Result

In this section, we show that the exploration problem is impossible to solve in
our settings (i.e., oblivious robots, anonymous ring, distributed scheduler, . . .)
if there is less than four robots, even in a probabilistic manner (Corollary 2).
The proof is made in two steps:

– The first step is based on the fact that obliviousness constraints any explo-
ration protocol to construct an implicit memory using the configurations.
We show that if the scheduler behaves sequentially, then in any case except
one, it is not possible to particularize enough configurations to memorize
which nodes have been visited (Theorem 1 and Lemma 4).

– The second step consists in excluding the last case (Theorem 2).

If n > k, any terminal configuration should be distinguishable from any possible
initial (towerless) configuration. Hence, follows:

Remark 1. If n > k, any terminal configuration of any exploration protocol
contains at least one tower.

6

Lemmas 1 to 3 proven below are technical results that lead to Corollary 1. The
latter exhibits the minimal size of a subset of particular configurations required
to solve the exploration problem.

Definition 1 (MRP). Let s be a sequence of configurations. The minimal rel-
evant prefix of s, noted MRP(s), is the maximal subsequence of s where no two
consecutive configurations are identical.

Lemma 1. Let P be any (probabilistic or deterministic) exploration protocol for
k robots in a ring of n > k nodes. For every sequential computation c of P that
terminates, MRP(c) has at least n− k + 1 configurations containing a tower.

Proof. Assume, by the contradiction, that there is a sequential computation c of
P that terminates and such thatMRP(c) has less than n−k+ 1 configurations
containing a tower.

Take the last configuration α without tower which appear in computation c
and all remaining configurations (all of them contains towers) that follow in c and
form c′. As α could be an initial configuration and c is an admissible sequential
computation that terminates, c′ is also an admissible sequential computation of
P that terminates. Notice that MRP(c′) has at most n− k + 1 configurations.
Since c′ is sequential, going from configuration α to a configuration with towers,
no new nodes are explored (the same happens when remaining at the same
configuration with towers). Hence the total number of nodes explored upon the
termination of c′ is at most k (the ones that are initially visited) + n − k − 1
(the ones that are dynamically visited) = n − 1: c′ terminates before all nodes
are visited, a contradiction.

Lemma 2. Let P be any (probabilistic or deterministic) exploration protocol for
k robots in a ring of n > k nodes. For every sequential computation c of P that
terminates, MRP(c) has at least n− k+ 1 configurations containing a tower of
less than k robots.

Proof. Assume, by the contradiction, that there is a sequential computation c of
P that terminates and such thatMRP(c) has less than n−k+ 1 configurations
containing a tower of less than k robots.

Take the last configuration α without tower which appear in computation c
and all remaining configurations (all of them contains towers) that follow in c and
form c′. As α could be an initial configuration and c is an admissible sequential
computation that terminates, c′ is also an admissible sequential computation of
P that terminates.
MRP(c′) is constituted of a configuration with no tower followed by at least

n − k + 1 configurations containing a tower by Lemma 1 and n − k new nodes
(remember that k nodes are already visited in the initial configuration) must be
visited before c′ reaches its terminal configuration.

Consider a step αα′ in c′.

– If α = α′, then no node is visited during the step.
– If α 6= α′, then there are three possible cases:

7

1. α contains no towers. In this case, α is the initial configuration and α′

contains a tower. As only one robot moves in αα′ to create a tower (c′

is sequential), no node is visited during this step.
2. α contains a tower and α′ contains a tower of k robots. As c′ is sequential

and all robots are located at the same node in α′, one robot moves to an
already occupied node in αα′ and no node is visited during this step.

3. α contains a tower and α′ contains a tower of less than k robots. In this
case, at most one node is visited in αα′ because c′ is sequential.

To sum up, only the steps from a configuration containing a tower to a configura-
tion containing a tower of less than k robots allow to visit at most one node each
time. Now, inMRP(c′) there are less than n−k+1 configurations containing a
tower of less than k robots and the first of these configurations appearing into c′

is consecutive to a step starting from the initial configuration. Hence, less than
n−k nodes are dynamically visited during c′ and, as exactly k nodes are visited
in the initial configuration, less than n nodes are visited when c′ terminates, a
contradiction.

Lemma 3. Let P be any (probabilistic or deterministic) exploration protocol for
k robots in a ring of n > k nodes. For every sequential computation c of P that
terminates, MRP(c) has at least n− k+ 1 configurations containing a tower of
less than k robots and any two of them are distinguishable.

Proof. Consider any sequential computation c of P that terminates.
By Lemma 2, MRP(c) has x configurations containing a tower of less than

k robots where x ≥ n− k + 1.
We first show that (**) if c contains at least two different configurations hav-

ing a tower of less than k robots that are indistinguishable, then there exists a
sequential computation c′ that terminates and such that MRP(c′) has x′ con-
figurations containing a tower of less than k robots where x′ < x. Assume that
there are two different indistinguishable configurations γ and γ′ in c having a
tower of less than k robots. Without loss of generality, assume that γ occurs at
time t in c and γ′ occurs at time t′ > t in c. Consider the two following cases:

1. γ′ can be obtained by applying a rotation of i to γ. Let p be the
prefix of c from instant 0 to instant t. Let s be the suffix of c starting at
instant t′ + 1. Let s′ be the sequence obtained by applying a rotation of
−i to the configurations of s. As the ring and the robots are anonymous,
ps′ is an admissible sequential computation that terminates. Moreover, by
constructionMRP(ps′) has x′ configurations containing a tower of less than
k robots where x′ < x. Hence (**) is verified in this case.

2. γ′ can be obtained by applying a rotation of i to the mirror of
γ. We can prove (**) in this case by slightly modifying the proof of the
previous case: we have just to apply the rotation of −i to the mirrors of the
configurations of s.

By (**), ifMRP(c) contains less than n−k+1 distinguishable configurations
with a tower of less than k robots, it is possible to (recursively) construct an

8

admissible computation c′ of P that terminates such thatMRP(c′) has less than
n−k+ 1 configurations containing a tower of less than k robots, a contradiction
to Lemma 2. Hence, the lemma holds.

From Lemma 3, we can deduce the following corollary:

Corollary 1. Considering any (probabilistic or deterministic) exploration pro-
tocol for k robots in a ring of n > k nodes, there exists a subset S of at least
n− k + 1 configurations such that:

1. Any two different configurations in S are distinguishable, and

2. In every configuration in S, there is a tower of less than k robots.

Theorem 1. ∀k, 0 ≤ k < 3,∀n > k, there is no exploration protocol (even
probabilistic) of a n-size ring with k robots.

Proof. First, for k = 0, the theorem is trivially verified. Consider then the case
k = 1 and k = 2: with one robot it is impossible to construct a configuration
with one tower; with two robots it is impossible to construct a configuration
with one tower of less than k robots (k = 2). Hence, for k = 1 and k = 2, the
theorem is a direct consequence of Corollary 1.

Lemma 4. ∀n > 4, there is no exploration protocol (even probabilistic) of a
n-size ring with three robots.

Proof. With three robots, the size of the maximal set of distinguishable config-
urations containing a tower of less than three robots is bn/2c. By Corollary 1,
we have then the following inequality:

bn/2c ≥ n− k + 1

From this inequality, we can deduce that n must be less of equal than four and
we are done.

From this point on, we know that, assuming k < 4, Corollary 1 prevents the
existence of any exploration protocol in any case except one: k = 3 and n = 4
(Theorem 1 and Lemma 4). Actually, assuming that the scheduler is sequential
is not sufficient to show the impossibility in this latter case: Indeed, there is an
exploration protocol for k = 3 and n = 4 if we assume a sequential scheduler.
This latter protocol can be found in the technical report ([14], http://hal.

inria.fr/inria-00360305/fr/).

The theorem below is obtained by showing the impossibility for k = 3 and
n = 4 using a (non-sequential) distributed scheduler.

Theorem 2. There is no exploration protocol (even probabilistic) of a n-size
ring with three robots for every n > 3.

9

Proof Outline. Lemma 4 excludes the existence of any exploration protocol
for three robots in a ring of n > 4 nodes. Hence, to show this theorem, we just
have to show that there is no exploration protocol for three robots working in a
ring of four nodes.

The remainder of the proof consists in a combinatorial study of all possible
protocols for k = 3 robots and n = 4 nodes. In each case, we show that the
protocol leads to one of the following contradiction:

– Either, the adversarial choices of the scheduler allow to construct an admis-
sible computation that never terminates with probability 1.

– Or, for every possible terminal configuration (i.e., any configuration contain-
ing a tower, see Remark 1), there is an admissible computation that reaches
the terminal configuration without visiting all nodes.

2

From Theorems 1 and 2, we can deduce the following corollary:

Corollary 2. ∀k, 0 ≤ k < 4,∀n > k, there is no exploration protocol (even
probabilistic) of a n-size ring with k robots.

4 Positive Result

In this section, we propose a probabilistic exploration protocol for k = 4 robots
in a ring of n > 8 nodes. We first define some useful terms in Subsection 4.1.
We then give the general principle of the protocol in Subsection 4.2. Finally, we
detail and prove the protocol in Subsection 4.3.

4.1 Definitions

Below, we define some terms that characterize the configurations.
We call segment any maximal non-empty elementary path of occupied nodes.

The length of a segment is the number of nodes that compose it. We call
x-segment any segment of length x. In the segment s = ui, . . . , uk (k ≥ i) the
nodes ui and uk are termed as the extremities of s. An isolated node is a node
belonging to a 1-segment.

We call hole any maximal non-empty elementary path of free nodes. The
length of a hole is the number of nodes that compose it. We call x-hole any hole
of length x. In the hole h = ui, . . . , uk (k ≥ i) the nodes ui and uk are termed as
the extremities of h. We call neighbor of an hole any node that does not belong
to the hole but is neighbor of one of its extremities. In this case, we also say
that the hole is a neighboring hole of the node. By extension, any robot that is
located at a neighboring node of a hole is also referred to as a neighbor of the
hole.

We call arrow a maximal elementary path ui, . . . , uk of length at least four
such that (i) ui and uk are occupied by one robot, (ii) ∀j ∈ [i+ 1 . . . k − 2], uj

10

is free, and (iii) there is a tower of two robots in uk−1. The node ui is called
the arrow tail and the node uk is called the arrow head. The size of an arrow
is the number of free nodes that compose it, i.e., it is the length of the arrow
path minus 3. Note that the minimal size of an arrow is 1 and the maximal size
is n− 3. Note also that when there is an arrow in a configuration, the arrow is
unique. An arrow is said to be primary if its size is 1. An arrow is said to be
final if its size is n− 3.

u0

u3 u2

u1

Ra

Rc

Rb

(i)

Rd

u4

u5 u0

u3 u2

u1

Ra

Rc

Rb

(ii)

Rd

u4

u5 u0

u3 u2

u1

Ra

Rc

Rb

(iii)

Rd

u4

u5

Fig. 1. Arrows

Figure 1 illustrates the notion of arrows: In Configuration (i) the arrow is
formed by the path u4, u5, u0, u1; the arrow is primary; the node u4 is the tail
and the node u1 is the head. In Configuration (ii), there is a final arrow (the
path u2, u3, u4, u5, u0, u1). Finally, the size of the arrow in Configuration (iii)
(the path u3, u4, u5, u0, u1) is 2.

4.2 Overview of the solution

Our protocol (Algorithm 1) proceeds in three distinct phases:

– Phase I: Starting from a configuration without tower, the robots move along
the ring in such a way that (i) they never form any tower and (2) form a
unique segment (a 4-segment) in finite expected time.

– Phase II: Starting from a configuration with a unique segment, the four
robots form a primary arrow in finite expected time. The 4-segment is main-
tained until the primary arrow is formed.

– Phase III: Starting from a configuration where the four robots form a pri-
mary arrow, the arrow tail deterministically moves toward the arrow head
in such way that the length of the arrow never decreases. The protocol ter-
minates when robots form a final arrow. At the termination, all nodes have
been visited.

Note that the protocol we propose is probabilistic. As a matter of fact, as long
as possible the robots move deterministically. However, we use randomization to

11

break the symmetry in some cases: When the system is in a symmetric configura-
tion, the scheduler may choose to synchronously activate some processes in such
way that the system stays in a symmetric configuration. To break the symmetry
despite the choice of the scheduler, we proceed as follows: The activated robots
toss a coin (with a uniform probability) during their Compute phase. If they win
the toss, they decide to move, otherwise they decide to stay idle. In this case, we
say that the robots try to move. Conversely, when a process deterministically
decides to move in its Compute phase, we simply say that the process moves.

Algorithm 1 The protocol.
1: if the four robots do not form a final arrow then
2: if the configuration contains neither an arrow nor a 4-segment then
3: Execute Procedure Phase I;
4: else
5: if the configuration contains a 4-segment then
6: Execute Procedure Phase II;
7: else /∗ the configuration contains an arrow ∗/
8: Execute Procedure Phase III;

4.3 Detailed description of the solution

Phase I. Phase I is described in Algorithm 2. The aim of this phase is to even-
tually form a 4-segment without creating any tower during the process. Roughly
speaking, in asymmetric configurations, robots moves determiniscally (Lines 4,
10, 27, 31). By contrast, in symmetric configurations, robots moves probabilisti-
cally using Try to move (Lines 16 and 22). Note that in all cases, we prevent the
tower formation by applying the following constraint: a robot can move through
a neighboring hole H only if its length is at least 2 or if the other neighboring
robot cannot move through H. Hence, we obtain the following lemma:

Lemma 5. If the configuration at instant t contains neither a 4-segment nor a
tower, then the configuration at instant t+ 1 contains no tower.

The probabilistic convergence to a 4-segment is guaranteed by the fact that in
a symmetric configuration, the moving robots move probabilistically. Thanks to
that, the symmetries are eventually broken and the system reaches an asymmet-
ric configuration from which the robots deterministically move until forming a
4-segment. Hence, we obtain the lemma below:

Lemma 6. Starting from any initial (towerless) configuration, the system rea-
ches in finite expected time a configuration containing a 4-segment.

Phase II. Phase II is described in Algorithm 3: Starting from a configuration
where there is a 4-segment on nodes ui, ui+1, ui+2, ui+3, the system eventually
reaches a configuration where a primary arrow is formed on nodes ui, ui+1, ui+2,
ui+3. To that goal, we proceed as follows: Let R1 and R2 be the robots located

12

Algorithm 2 Procedure Phase I.
1: if the configuration contains a 3-segment then
2: begin
3: if I am the isolated robot then
4: Move toward the 3-segment through the shortest hole;
5: end
6: else
7: if the configuration contains a unique 2-segment then /∗ Two robots are isolated ∗/
8: begin
9: if I am at the closest distance from the 2-segment then
10: Move toward the 2-segment through the hole having me and an extremity of the

2-segment as neighbors;
11: end
12: else
13: if the configuration contains (exactly) two 2-segments then
14: begin
15: if I am a neighbor of a longuest hole then
16: Try to move toward the other 2-segment through my neighboring hole;
17: end
18: else /∗ the four robots are isolated ∗/
19: begin
20: Let lmax be the length of the longuest hole;
21: if every robot is neighbor of a lmax-hole then
22: Try to move through a neighboring lmax-hole;
23: else
24: if 3 robots are neighbors of a lmax-hole then
25: begin
26: if I am neighbor of only one lmax-hole then
27: Move toward the robot that is neighbor of no lmax-hole through my short-

est neighboring hole;
28: end
29: else /∗ 2 robots are neighbors of the unique lmax-hole ∗/
30: if I am neighbor of the unique lmax-hole then
31: Move through my shortest neighboring hole;
32: end

13

at the nodes ui+1 and ui+2 of the 4-segment. R1 and R2 try to move to ui+2

and ui+1, respectively. Eventually only one of these robots moves and we are
done. Hence, we have the two lemmas below:

Lemma 7. Let γ be a configuration containing a 4-segment ui, ui+1, ui+2, ui+3.
If γ is the configuration at instant t, then the configuration at instant t + 1 is
either identical to γ or the configuration containing the primary arrow ui, ui+1,
ui+2, ui+3.

Lemma 8. From a configuration containing a 4-segment, the system reaches a
configuration containing a primary arrow in finite expected time.

Algorithm 3 Procedure Phase II.
1: if I am not located at an extremity of the 4-segment then
2: Try to move toward my neighboring node that is not an extremity of the 4-segment;

Phase III. Phase III is described in Algorithm 4. This phase is fully deterministic:
This phase begins when there is a primary arrow. Let H be the hole between
the tail and the head of arrow at the beginning of the phase. From the previous
phase, we know that all nodes forming the primary arrow are already visited. So,
the unvisited nodes can only be on H and the phase just consists in traversing
H. To that goal, the robot located at the arrow tail traverses H. When it is done,
the system is in a terminal configuration containing a final arrow and all nodes
have been visited. Hence, we can conclude with the following theorem:

Theorem 3. Algorithm 1 is a probabilistic exploration protocol for 4 robots in
a ring of n > 8 nodes.

Algorithm 4 Procedure Phase III.
1: if I am the arrow tail then
2: Move toward the arrow head through the hole having me and the arrow head as neighbor;

5 Conclusion

We considered a semi-synchronous model of computation. In this model, we pro-
vided evidence that for the exploration problem in uniform rings, randomization
could shift complexity from Θ(log n) to Θ(1). While applying randomization to
other problem instances is an interesting topic for further research, we would
like to point out immediate open questions raised by our work:

14

1. Though we were able to provide a general algorithm for any n (strictly)
greater than eight, it seems that ad hoc solutions have to be designed when
n is between five and eight (inclusive).

2. Our protocol is optimal with respect to the number of robots. However, the
efficiency (in terms of exploring time) is only proved to be finite. Actually
computing the convergence time from our proof argument is feasible, but it
would be more interesting to study how the number of robots relates to the
time complexity of exploration, as it seems natural that more robots will
explore the ring faster.

3. It is worth investigating if our results can be extended to the (full) asyn-
chronous model.

Acknowledgments. We are grateful to the anonymous referees for a very careful
reading of the manuscript and a number of valuable remarks and suggestions
that enabled us to improve the quality of the paper.

References

1. Asahiro, Y., Fujita, S., Suzuki, I., Yamashita, M.: A self-stabilizing marching
algorithm for a group of oblivious robots. In: OPODIS. (2008) 125–144

2. Souissi, S., Défago, X., Yamashita, M.: Using eventually consistent compasses to
gather memory-less mobile robots with limited visibility. ACM Transactions on
Adaptive and Autonomous Systems (TAAS) 4(1) (2009)

3. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput. 28(4) (1999) 1347–1363

4. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3)
(2008) 412–447

5. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak mobile
robots. ACM Transactions on Adaptive and Autonomous Systems (TAAS) 3(4)
(2008)

6. Dieudonné, Y., Petit, F.: Scatter of weak mobile robots. Parallel Processing Letters
19(1) (2009) 175–184

7. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point
convergence algorithm for mobile robots with limited visibility. IEEE Transactions
on Robotics and Automation (1999)

8. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337(1-3) (2005) 147–168

9. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390(1) (2008) 27–39

10. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering
of asynchronous oblivious robots on a ring. In: 12th International Conference on
Principles of Distributed Systems (OPODIS). (2008) 446–462

11. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicat-
ing: Ring exploration by asynchronous oblivious robots. In: 14th International Col-
loquium on Structural Information and Communication Complexity (SIROCCO).
(2007) 105–118

15

12. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
Tree exploration by asynchronous oblivious robots. In: 15th International Collo-
quium on Structural Information and Communication Complexity (SIROCCO).
(2008) 33–47

13. Efrima, A., Peleg, D.: Distributed algorithms for partitioning a swarm of au-
tonomous mobile robots. Theor. Comput. Sci. 410(14) (2009) 1355–1368

14. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by
asynchronous oblivious robots. Technical Report inria-00360305, INRIA (February
2009)

