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Abstract

We consider a team of k identical, oblivious, and semi-synchronous mobile robots that are
able to sense (i.e., view) their environment, yet are unable to communicate, and evolve on a
constrained path. Previous results in this weak scenario show that initial symmetry yields
high lower bounds when problems are to be solved by deterministic robots.

In this paper, we initiate research on probabilistic bounds and solutions in this context,
and focus on the exploration problem of anonymous unoriented rings of any size n. It
is known that k = Θ(log n) deterministic robots are necessary and sufficient to solve the
problem, provided that k and n are coprime. By contrast, we show that four identical
probabilistic robots are necessary and sufficient to solve the same problem, also removing
the coprime constraint. Our positive results are constructive.
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1. Introduction1

Teams (or swarms) of mobile autonomous robots working together to learn and achieve2

cooperative tasks is an important open area of research. The robots are endowed with visibil-3

ity sensors and motion actuators. Numerous potential applications exist for such multi-robot4

systems: environmental monitoring, large-scale construction, mapping, urban search and res-5

cue, surface cleaning, risky area surrounding or surveillance, and the exploration of unknown6

environments, to only name a few. We address the exploration problem, where a team of7

robots cooperate to collectively explore the environment. Exploration is a basic building8

block for many of the aforementioned applications. For instance, mapping an unknown area9
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requires that the robots (collectively) explore the whole area. Similarly, to search and rescue10

people after a disaster, the team of robots potentially has to explore the whole area. The11

so-called “area” is often considered to be either the continuous Euclidean space (possibly12

with obstacles and objects) or a discrete space. In the latter case, space is partitioned into a13

finite number of locations represented by a graph, where nodes represent locations that can14

be sensed by the robots, and edges represent the possibility for a robot to move from one15

location to the other, e.g., a building, a town, a factory, a mine, and more generally, zoned16

areas. In a discrete environment, the (terminating) exploration task requires every possible17

location to be visited by at least one robot, with the additional constraint that all robots18

stop moving after task completion.19

The ability of a team of robots to succeed in accomplishing the assigned task greatly de-20

pends on the capabilities that the robots possess, namely, their sensing capabilities. Clearly,21

the type of viewing device has a great impact on the knowledge that the robots have of their22

environment. For example, endowed with a camera or a sonar, vision capabilities are limited23

to a certain distance. By contrast, if the robots have access to a global localization system24

(GPS, egocentric zone-based RFID technology), then their viewing capabilities are a priori25

unlimited. Note that GPS actually provides a global coordinate system of the environment.26

Can the robots achieve the same tasks if they are only equipped with a compass? What27

happens if they are devoid of any kind of orientation capabilities? What can they achieve28

if their sensing devices do not enable to differentiate between two of them? Obviously, the29

stronger the device capabilities are, the easier the problem is solved.30

This paper falls into the category of works tackling the exploration problem from a31

computational point of view. In other words, our focus is to understand the relationship32

between the capabilities of the robots and the solvability of the exploration of a discrete33

environment. We consider autonomous robots that are endowed with visibility sensors but34

that are otherwise unable to communicate. We assume robots with weak capacities: they35

are anonymous (they are devoid of any visible ID), oblivious (that is, they cannot remember36

the past), and have no compass whatsoever.37

1.1. Related Work38

The vast majority of literature on robots (refer to [3] for an introductory survey) considers39

that they evolve in a continuous two-dimensional Euclidean space and use visual sensors with40

perfect accuracy that permit to locate other robots with infinite precision, e.g., [4, 5, 6, 7, 8,41

9]. Several works investigate restricting the capabilities of both visibility sensors and motion42

actuators of the robots. In [10, 11], robots visibility sensors are supposed to be accurate43

within a constant range, and sense nothing beyond this range. In [11, 12], the space allowed44

for the motion actuator is reduced to a one-dimensional continuous one: a ring in [11], an45

infinite path in [12].46

A recent trend is to shift from the classical continuous model to the discrete model. The47

discrete model restricts both sensing and actuating capabilities of robots with respect to the48

previous works that assume a continuous two-dimensional Euclidean space and visual sensors49

with perfect accuracy. Indeed, for each location, a robot is able to sense if the location is50

empty or if robots are positioned on it. Also, a robot is not able to move from a position51
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to another unless there is explicit indication to do so (i.e., the two locations are connected52

by an edge in the representing graph). The discrete model permits to simplify many robot53

protocols by reasoning on finite structures rather than on infinite ones. However, as noted in54

most related papers [13, 14, 15, 16, 17, 18, 19, 20, 21, 22], this simplicity comes with the cost55

of extra symmetry possibilities, especially when the authorized paths are also symmetric.56

(Indeed, techniques to break formation such as those of [6] cannot be used in the discrete57

model.)58

Assuming the same sensing capabilities—a robot is only able to sense if the location is59

empty or if anonymous robots are positioned on it—, the two main problems that have been60

studied in the discrete robot model are gathering [18, 19, 20, 21, 22] and exploration [13,61

14, 15, 16, 17]. For gathering, both breaking symmetry [18, 20, 21, 22] and preserving62

symmetry [19] are meaningful approaches. For exploration, the fact that robots need to63

stop after exploring all locations requires robots to “remember” how much of the graph was64

explored, i.e., to be able to distinguish between various stages of the exploration process65

since robots have no persistent memory. As configurations can be distinguished only by66

robot positions, the main complexity measure is then the number of robots that are needed67

to explore a given graph. The vast number of symmetric situations induces a large number68

of required robots. For tree networks, [14] shows that Ω(n) robots are necessary for most69

n-sized trees, and that sub-linear robot complexity (actually Θ(log n/ log log n)) is possible70

only if the maximum degree of the tree is 3. In the case of line networks, the solvable cases71

have been fully characterized [17]: one or two robots are insufficient, 4 robots are sufficient72

if n is odd, and every other case is solvable for n greater than the number of robots. In73

uniform rings, [13] proves that the necessary and sufficient number of robots is Θ(log n),74

although it proposes an algorithm that works with an additional assumption: the number k75

of robots and the size n of the ring are coprime. For the pairs of k and n that are coprime,76

five robots are necessary and sufficient in the deterministic case [15]. The case of general77

graphs has been investigated with the additional hypothesis that a local labeling is available78

to the robots at each node [16].79

Note that all previous approaches in the discrete model are deterministic, i.e., if a robot80

is presented twice the same situation, its behavior is the same in both cases.81

1.2. Contribution82

In this paper, we consider the probabilistic exploration of an anonymous unoriented ring83

in the semi-synchronous model [23] to lift constraints and to reduce bounds given in [13].84

So, with respect to [13], we relax both the model (from asynchronous to semi-synchronous)85

and the specification of the problem (from deterministic to probabilistic exploration).86

These two relaxations are mandatory. Indeed, we show that even using randomization,87

the exploration problem remains not solvable in the (fully) asynchronous model if k divides88

n. Moreover, it is straightforward that the necessary conditions and bounds exposed in [13]89

for the deterministic exploration still hold in the semi-synchronous model.90

By contrast with [13], we show that four identical probabilistic robots are necessary and91

sufficient to solve the exploration problem in any anonymous unoriented ring in the semi-92

synchronous model, also removing the coprime constraint between the number of robots and93
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the size of the ring. Our proof is constructive, as we present a probabilistic protocol for four94

robots to explore any ring of size at least four.95

Outline. The remaining of the paper is divided as follows. Section 2 presents the system96

model that we use throughout the paper. In Section 3, we justify why we need to use the97

semi-synchronous model. In the same section, we provide evidence that no three probabilistic98

robots can explore any ring of more than three nodes, while Section 4 presents our protocol99

with four robots, and its correctness proof. Section 5 gives some concluding remarks.100

2. Preliminaries101

2.1. Distributed Systems102

We consider systems of autonomous mobile entities called agents or robots evolving into103

a graph. We assume that the graph is a ring of n nodes, u0,. . . , un−1, i.e., ui is connected to104

both ui−1 and ui+1.1 The indices are used for notation purposes only: the nodes are anony-105

mous (i.e., every node is identical) and the ring is unoriented (i.e., given two neighboring106

nodes u and v, there is no kind of explicit or implicit labeling allowing to determine whether107

u is on the right or on the left of v).108

2.2. Robots109

Operating on the ring are k ≤ n robots. The robots do not communicate in an explicit110

way; however they see the position of all other robots and can acquire knowledge from this111

information.112

Each robot operates according to its (local) program. We call protocol a collection of k113

programs, each one operating on a single robot. Here we assume that robots are uniform114

and anonymous, i.e., they all have the same program using no local parameter (such that115

an identity) allowing to differentiate them.116

The program of a robot consists in executing Look-Compute-Move cycles infinitely many117

times. That is, the robot first observes its environment (Look phase). Based on its ob-118

servation, a robot then (probabilistically or deterministically) decides to move or stay idle119

(Compute phase). When a robot decides to move, it moves toward its destination during120

the Move phase.121

A robot can decide between moving and staying idle using some probability p —with122

0 < p < 1— during the Compute phase of one of its cycles. In this case, we say that the123

robot tries to move. Conversely, when a robot deterministically decides to move during its124

Compute phase, we simply say that the robot moves.125

We assume that robots cannot remember any previous observation nor computation126

performed in any previous cycle. Such robots are said to be oblivious (or memoryless).127

1Every computation over indices is assumed to be modulus n.
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2.3. Computational Models128

We consider two models: the semi-synchronous [9, 23] and asynchronous [13, 24] models.129

In both models, time is represented by an infinite sequence of instants 0, 1, 2, . . . No robot130

has access to this global time. Moreover, every robot executes cycles infinitely many times.131

Each robot performs its own cycles in sequence. However, the time between two cycles of132

the same robot and the interleavings between cycles of different robots are decided by an133

adversary. As a matter of facts, we are interested in algorithms that correctly operate despite134

the choices of the adversary. In particular, our algorithms should work even if the adversary135

forces the execution to be fully sequential or fully synchronous.136

In the semi-synchronous model, each Look-Compute-Move cycle execution is assumed to137

be atomic: every robot that is activated by the adversary at instant t atomically executes a138

full cycle between t and t+ 1.139

In the asynchronous model, Look-Compute-Move cycles are performed asynchronously by140

each robot: the time between Look, Compute, and Move operations is finite yet unbounded,141

and decided by the adversary. The only constraint is that Look is instantaneous and Move142

is atomic: if a move starts at instant t, it is terminated at instant t+ 1.143

Remark that in both models, any robot performing a Look operation sees all other robots144

on nodes and not on edges. However, in the asynchronous model, a robot R may perform145

a Look operation at some time t, perceiving robots at some nodes, then Compute a target146

neighbor at some time t′ > t, and Move to that neighbor at some later time t′′ > t′ in147

which some robots are at different nodes from those previously perceived by R because148

in the meantime they moved. Hence, robots may move based on significantly outdated149

perceptions. In the asynchronous model, a robot is said to be engaged if it has decided to150

move during its compute phase but not yet moved.151

2.4. Multiplicity152

We assume that during the Look phase, every robot can perceive whether several robots153

are located on the same node or not. This ability is called Multiplicity Detection. We shall154

indicate by di(t) the multiplicity of robots present in node ui at instant t.155

In this paper, we consider two kinds of multiplicity detection: the strong and weak mul-156

tiplicity detections.157

Under the strong multiplicity detection, for every node ui, di is a function N 7→ N where158

di(t) = j indicates that there are j robots in node ui at instant t. If di(t) = 0, then we say159

that ui is free at instant t, otherwise ui is said to be occupied at instant t. If di(t) > 1, then160

we say that ui contains a tower (of di(t) robots) at instant t.161

Under the weak multiplicity detection, for every node ui, di is a function N 7→ {◦,⊥,>}162

defined as follows: di(t) is equal to either ◦, ⊥, or > according to ui contains no, one or163

several robots at time instant t. As previously, if di(t) = ◦, then we say that ui is free at164

instant t, otherwise ui is said to be occupied at instant t. If di(t) = >, then we say that ui165

contains a tower at instant t.166
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2.5. Configurations167

Given an arbitrary orientation of the ring and a node ui, γ
+i(t) (respectively, γ−i(t))168

denotes the sequence 〈di(t)di+1(t) . . . di+n−1(t)〉 (resp., 〈di(t)di−1(t) . . . di−(n−1)(t)〉). The169

sequence γ−i(t) is called mirror of γ+i(t) and conversely. The unordered pair {γ+i(t), γ−i(t)}170

is called the view2 of node ui at instant t (we omit “at instant t” when it is clear from the171

context). The view of ui is said to be symmetric if and only if γ+i(t) = γ−i(t). Otherwise,172

the view of ui is said to be asymmetric. Actually, the view represents the whole information173

a robot acquires during a Look phase.174

By convention, we state that the configuration of the system at instant t is γ+0(t). Any175

configuration from which no robot moves nor tries to move is said to be terminal. Let176

γ = 〈x0x1 . . . xn−1〉 be a configuration. The configuration 〈xixi+1 . . . xi+n−1〉 is obtained by177

rotating γ by i ∈ [0 . . . n− 1]. Two configurations γ and γ′ are said to be indistinguishable if178

and only if γ′ can be obtained by rotating γ or its mirror. Two configurations that are not179

indistinguishable are said to be distinguishable. We designate by initial configurations the180

configurations from which the system can start at instant 0.181

During the Look phase, it may happen that both edges incident to a node v currently182

occupied by the robot look identical in the snapshot, i.e., v lies on a symmetric axis of the183

configuration. In this case, if the robot decides to move, it may traverse any of the two184

edges. We assume the worst case decision in such cases, i.e., that the decision to traverse185

one of these two edges is taken by the adversary.186

2.6. Computations187

We call computation any infinite sequence of configurations γ0, γ1, γ2, . . . such that (1)188

γ0 is a possible initial configuration and (2) starting the system in γ0 at instant 0, there189

exists a scheduling of cycle executions that can produce γ1 at instant 1, γ2 at instant 2, . . .190

Any transition γt, γt+1 is called a step of the computation. A computation c terminates if c191

contains a terminal configuration.192

A scheduler is a predicate over computations, that is, a scheduler defines a set of admis-193

sible computations.3 Here we assume a distributed fair scheduler. Distributed means that194

robots can execute cycles concurrently. Fair means that every robot executes cycles infinitely195

often during a computation. A particular case of distributed fair scheduler is the sequential196

fair scheduler: every step consists in a full cycle execution of a single robot. In the following,197

we call sequential computation any computation that satisfies the sequential fair scheduler198

predicate.199

2.7. Problem to be solved200

We consider the exploration problem, where k robots, initially placed at different nodes,201

collectively explore an n-node ring before stopping moving forever. More formally, a protocol202

P deterministically (resp. probabilistically) solves the exploration problem if and only if every203

2Since the ring is unoriented, the pair {γ+i(t), γ−i(t)} cannot be ordered.
3The scheduler can be seen as a restriction of the adversary’s power.
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computation c of P starting from a towerless configuration satisfies: (1) c terminates in finite204

time (resp. with probability 1 ); (2) every node is visited by at least one robot during c.205

Note that the previous definition implies that every initial configuration of the system in206

the problem we consider are towerless. Note also that using probabilistic solutions, termi-207

nation is not certain, however the overall probability of non-terminating computations is 0.208

Finally, observe that the problem is not defined for k > n and straightforward for k = n (in209

this latter case the exploration is already accomplished in the initial configuration). Hence,210

throughout the paper, we always assume that k < n.211

3. Negative Results212

In this section, we present two impossibility results. The first one justifies the use of213

the semi-synchronous model. The second one gives a lower bound on the number of robots214

required to perform a probabilistic ring exploration. Note that to have results as general as215

possible we assume in this section that robots have strong multiplicity detection capabilities.216

In the seminal work on ring exploration [13], authors consider deterministic solutions217

in the asynchronous model. As a preliminary results, they show that deterministic ring218

exploration is not always possible in the asynchronous model, in particular, if k (the number219

of robots) divides n (the ring-size). We now show that this result also holds for probabilistic220

solutions, hence justifying why we assume the semi-synchronous model.221

Theorem 1. Let k < n. In the asynchronous model, if k divides n, then the probabilistic222

exploration of an n-node ring is not possible.223

Proof. By contradiction, let P be a probabilistic ring exploration protocol. Consider an224

initial configuration γ where the k robots are equidistantly placed on the ring (it is possible225

because k divides n). As k < n, the exploration is not terminated in γ. Hence, there is at226

least one robot that has a strictly positive probability to decide to move if it performs its227

Look phase in γ. Now, as robots are uniform and the views of all robots are identical in228

γ, this implies that all robots have a strictly positive probability to decide to move if they229

perform their Look phase in γ. Moreover, the view of each robot is symmetric in γ, so if a230

robot moves in γ, then the incident edge it traverses is chosen by the adversary. Hence, from231

γ, a possible execution is then the following: (1) the adversary forces every not-yet-engaged232

robot to execute cycles until they all are engaged, (2) no move occurs before all robots are233

engaged, (3) once all robots are engaged, all moves occur synchronously, and (4) the edges234

traversed during the moves are chosen by the adversary in such a way that the full symmetry235

of the configuration is maintained. Then, as the next configuration is indistinguishable from236

γ and robots are oblivious, we can repeat the process indefinitely. Hence, with strictly237

positive probability, the adversary can force the computation to not terminate, despite the238

computation satisfies the distributed fair scheduler, a contradiction. 2
239

We now show that the ring exploration is impossible to solve, even in a probabilistic240

manner, in our settings (i.e., oblivious robots, anonymous ring, semi-synchronous model,241

distributed fair scheduler, . . . ) if there are less than four robots (Corollary 2). The proof is242

made in two steps:243
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• The first step is based on the fact that obliviousness constraints any exploration pro-244

tocol to construct an implicit memory using the configurations. We show that if the245

scheduler behaves sequentially, then in any case except one, it is not possible to par-246

ticularize enough configurations to memorize which nodes have been visited (Theorem247

2 and Lemma 3).248

• The second step consists in excluding the last case (Theorem 3).249

First, as n > k and robots are oblivious, any terminal configuration should be distinguishable250

from any possible initial (towerless) configuration. Hence, it follows:251

Remark 1. If n > k, any terminal configuration of any exploration protocol contains at252

least one tower.253

The next definition is used in Lemmas 1 and 2, proven afterward. These lemmas are technical254

results that lead to Corollary 1. The latter exhibits the minimal size of a subset of particular255

configurations required to solve the exploration problem on the ring.256

Definition 1 (MRS). Let s be a sequence of configurations. The minimal relevant sub-257

sequence of s, noted MRS(s), is the maximal subsequence of s where no two consecutive258

configurations are identical.259

Lemma 1. Let P be any (probabilistic or deterministic) exploration protocol for k robots on260

a ring of n > k nodes. For every sequential computation c of P that terminates, MRS(c)261

has at least n− k + 1 configurations containing a tower of less than k robots.262

Proof. Assume, by contradiction, that there is a sequential computation c of P that263

terminates and such thatMRS(c) has less than n− k+ 1 configurations containing a tower264

of less than k robots.265

Take the last configuration α without tower that appears in c and all remaining configu-266

rations that follow in c (all of them contains a tower) and form c′. As α could be an initial267

configuration and c is an admissible sequential computation that terminates, c′ is also an268

admissible sequential computation of P that terminates.269

By definition, MRS(c′) is constituted of a configuration with no tower only followed by270

configurations with tower and n− k new nodes (remember that k nodes are already visited271

in the initial configuration) must be visited before c′ reaches its terminal configuration.272

Consider a step ββ′ in c′.273

1. If β = β′, then no node is visited during the step.274

2. If β 6= β′, then there are three possible cases:275

(a) β contains no towers. In this case, β = α (the initial configuration of c′) and276

β′ contains a tower. As only one robot moves in ββ′ to create a tower (c′ is277

sequential), no node is visited during this step.278
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(b) β contains a tower and β′ contains a tower of k robots. As c′ is sequential and all279

robots are located at the same node in β′, one robot moves to an already occupied280

node in ββ′ and no node is visited during this step.281

(c) β contains a tower and β′ contains a tower of less than k robots. In this case, at282

most one node is visited in ββ′ because c′ is sequential.283

To sum up, only the steps from a configuration containing a tower to a configuration contain-284

ing a tower of less than k robots (Case 2.(c)) allow to visit at most one node each time. Now,285

in MRS(c′) there are less than n − k + 1 configurations containing a tower of less than k286

robots and the first of these configurations appearing into c′ is consecutive to a step starting287

from the initial configuration (Case 2.(a)). Hence, less than n − k nodes are dynamically288

visited during c′ and, as exactly k nodes are visited in the initial configuration, less than n289

nodes are visited when c′ terminates, a contradiction. 2
290

Lemma 2. Let P be any (probabilistic or deterministic) exploration protocol for k robots on291

a ring of n > k nodes. For every sequential computation c of P that terminates, MRS(c)292

has at least n− k+ 1 configurations containing a tower of less than k robots and any two of293

them are distinguishable.294

Proof. Consider any sequential computation c of P that terminates.295

By Lemma 1, MRS(c) has x configurations containing a tower of less than k robots296

where x ≥ n− k + 1.297

We first show that (*) if MRS(c) contains at least two configurations having a tower298

of less than k robots that are indistinguishable, then there exists a sequential computation c′299

that terminates and such thatMRS(c′) has x′ configurations containing a tower of less than300

k robots where x′ < x. Assume that there are two indistinguishable configurations γ and γ′301

in MRS(c) having a tower of less than k robots. Without loss of generality, assume that γ302

occurs at time t in c and γ′ occurs at time t′ > t in c. Consider the two following cases:303

1. γ′ can be obtained by applying a rotation of i to γ. Let p be the prefix of c304

from instant 0 to instant t. Let s be the suffix of c starting at instant t′ + 1. Let s′ be305

the sequence obtained by applying a rotation of −i to the configurations of s. As the306

ring and the robots are anonymous, ps′ is an admissible sequential computation that307

terminates. Moreover, by construction MRS(ps′) has x′ configurations containing a308

tower of less than k robots where x′ < x. Hence (*) is verified in this case.309

2. γ′ can be obtained by applying a rotation of i to the mirror of γ. We can310

prove (*) in this case by slightly modifying the proof of the previous case: we have just311

to apply the rotation of −i to the mirrors of the configurations of s.312

By (*), ifMRS(c) contains less than n−k+1 distinguishable configurations with a tower313

of less than k robots, it is possible to (recursively) construct an admissible computation c′314

of P that terminates such that MRS(c′) has less than n− k + 1 configurations containing315

a tower of less than k robots, a contradiction to Lemma 1. Hence, the lemma holds. 2
316

From Lemma 2, we can deduce the following corollary:317
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Corollary 1. Considering any (probabilistic or deterministic) exploration protocol for k318

robots on a ring of n > k nodes, there exists a subset S of at least n − k + 1 configura-319

tions such that:320

1. Any two different configurations in S are distinguishable, and321

2. In every configuration in S, there is a tower of less than k robots.322

Theorem 2. ∀k, 0 ≤ k < 3,∀n > k, there is no exploration protocol (even probabilistic) of323

an n-node ring with k robots.324

Proof. First, for k = 0, the theorem is trivially verified. Consider then the cases k = 1325

and k = 2: with one robot it is impossible to construct a configuration with one tower; with326

two robots it is impossible to construct a configuration with one tower of less than k robots327

(k = 2). Hence, for k = 1 and k = 2, the theorem is a direct consequence of Corollary 1. 2
328

Lemma 3. ∀n > 4, there is no exploration protocol (even probabilistic) of an n-node ring329

with three robots.330

Proof. With three robots, the size of the maximal set of distinguishable configurations
containing a tower of less than three robots is bn/2c. By Corollary 1, we have then the
following inequality:

bn/2c ≥ n− k + 1

From this inequality, we can deduce that n must be less or equal to four, and we are done.331

2
332

From this point on, we know that, assuming k < 4, Corollary 1 prevents the existence of any333

exploration protocol in any case except one: k = 3 and n = 4 (Theorem 2 and Lemma 3).334

Actually, assuming that the scheduler is sequential is not sufficient to show the impossibility335

in this latter case: Indeed, if we assume a sequential scheduler, then there is an exploration336

protocol for k = 3 and n = 4. The protocol works as shown in Figure 1.337

Initial configuration Intermediate configuration Terminal configuration

Figure 1: Protocol for n = 4, k = 3, and assuming a sequential scheduler. (The squares represent robots.
The arrows show the destinations of the robots if they move.)
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The theorem below is obtained by showing the impossibility for k = 3 and n = 4338

using a (non-sequential) distributed fair scheduler. The proof of this theorem consists of339

a combinatorial study of all possible protocols for k = 3 robots and n = 4 nodes. In each340

case, we show that the protocol leads to one of the following contradictions:341

• Either, the adversary can force with a strictly positive probability, an admissible com-342

putation to never terminate.343

• Or, for every possible terminal configuration (i.e., any configuration containing a tower,344

refer to Remark 1), there is an admissible computation that reaches the terminal345

configuration without visiting all nodes.346

Theorem 3. Assuming a distributed fair scheduler, there is no exploration protocol (even347

probabilistic) of an n-node ring with three robots for every n > 3.348

Proof. Lemma 3 excludes the existence of any exploration protocol for three robots on349

a ring of n > 4 nodes. Hence, to show this theorem, we just have to show that there is no350

exploration protocol for three robots working on a ring of four nodes.351

Assume, by contradiction, that there exists an exploration protocol P for three robots352

on a ring of four nodes. Then, any possible initial configuration is indistinguishable with the353

configuration presented in Figure 2. Moreover, any possible terminal configuration contains a354

tower by Remark 1 and so is indistinguishable with one of the three configurations presented355

in Figure 3.356

u0

u3 u2

u1

Ra

Rc

Rb

Figure 2: Initial configuration for n = 4 and k = 3. (The indices are used for notation purposes only.)

Consider that the system is initially in the configuration of Figure 2. Three cases are357

possible at instant 0 using P :358

• There is a strictly positive probability that robot Ra (resp. robot Rc) moves to node359

u3 if it executes a cycle.4 In this case, assume that the adversary can activate Ra360

to execute cycles until it moves. Then, the probability that Ra eventually moves is361

1 (resp. Ra moves in one step if P is deterministic). Once Ra has moved, Rb has a362

strictly positive probability to move to node u0 if it executes a cycle; indeed, Rb is in363

4If P is deterministic, the probability is 1.
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u0

u3 u2

u1

Ra

Rc

Rb

(i)

u0

u3 u2

u1

Ra

Rc

Rb

(ii)

u0

u3 u2

u1

Ra

RcRb

(iii)

Figure 3: Terminal configurations for n = 4 and k = 3. (The indices are used for notation purposes only.)

the same situation as Ra at instant 0. Assume then that the adversary activates Rb364

until it moves. The probability that Rb eventually moves is 1. Repeating this scheme365

for Rc and so on, we can deduce that with a strictly positive probability, the adversary366

can force the computation to never terminate despite the computation is distributed367

and fair, a contradiction.368

• There is a strictly positive probability that robot Ra (resp. robot Rc) moves to node u1369

if it executes a cycle. In this case, there is an admissible computation where Ra and370

Rc move to node u1 in the first step. At instant 1, the system is in a configuration371

that is indistinguishable with configuration (i) of Figure 3. As node u3 is still not372

visited in this case, any configuration that is indistinguishable with configuration (i)373

cannot be terminal. There is also an admissible computation where only Ra moves374

to node u1 in the first step. At instant 1, the system is in a configuration that is375

indistinguishable with configuration (ii) of Figure 3. As node u3 is still not visited in376

this case, any configuration that is indistinguishable with configuration (ii) cannot be377

terminal. Moreover, assuming that the system reaches a configuration indistinguishable378

from configuration (i) of Figure 3 at instant 1, there is a strictly positive probability379

that the three robots move (the configuration is not terminal and all robots have380

the same view). If they move, the adversary can choose which incident edge they381

traverse because the configuration is symmetric. Hence, we can obtain a configuration382

indistinguishable with configuration (iii) of Figure 3 and where node u3 is still not383

visited. Thus, any configuration that is indistinguishable with configuration (iii) cannot384

be terminal. Hence, no configuration can be terminal, a contradiction.385

• There is a strictly positive probability that robot Rb moves if it executes a cycle. Assume386

that the adversary activates Rb until it moves. Then, the probability that Rb eventually387

moves is 1. Once Rb decides to move, the adversary can choose the edge that Rb388

traverses because the view from Rb is symmetric. Hence, the system can reach the389

configuration γ: Ra is in node u0, Rb and Rc are in node u2. This configuration is390

12



indistinguishable with configuration (iii) in Figure 3 and node u3 is still not visited.391

(Consequently, every configuration indistinguishable with configuration (iii) in Figure392

3 cannot be terminal.) Consider the two following sub-cases:393

– The probability that Ra moves, if it executes a cycle, is 0. Then, there is a strictly394

positive probability that Rc (resp. Rb) moves if it executes a cycle. Assume that395

the adversary activates Ra and then Rc until Rc moves. The probability that Rc396

eventually moves is 1 and as the the view from Rc is symmetric, the adversary397

can decide which edge Rc will traverse. Assume that the adversary forces Rc to go398

to node u1, the system reaches a configuration indistinguishable with the initial399

configuration. We can repeat the same scheme infinitely often. So, with a strictly400

positive probability, the adversary can force the computation to never terminate401

despite the computation is distributed and fair, a contradiction.402

– The probability that Ra moves, if it executes a cycle, is strictly positive. Assume403

that the adversary activates Ra until it moves. Then, the probability that Ra404

eventually moves is 1 and as the the view from Ra is symmetric, the adversary405

decides which edge Ra will traverse. Assume that Ra moves to node u1, the sys-406

tem reaches the following configuration: Ra is in node u1, Rb and Rc are in node407

u2, and node u3 is still not visited. This configuration is indistinguishable with408

configuration (ii) in Figure 3. (Consequently, every configuration indistinguish-409

able with configuration (ii) in Figure 3 cannot be terminal.) Consider the two410

following sub-cases (these sub-cases are illustrated in Figure 4):411

u0

u3 u2

u1

Ra

Rc Rb

u0

u3 u2

u1

Ra Rc

u0

u3 u2

u1

RaRcRb

u0

u3 u2

u1

Ra

RcRb

u0

u3 u2

u1

Ra

RcRb

Case  (a).1

Case  (a).2 Case  (b).1

Case  (b).2

Rb

Figure 4: Illustration of sub-cases (a) and (b)
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(a) The probability that Rc (resp. Rb) moves, if it executes a cycle, is strictly412

positive.413

1. Assume that the destination of Rc, if Rc decides to move, is node u3.414

Then, the system reaches a configuration indistinguishable from initial415

configuration. We can repeat the same scheme infinitely often. So, with416

a strictly positive probability, the adversary can force the computation417

to never terminate despite the computation is distributed and fair, a418

contradiction.419

2. Assume that the destination of Rc, if Rc decides to move, is node u1.420

Then, the destination of Rb, if Rb moves, is node u1 too. Hence, there421

is an admissible computation where Rb and Rc move to node u1. In this422

case, the system reaches a configuration that is not distinguishable from423

configuration (i) in Figure 3 while node u3 is still not visited. In this case,424

no configuration can be terminal, a contradiction.425

(b) The probability that Rb (resp. Rc) moves, if it executes a cycle, is 0. Then,426

the probability that Ra moves is strictly positive. Consider the two following427

sub-cases:428

1. Assume that the destination of Ra, if Ra decides to move, is node u2. In429

this case, there is an admissible computation where Ra moves to node430

u2: the system reaches a configuration that is not distinguishable from431

configuration (i) in Figure 3 while node u3 is still not visited. In this case,432

no configuration can be terminal, a contradiction.433

2. Assume that the destination of Ra, if Ra decides to move, is node u0.434

Assume that the adversary activates Rb, Rc, and then Ra until Ra moves.435

The probability that Ra eventually moves is 1 and we obtain a config-436

uration that is indistinguishable with configuration γ. We can repeat437

the same scheme infinitely often. So, with a strictly positive probability,438

the adversary can force the computation to never terminate despite the439

computation is distributed and fair, a contradiction.440

In all cases, we obtain a contradiction: there is no exploration protocol for three robots on441

a ring of n > 4 nodes and the theorem is proven. 2
442

From Theorems 2 and 3, we can deduce the following corollary:443

Corollary 2. Assuming a distributed fair scheduler, ∀k, 0 ≤ k < 4,∀n > k, there is no444

exploration protocol (even probabilistic) of an n-node ring with k robots.445

4. Positive Result446

In this section, we propose a probabilistic protocol for k = 4 robots to explore any ring of447

n > 4 nodes. We begin with some definitions in Section 4.1. Then, we present in Section 4.2448

the main principles of our protocol. Finally, we prove its correctness in Section 4.3.449
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4.1. Definitions450

Below, we give some definitions to characterize the configurations.451

We call segment any maximal non-empty elementary path of occupied nodes. The length452

of a segment is the number of nodes that compose it. We call x-segment any segment of453

length x. In the segment s = ui, . . . , uk (k ≥ i) the nodes ui and uk are termed as the454

extremities of s. An isolated node is a node belonging to a 1-segment.455

We call hole any maximal non-empty elementary path of free nodes. The length of a456

hole is the number of nodes that compose it. We call x-hole any hole of length x. In the457

hole h = ui, . . . , uk (k ≥ i) the nodes ui and uk are termed as the extremities of h. We call458

neighbor of a hole any node that does not belong to the hole but is neighbor of one of its459

extremities. In this case, we also say that the hole is a neighboring hole of the node. By460

extension, any robot that is located at a neighboring node of a hole is also referred to as a461

neighbor of the hole.462

We call arrow a maximal elementary path ui, . . . , uk of length at least four such that (i)463

ui and uk are occupied by one robot, (ii) ∀j ∈ [i + 1 . . . k − 2], uj is free, and (iii) there is464

a tower in uk−1, the latter meaning occupied by at least two robots. The node ui is called465

the arrow tail and the node uk is called the arrow head. The size of an arrow is the number466

of free nodes that compose it, i.e., it is the length of the arrow path minus 3. Note that the467

minimal size of an arrow is 1 and the maximal size is n− 3. Note also that when there is an468

arrow in a configuration, the arrow is unique. An arrow is said to be primary if its size is 1.469

An arrow is said to be final if its size is n− 3.470

u0

u3 u2

u1

Ra

Rc

Rb

(i)

Rd

u4

u5 u0

u3 u2

u1

Ra

Rc

Rb

(ii)

Rd

u4

u5 u0

u3 u2

u1

Ra

Rc

Rb

(iii)

Rd

u4

u5

Figure 5: Arrows.

Figure 5 illustrates the notion of arrows: In Configuration (i) the arrow is formed by the471

path u4, u5, u0, u1; the arrow is primary; the node u4 is the tail and the node u1 is the head.472

In Configuration (ii), there is a final arrow (the path u2, u3, u4, u5, u0, u1). Finally, the size473

of the arrow in Configuration (iii) (the path u3, u4, u5, u0, u1) is 2.474

4.2. Overview of the algorithm475

The main algorithm is given in Algorithm 1. To simplify the design, some specific cases476

are treated in Figures 6-9. These figures can be seen as an automaton:477
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Algorithm 1 The protocol.
1: if the configuration does not contain a final arrow and is distinguishable from (b) and (d) in Figure 6 then
2: begin
3: if the configuration contains an arrow then
4: begin
5: if I am the arrow tail then
6: Move toward the arrow head through the hole having me and the arrow head as neighbors;
7: end
8: else
9: if the configuration contains a 4-segment then
10: begin
11: if I am not located at an extremity of the 4-segment then
12: Try to move toward my neighboring node that is not an extremity of the 4-segment;
13: end
14: else
15: if the configuration contains a unique largest segment then /∗ A unique 3- or 2- segment ∗/
16: begin
17: if I am the isolated robot then
18: Move toward the unique largest segment through a smallest hole having me and an extremity of the

largest segment as neighbors;
19: end
20: else
21: if the ring-size is 6 then
22: See Figure 6, Configuration (a);
23: else
24: if the ring-size is 7 then /∗ there are two 2-segments ∗/
25: begin
26: if I am neighbor of the largest hole then
27: Move through my neighboring hole;
28: end
29: else
30: if the ring-size is 8 then
31: begin
32: if there are two 2-segments then
33: See Figure 8, Configurations (a) and (e);
34: else /∗ there are four isolated robots ∗/
35: See Figure 9, Configuration (a);
36: end
37: else /∗ the ring-size is more than 8 ∗/
38: if the configuration contains (exactly) two 2-segments then
39: begin
40: if I am a neighbor of a largest hole then
41: Try to move toward the other 2-segment through my neighboring hole;
42: end
43: else /∗ the four robots are isolated ∗/
44: begin
45: Let lmax be the length of the largest hole;
46: if every robot is neighbor of an lmax-hole then
47: Try to move through a neighboring lmax-hole;
48: else
49: if 3 robots are neighbors of an lmax-hole then
50: begin
51: if I am neighbor of only one lmax-hole then
52: Move toward the robot that is neighbor of no lmax-hole through my shortest neigh-

boring hole;
53: end
54: else /∗ 2 robots are neighbors of the unique lmax-hole ∗/
55: if I am neighbor of the unique lmax-hole then
56: Move through my shortest neighboring hole;
57: end
58: end
59: else
60: /∗ The exploration is terminated ∗/
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• Configurations are the states of the automaton.478

• Bold arrows between configurations represent possible transitions. (More precisely, the479

transition γ 7→ γ′ means that a configuration indistinguishable with γ′ can be reached480

from a configuration indistinguishable with γ.)481

• States without incoming arrow, except self-loops, are possible initial configuration.482

• Below any configuration having no outgoing transition, we explain what robots have483

to do.484

• In each node of each configuration, the symbols ◦, ⊥, or > give the multiplicity of the485

node.486

• In any configuration, we show how robots must behave using arrows: dashed arrows487

represent try to move actions, and bold arrows represent (deterministic) moves. When488

there are two possible directions for a robot, this means that if the robot is activated489

by the adversary to execute a cycle, the edge it will traverse is chosen by the adversary.490

Except for two special cases where it terminates earlier (namely, Cases (b) and (d) in491

Figure 6, page 18), our protocol works in three main steps:492

• Alignment (Lines 15-57). From an initial (towerless) configuration, the robots move493

along the ring in such a way that (1) they never form any arrow and (2) they eventually494

form a unique 4-segment with probability one.495

Actually, during this phase, we avoid as much as possible to create any tower.496

• Arrow Creation (Lines 9-13). From any configuration containing a unique 4-seg-497

ment, the four robots eventually form a primary arrow with probability one. The498

4-segment is maintained until the primary arrow is formed.499

• Exploration (Lines 3-7). From a configuration where the four robots form a primary500

arrow, the arrow tail deterministically moves toward the arrow head in such a way that501

the length of the arrow never decreases. The protocol terminates when robots form a502

final arrow. At the termination, all nodes have been visited.503

Our protocol is probabilistic. As a matter of fact, as long as possible the robots move504

deterministically. Randomization is used to break the symmetry in some cases: When the505

system is in a symmetric configuration, the adversary may choose to synchronously activate506

some robots in such a way that the system stays in a symmetric configuration. To break the507

symmetry despite the choice of the adversary, some robots proceed as follows: If activated,508

they probabilistically decide whether or not they move during their Compute phase, that is,509

they perform a try to move.510
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Figure 6: Symmetry breaking in a 6-size ring.
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Figure 7: Symmetry breaking in a 7-size ring.

4.3. Correctness511

We now show that, starting from any initial (towerless) configuration, Algorithm 1 ex-512

plores any ring of size n > 4 using four robots with probability one. In other words, Algorithm513

1 is a probabilistic exploration protocol for four robots in any ring of size n > 4.514

We start the proof by giving in Section 4.3.1 some properties holding for all ring-sizes.515

Then, we prove the correctness of the algorithm in any ring of size greater than 8 in Sec-516

tion 4.3.2. In Section 4.3.3 we give dedicated proofs for each of the remaining cases (size 5517

to 8). Finally, we provide the general result in Section 4.3.4.518

4.3.1. Some Results519

We first show several results holding for all ring-sizes. The first result (Lemma 4) is used520

to prove the correctness of the alignment phase. It shows that from some asymmetric tow-521

erless configurations the system deterministically converges to a 4-segment without creating522

any tower during the process.523

Lemma 4. Starting from any (towerless) configuration containing either a 3-segment or a524

unique 2-segment, the system reaches in finite time a configuration containing a 4-segment525

without creating any tower during the process.526
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Figure 8: 2-segment symmetries in a 8-size ring.

Proof. Assume a towerless configuration where there is either (1) one 3-segment or (2) a527

unique 2-segment. Lines 15 to 19 in Algorithm 1 manage these two cases. In the first case,528

there is one isolated robot and it deterministically moves through its smallest neighboring529

hole until a 4-segment is formed.5 In the second case, there are two isolated robots: the530

isolated robots deterministically move through their neighboring hole having an extremity531

of the 2-segment as neighbor until 4-segment is formed. Hence, a 4-segment is formed in532

finite time without creating a tower during the process and the lemma holds. 2
533

The two next lemmas show that the arrow creation phase behaves as expected. This534

phase starts when the system has reached a configuration containing a 4-segment on nodes535

ui, ui+1, ui+2, ui+3. In this case, Lines 9-13 in Algorithm 1 are executed. Let R1 and R2 be536

the robots located at the nodes ui+1 and ui+2 of the 4-segment. R1 and R2 try to move to537

ui+2 and ui+1, respectively. Eventually only one of these robots moves, a primary arrow is538

formed on nodes ui, ui+1, ui+2, ui+3, and we obtain the two lemmas below:539

Lemma 5. Let γ be a configuration containing a 4-segment ui, ui+1, ui+2, ui+3. If γ is the540

configuration at instant t, then the configuration at instant t + 1 is either identical to γ or541

the configuration containing the primary arrow ui, ui+1, ui+2, ui+3.542

Proof. Let R1 (resp. R2) be the robot located at node ui+1 (resp. ui+2) in γ. In γ, all543

robots execute Lines 9-13 of Algorithm 1. So, from γ, only R1 and R2 can move: R1 can544

move to node ui+2 andR2 can move to node ui+1. When one or both of these robots move, we545

obtain a configuration containing either a primary arrow or a 4-segment in ui, ui+1, ui+2, ui+3546

and the lemma holds. 2
547

Lemma 6. From a configuration containing a 4-segment, the system eventually reaches a548

configuration containing a primary arrow with probability one.549

5Note that the first time the robot moves, its two neighboring holes may have the same length, in this
case the adversary decides which edge to traverse.
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Proof. By Lemma 5, we know that starting from a configuration γ containing a 4-segment,550

the system either remains in the same configuration or reaches a configuration containing551

a primary arrow. Let R1 and R2 be the robots that are not located at the extremity of552

the 4-segment in γ. Only R1 and R2 can (probabilistically) decide to move in γ (refer to553

Lines 9-13). Also, by the fairness property, eventually one or both of them are activated.554

Now, despite the choice of the adversary, there is a strictly positive probability that only one555

of them probabilistically decides to move: in this case, the system reaches a configuration556

containing a primary arrow. Hence, considering only the steps where R1, R2, or both are557

activated, the system leaves γ to a configuration γ′ containing a primary arrow following a558

geometric law. Consequently, γ′ is eventually reached with probability one and we are done.559

2
560

Once the system has reached a configuration containing a primary arrow, robots execute561

Lines 3-7 in Algorithm 1. From such a configuration, the protocol is fully deterministic: Let562

H be the hole between the tail and the head of the primary arrow. We know that all nodes563

forming the primary arrow are already visited. So, the unvisited nodes can only be on H564

and the process just consists in traversing H. To that goal, the robot located at the arrow565

tail traverses H. When it is done, the system is in a terminal configuration containing a final566

arrow and all nodes have been visited. Hence, we can conclude with the following lemma:567

Lemma 7. From any configuration containing a 4-segment, the system reaches a terminal568

configuration containing a final arrow with probability one and when it is done, all nodes569

have been visited.570

Proof. The proof is based on the two following claims:571

1. Any configuration containing a final arrow is terminal.572

Proof: Immediate, refer to Line 1 in Algorithm 1.573

2. From a configuration containing a non-final arrow of length x, the system eventually574

reaches a configuration containing a x+ 1-arrow.575

Proof: In such a configuration, only the arrow tail can move. By the fairness property,576

the robot located at the arrow tail moves in finite time: it moves through its neighboring577

hole having the arrow head as other neighbor (refer to Lines 3-7). As a consequence,578

the size of the arrow is incremented to x+ 1, we are done.579

Using the two previous claims, we now prove the lemma in two steps:580

• Termination. From any configuration containing a 4-segment, the system eventually581

reaches a terminal configuration containing a final arrow with probability one.582

Proof: Immediate from Lemma 6, Claims 1 and 2.583

• Partial correctness. If a computation that starts from a configuration containing a584

4-segment terminates, then any node has been visited.585

Proof: Consider a configuration containing a 4-segment say ui, ui+1, ui+2, ui+3. By586

Lemmas 5 and 6, from this configuration the system eventually reaches a configuration587
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containing a primary arrow on ui, ui+1, ui+2, ui+3 with probability one and nodes ui,588

ui+1, ui+2, and ui+3 are already visited. By Claim 2, the robots execute then Lines 3-7589

until the computation terminates. Let H be the path ui−1, . . . , ui−n+4. By Claim 2,590

until the computation terminated, only the robot located at the arrow tail can move591

and it moves following H. Hence, when the computation terminates all nodes of H592

have been visited (i.e., nodes ui−1, . . . , ui−n+4) and, as nodes ui, ui+1, ui+2, ui+3 have593

also been visited, we are done.594

2
595

4.3.2. Size n > 8596

Consider any ring of size n > 8. We already know that from any configuration containing597

a 4-segment, the robots perform the exploration as expected by Lemma 7. So, to prove the598

correctness of Algorithm 1 in such rings, we show that the alignment phase (Lines 15-57)599

works as expected. That is, starting from any towerless configuration, robots eventually600

form a 4-segment with probability one without creating any arrow during the process. More601

precisely, we will see here that robots perform this phase without even creating any tower.602

Roughly speaking, in any ring of size greater than eight alignment phase works as follows:603

In asymmetric configurations, robots move deterministically (Lines 18, 52, and 56). Con-604

versely, in symmetric configurations, some robots move probabilistically using try to move605

(Lines 41 and 47). Note that in all cases, we prevent the tower creation (and consequently606

the arrow creation) by applying the following constraint: a robot can move through a neigh-607

boring hole H only if its length is at least 2 or if the other neighboring robot cannot move608

through H.609

To show that starting from any initial (towerless) configuration, robots eventually form a610

4-segment with probability one without creating any arrow during the process, we split the611

study into 3 cases:612

• The initial configuration contains a 4-segment. Then, the result trivially holds.613

• The initial configuration contains a 3-segment or a unique 2-segment. In this case, the614

result follows from Lemma 4.615

• In either cases, that is the initial configuration contains either two 2-segments or four616

isolated robots, the result follows from Lemmas 8 and 9, given below.617

Lemma 8. In any ring of size greater than eight, if the configuration γ at instant t contains618

either two 2-segments or four isolated robots, then the configuration at instant t+ 1 contains619

no tower.620

Proof. First, note that the robots execute 38-57 in γ. Consider the two following cases:621

• γ contains two 2-segments. In this case, as there are four robots and the size of the ring622

is greater than 8, the size of the largest hole is at least three. In such a configuration,623
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the only possible moves are the moves where robots go through one of their neighboring624

holes of length at least three (refer to Line 41). Hence, all moving robots move to a625

different free node: no tower is created at instant t+ 1.626

• γ contains four isolated robots. Let lmax be the length of the largest hole in γ. In this627

case, as there is four robots and the size of the ring n is greater than 8, lmax ≥ 2.628

Consider then the following three sub-cases:629

– Every robot is neighbor of an lmax-hole. In this case, every robot can move in the630

next step (refer to Line 47) but to a neighboring hole of size at least two. So, all631

moving robots move to a different free node. Hence, no tower is created at instant632

t+ 1.633

– Three robots are neighbors of an lmax-hole. LetR be the robot that is not neighbor634

of any lmax-hole. In this case, the robots that may move (at most two) go through635

their neighboring hole having R as other neighbor (refer to Line 52). As R cannot636

move, no tower is created at instant t+ 1.637

– Two robots, say R1 and R2, are neighbors of the unique lmax-hole. In this case,638

only R1 and R2 can move. If R1 (resp. R2) moves, then R1 (resp. R2) moves639

through its neighboring hole having not R2 (resp. R1) as other neighbor (refer to640

Line 56). So, all moving robots move to a different free node. As a consequence,641

no tower is created at instant t+ 1.642

In all cases, the configuration obtained at instant t + 1 contains no tower and the lemma643

holds. 2
644

Lemma 9. Starting from any configuration containing either two 2-segments or four isolated645

robots on a ring of size greater than eight, the system eventually reaches a configuration646

containing a 4-segment with probability one.647

Proof. From any configuration containing either two 2-segments or four isolated robots,648

we know that the system remains in configurations containing no tower while the system649

does not reach a configuration containing a 4-segment by Lemmas 4 and 8. Moreover, if the650

system reaches a configuration containing either 3-segment or a unique 2-segment, then we651

can conclude by Lemma 4.652

For a given n-size ring network, the number of configurations is finite. So, to prove the653

lemma, we have to show that from any configuration containing either two 2-segments or654

four isolated robots, there is always a strictly positive probability that the system eventually655

reaches a configuration containing either a 4-segment, or a 3-segment or a unique 2-segment656

(despite the choices of the adversary). To see this, consider a configuration γ satisfying one657

of the following cases:658

1. γ contains two 2-segments. In this case, the robots that are neighbors of a largest hole659

(at least two) can try to move (refer to Line 41). So, by fairness property, a non-empty660

set of these robots, say S, is eventually activated by the adversary to execute a cycle.661
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Now, every robot in S probabilistically decides to move or not. So, there is a strictly662

positive probability that only one robot in S decides to move. In this case, we obtain663

a unique 2-segment and we are done.664

2. γ contains four isolated nodes. Let lmax be the length of the largest hole in γ. Let us665

study the following sub-cases:666

(a) Only two robots are neighbors of an lmax-hole. In this case, the two robots that667

are neighbors of the unique lmax-hole can move (refer to Line 56). So, by fair-668

ness property, either one or both of them eventually move through their shortest669

neighboring hole. After such moves, either (i) the system is still in a configuration670

containing four isolated nodes and where two robots are neighbors of a unique671

largest hole but the size of the largest hole increased, or (ii) the system is in a672

configuration containing a unique 2-segment, or (iii) the system is in a config-673

uration containing two 2-segments. Hence, the system reaches in finite time a674

configuration satisfying (ii) or (iii) and we are done.675

(b) Exactly three robots are neighbors of an lmax-hole. Let R0 be the robot that is not676

neighbor of any lmax-hole. Let R1 and R2 be the two robots that are neighbors677

of exactly one lmax-hole. In this case, only R1 and R2 can move (refer to Line 52)678

and by fairness property at least one of them eventually does. If only one of them679

moves, then we obtain sub-case 2(a) or a unique 2-segment, and we are done. If680

both R1 and R2 move, then the system reaches either (i) a configuration where681

exactly three robots are neighbors of a largest hole of length lmax + 1, or (ii) a682

configuration containing a unique 2-segment, or (iii) a configuration containing683

a 3-segment. If we repeat the argument, we eventually leave Case (i) to sub-case684

2(a), (ii), or (iii), and we are done.685

(c) The four robots are neighbors of an lmax-hole. In this case, all activated robots686

try to move (refer to Line 47). Now, despite the choice of the adversary, there is a687

strictly positive probability that only one robot probabilistically decides to move.688

In this case, the robot moves through one of its neighboring lmax-hole of size at689

least two (to avoid any tower creation). As a consequence, we obtain sub-cases690

2(a) or 2(b), and we are done.691

2
692

By Lemmas 7, 4, 8, and 9, it follows:693

Theorem 4. Algorithm 1 is a probabilistic exploration protocol for 4 robots on a ring of694

n > 8 nodes.695

4.3.3. Particular Cases696

We now consider rings of size 5 to 8. The correctness for a ring of size 5 is straightforward697

because any initial configuration of a ring of size 5 contains a 4-segment. Then, any initial698

configuration in rings of size 6 to 8 matches one of the following cases: (1) the configuration699

contains a 4-segment; (2) the configuration contains a 3-segment and one isolated node; (3)700
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the configuration contains a 2-segment and two isolated nodes; (4) the configuration contains701

two 2-segments; (5) the configuration contains four isolated nodes.702

In the three first cases, Lines 3-19 are executed and the correctness is obtained by Lemmas703

4 and 7. Finally, note that case (4) is possible for size 6, 7, and 8 while case (5) is only704

possible on a ring of size 8.705

Size 5. Any initial configuration of a ring of size 5 contains a 4-segment. So, by Lemma 7,706

we can conclude:707

Theorem 5. Algorithm 1 is a probabilistic exploration protocol for 4 robots on a ring of 5708

nodes.709

Size 6. To show the correctness of the protocol in any ring of size 6, it remains to show that710

it correctly operates when the initial configuration contains two 2-segments. This configura-711

tion is indistinguishable with Configuration (a) in Figure 6, page 18. In Configuration (a),712

any robot tries to move toward its neighboring hole (dashed arrows). So, either the system713

stays in the same configuration or the system reaches Configuration (b), (c), (d), (e), or714

(f). However, with probability one, the system eventually leaves Configuration (a) to Con-715

figuration (b), (c), (d), (e), or (f). In Configuration (e) or (f), we retrieve a previous case,716

the robots execute Lines 3-19 in Algorithm 1. In cases (b) and (d), we have the guarantee717

that all nodes are visited and as configurations (b) and (d) cannot be obtained anywhere718

else, there is no ambiguity and the process can stop. In Configuration (c), the two isolated719

nodes move as shown by the bold arrow and the system reaches either Configuration (b)720

or Configuration (d). Once again, we have the guarantee that all nodes are visited and as721

configurations (b) and (d) cannot be obtained anywhere else, there is no ambiguity and the722

process can stop. So, we can conclude with the following theorem:723

Theorem 6. Algorithm 1 is a probabilistic exploration protocol for 4 robots on a ring of 6724

nodes.725

Size 7. To show the correctness of the protocol in any ring of size 7, it remains to show726

that it correctly operates when the initial configuration contains two 2-segments. Such a727

configuration is indistinguishable with Configuration (a) in Figure 7, page 18. In this case,728

robots execute Lines 24-28 in Algorithm 1 and the system reaches in one step a configuration729

indistinguishable with configuration (b) in Figure 7, i.e., the configuration contains one 2-730

segment and two isolated nodes. From that point, robots execute Lines 3-19 in Algorithm 1731

and by Lemmas 4 and 7, we have:732

Theorem 7. Algorithm 1 is a probabilistic exploration protocol for 4 robots on a ring of 7733

nodes.734
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8(a) 7→ 8(d)
8(b) = 9(a) 7→ 9(c)
8(c)
8(d)
8(e) 7→ 8(g)
8(f) = 9(a) 7→ 9(c)
8(g)

9(a) 7→ 9(c)
9(b) 7→ 9(c)
9(c)
9(d) 7→ 9(c)
9(e) 7→ 9(f) 7→ 9(i) = 8(a) 7→ 8(d)
9(f) 7→ 9(i) = 8(a) 7→ 8(d)
9(g) 7→ 9(p) = 8(e) 7→ 8(g)
9(h) 7→ 9(f) 7→ 9(i) = 8(a) 7→ 8(d)
9(i) = 8(a) 7→ 8(d)
9(j) 7→ 9(g) 7→ 9(p) = 8(e) 7→ 8(g)
9(k) 7→ 9(l)
9(l)
9(m) 7→ 9(k) 7→ 9(l)
9(n)
9(o)
9(p) = 8(e) 7→ 8(g)

Table 1: Probabilistic Convergence to a configuration in Cgood.

Size 8. To show the correctness of the protocol in any ring of size 8, it remains to show735

that it correctly operates when the initial configuration contains either two 2-segments or736

four isolated nodes. Figures 8 and 9 (pages 19 and 20) describe the behavior of our protocol737

starting from a configuration that contains two 2-segments and four isolated nodes, respec-738

tively. Any configuration that contains either two 2-segments or four isolated nodes on a739

ring of size 8 is indistinguishable with Configurations (a), (e) in Figure 8, or Configuration740

(a) in Figure 9.741

First, we can observe that there is no ambiguity between the process described in Figures 8742

and 9 and the rest of the protocol. We can then remark that starting from Configurations743

(a), (e) in Figure 8, or Configuration (a) in Figure 9, the system leaves configurations of744

Figures 8 and 9 only when the system reaches a configuration containing either a 3-segment745

and one isolated node or a 2-segment and two isolated nodes: Configurations (c), (d), and746

(g) in Figure 8 as well as Configurations (c), (l), (n), (o) in Figure 9. Let Cgood be the set of747

all these configurations.748

From any configuration in Cgood, robots execute Lines 3-19 in Algorithm 1 and by Lem-749

mas 4 and 7, the exploration is achieved with probability one.750

Consider now a configuration γ in Figures 8 or 9 that is not in Cgood. In any configuration751

γ, there is at least one robot that executes a try to move if activated and every robot752
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either stays idle or executes try to move if activated. Now, the scheduler being fair, in any753

configuration the adversary eventually chooses to activate robots that execute a try to move,754

and in that case, there is a strictly positive probability that only one robot moves despite755

the choice of the adversary. We can then remark (refer to Table 1) that from γ, there is756

path that leads to a configuration of Cgood and any transition in this path is possible with757

a strictly positive probability: these transitions actually correspond to steps where exactly758

one robot moves. So, as the set of configurations in Figures 8 or 9 is finite, a configuration759

of Cgood is eventually reached with probability one and we can conclude:760

Theorem 8. Algorithm 1 is a probabilistic exploration protocol for 4 robots on a ring of 8761

nodes.762

4.3.4. General Result763

By Theorems 4 to 8, it follows:764

Theorem 9. Algorithm 1 is a probabilistic exploration protocol for 4 robots on a ring of n765

nodes with n > 4.766

5. Conclusion767

We addressed the problem of exploring a discrete environment by a team of autonomous,768

oblivious, and mobile robots. One of the main challenges with such a distributed system is769

to overcome the weakness of the model by itself, mainly (i) the fact that the robots cannot770

remember past actions or positions and (ii) the lack of means to particularize robots or771

vertices, or to give orientation. In particular, the fact that robots need to stop after exploring772

all locations requires robots to find an implicit way to “remember” how much of the graph773

was explored, i.e., to be able to distinguish between various stages of the exploration process774

since robots have no persistent memory. As configurations can be distinguished only by775

robot positions, the main complexity measure is then the number of robots that are needed776

to explore a given graph. The vast number of symmetric situations induces a large number777

of required robots.778

We considered a semi-synchronous model of computation. In this model, we shown779

that for the exploration problem in uniform rings, randomization can shift complexity from780

Θ(log n) to Θ(1) robots, since we proved that four probabilistic oblivious robots are necessary781

and sufficient to solve the problem.782

Applying randomization to other problem instances is an interesting topic for further783

research. Then, an immediate open question raised by our work is the following. Our784

protocol is optimal with respect to the number of robots. However, the exploring time is785

only proven to be finite. We observed an average exploration time of O(n) moves by making786

simulations. Computing the expected exploration time from our proof argument is feasible,787

however it would be more interesting to study the impact of the number of robots on the788

time complexity, since it seems natural that more robots should explore the ring faster.789
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