
July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

International Journal of Foundations of Computer Science
c©World Scientific Publishing Company

Asymptotically Optimal Deterministic Rendezvous∗

Fabienne Carrier

VERIMAG UMR 5104, Université Joseph Fourier
Grenoble I, France

fabienne.carrier@imag.fr

Stéphane Devismes

VERIMAG UMR 5104, Université Joseph Fourier
Grenoble I, France

stephane.devismes@imag.fr

Franck Petit

LIP6 UMR 7606, Université Pierre et Marie Curie
Paris VI, France

franck.petit@lip6.fr

Yvan Rivierre

VERIMAG UMR 5104, Université Joseph Fourier
Grenoble I, France

yvan.rivierre@imag.fr

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

In this paper, we address the deterministic rendezvous in graphs where k mobile agents, disseminated
at different times and different nodes, have to meet in finite time at the same node. The mobile agents
are autonomous, oblivious, labeled, and move asynchronously. Moreover, we consider an undirected
anonymous connected graph. For this problem, we exhibit some asymptotical time and space lower
bounds as well as some necessary conditions. We also propose an algorithm that is asymptotically
optimal in both space and round complexities.

Keywords: Autonomous Agents; Mobile Robot Networks; Optimality; Rendezvous.

1991 Mathematics Subject Classification: 68Q22, 68M15

∗This work has been supported in part by the ANR project SHAMAN. An early version of this work was published
in [7].

1

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

2 F Carrier, S Devismes, F Petit, and Y Rivierre

1. Introduction

We consider mobile autonomous entities evolving into a discrete space. Such entities are
often called agents or robots. The discrete space is modeled as a simple undirected con-
nected graph where nodes represent locations and edges the possibility for an agent to
move from a location to another.

Exploration [16,17], leader election [2,12], agent naming [13,22], and rendezvous [1,3,
11] (also called gathering) are the core problems in mobile agents systems. Here, we focus
on the rendezvous problem. There are many alternative definitions of this problem. Here,
we consider the one of [23] where k agents, disseminated at different times and different
nodes of the graph, have to meet at the same node before stopping to move forever.

1.1. Contributions

We study deterministic solutions for this problem under a weak scenario. The nodes are
anonymous. The agents are oblivious (i.e., they do not remember the past) and move asyn-
chronously. They cannot directly communicate together, even if located at the same node.
They do not have any a priori knowledge about each other (such as the total number of
agents) and about the graph (such as the topology, the number of nodes, . . .).

The deterministic rendezvous is unsolvable under the above settings [11]. Hence, we
make some additionnal assumptions. Namely, we use a whiteboard on each node (i.e., a
finite memory in which every agent can read and write), local indices on edges, and labels
on agents. Our labeling is weak: we only assume the existence of a minimum label held at
exactly one agent; other labels are not necessary uniquely assigned or comparable between
them.

Our contribution is threefold. We first prove some asymptotical time and space com-
plexity lower bounds to solve the problem in our model. We then propose an algorithm
that is asymptotically optimal in both space and round complexities. Finally, we show that
most of the assumptions we made are necessary to deterministically solve the rendezvous
considering our initial scenario.

1.2. Related Works

The problem of rendezvous appears for the first time in [1]. This problem has been dis-
cussed in many contexts and models. For example, one can consider that agents evolve
in a continuous two-dimentional euclidian space [8, 9] (in this case, the problem is of-
ten referred to as gathering). In the context of agents in graphs, many papers assume that
agents have permanent local memories, e.g., [1, 3, 11, 20, 23]. Note that in these papers, no
memory (i.e., so-called whiteboard) is available on nodes of the graph. In [1, 11, 20, 21],
a rendezvous of only two agents is considered. In the three first papers, the system is as-
sumed to be synchronous. In the last one, the system is asynchronous but the problem is
relaxed: the rendezvous may occur in an edge. In [3, 23], the problem is solved for any
number of agents. In [23], a solution is provided for any anonymous graph, but the system
is synchronous and the rendezvous is only guaranteed with a high probability. In [3], a

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

Asymptotically Optimal Deterministic Rendezvous 3

solution is proposed for any asynchronous anonymous graph, provided that the number of
agents and the number of nodes are coprime. Also, an edge-labeling that gives a sense of
direction is assumed.

Few papers are related to the rendezvous of oblivious agents on graphs, that is agents
that have no persistent memory between two steps of execution. In [19], authors study the
rendezvous into an oriented ring, the agents are oblivious but they are be able to snapshot
the whole system at each step.

There are some papers that deal with graphs equipped with whiteboards on nodes.
For example, a fault-tolerant rendezvous algorithm is proposed in [10], the algorithm uses
whiteboards on nodes as well as persistent memory at each agent. In [5], the authors address
the problem of self-stabilizing naming. They give a deterministic solution for tree and a
probabilistic one for arbitrary graphs.

1.3. Roadmap

The rest of the paper is organized as follows. In the next section, we present our computa-
tional model. In Section 3, we exhibit asymptotical bounds on time and space complexity
of rendezvous problem in our settings. Our asymptotically optimal rendezvous algorithm
and its proof of correctness are given in Section 4. In Section 5, we show that several of our
assumptions are necessary to deterministically solve the rendezvous. Section 6 is dedicated
to concluding remarks and perspectives.

2. Preliminaries

In this section, we first define the distributed system considered in this paper. We then
present the statement of the rendezvous problem.

2.1. Model

The distributed system we consider consists of a finite set of k agents evolving into a dis-
crete environment. The latter is described in the next paragraph, followed by the description
of agents. Next, we describe how the agents perform some tasks by interacting with their
environment.

Environment. The environment is represented by a simple undirected connected graph
G = (V, E) where V is a finite set of n > 1 nodes v0 . . . vn−1 and E is a set of m edges
(or links). The subscripts 0 . . . n − 1 are used for notation purpose only. Indeed, nodes are
anonymous, i.e., nodes can only differ by their degrees. An edge is a unordered pair of
distinct nodes. Two nodes vi and v j are said to be neighbors if and only if there exists an
edge (vi, v j) in E.

Incident edges are distinguished at a node using locally ordered index. Without loss of
generality, we assume that the outgoing links at a node v are numbered from 0 to δv − 1,
where δv is the degree of the node v. ∆ denotes the degree of G, i.e., ∆ = maxv∈V δv.

Each node is provided with a whiteboard of limited capacity. A whiteboard is a buffer

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

4 F Carrier, S Devismes, F Petit, and Y Rivierre

memory of a node where agents can read and write information when they are located at
the node. For ease of use, whiteboard content is represented as a set of variables.

Agents. Each agent is a mobile entity that can move from any node to one of its neighbors
by crossing the incident edge. Each agent is autonomous and oblivious. The former means
that it decides its actions by itself. The latter means that the agent has no memory of past
steps, nor inner state.

Agents have labels. We assume the existence of binary relation ≺ such that there exists
a unique label l — called the minimum label — satisfying: l ≺ l′ for every other label l′.
We do not assume any consistency of the relation ≺ for the other labels, that is: for every
two distinct non-minimum labels l′ and l′′, we can have either l′ ≺ l′′, or l′′ ≺ l′, or both.
Moreover, except for the minimum label, any label can be used by several agents. In the
following, we denote the label of agent a by the constant labela. We assume that for every
agent a, labela is encoded over log2Lmax bits, that is, there exists at most Lmax distinct
labels.

Agents are unable to detect each other and/or to explicitly communicate together, even
if they are located at the same node.

The only inputs of an agent located at a node v are its own label, the set of local edge
indices at v, the local index of the edge it comes from, and the local whiteboard content. No
other information is given to the agents. In particular, no agent a priori knows the labels of
the others. No agent a priori knows if its label is the minimum one or not. Moreover, the
number k of agents, the number m of edges and the number n of nodes are unknown by the
agents. An agent knows the local index of the edge it comes from, thanks to the primitive
From(). When an agent a appears in the system for the first time at a node v, it traversed no
edge, in this case From() returns ⊥. Node v is then called home of a.

Program and Moves. Every agent executes the same program that consists of a finite set
of actions. Each action is a guarded command:

〈label〉 : 〈guard〉 → 〈statement〉

A label is an agent-wide identifier of the guarded command. A guard is a boolean ex-
pression involving agent inputs. A statement is a sequence of variable assignments on the
whiteboard of the node where the agent is currently located and/or a move decision. For
ease of comprehension, guarded commands are mutually exclusive in our algorithms.

The capacity of the edges is not limited, i.e., several, possibly the k agents, are able to
traverse the same edge simultaneously. Moreover, each edge crossing is done in a finite yet
unbounded time. Finally, there is no guarantee that agents exit from an edge in the same
order they entered into it. In particular, the edges are not assumed to be First-In-First-Out
(FIFO).

Execution. The state of a node v is defined by its degree, its whiteboard content, and a list
containing one entry (a, f) per agent currently in v such that a is the agent label and f is
the value returned by its From() function. The state of an edge {p, q} is defined by two lists:

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

Asymptotically Optimal Deterministic Rendezvous 5

the label list of the agents incoming to p and the label list of the agents incoming to q. The
configuration of the system is an instance of the states of each node and each edge.

An action of an agent is said to be enabled in some configuration if and only if its guard
is true, considering the inputs of the agent.

An agent is said to be enabled in some configuration if and only if it is in an edge or if
it is located in a node and at least one of its action is enabled. By extension, a node or an
edge is said to be enabled in some configuration if and only if it holds at least one enabled
agent.

An execution is a maximal sequence of configurations γ0, . . . , γi, . . . such that γ0 is an
initial configuration (defined according to the algorithm and the graph) and for every i > 0,
γi is obtained by atomically activating a non-empty subset of enabled edges and/or nodes
on γi−1. The activation of an edge or a node consists in activating an agent in. When an
agent is activated in an edge, it atomically moves to its destination node. The activation of
an agent at a node consists in atomically executing the statement of its enabled action.

The activations are managed according to a scheduler. A scheduler is a predicate over
the executions. Here, we consider a distributed weakly fair scheduler. Distributed means
that at each step the scheduler activates a non-empty subset of enabled edges and nodes.
Weakly fair means that every continuously enabled agent is activated in finite time.

We consider that an agent a is neutralized between γi−1 and γi if a was enabled in
γi−1 and not enabled in γi, but was not activated between γi−1 and γi. The neutralization
represents the following situation: an enabled agent a located in some node v becomes
disabled because another agent, located in v, is activated between γi and γi+1 and modifies
the whiteboard content; this change effectively made the guards of all actions of a false in
γi+1.

To compute the time complexity, we use the notion of round [6, 14]. This notion cap-
tures the execution rate of the slowest process in any execution. The first round of an exe-
cution e is the minimal prefix of e, γ0 . . . γi, containing the activation or the neutralization
of every agent that is enabled in the initial configuration. Let eγi be the suffix of e starting
from γi (the last configuration of the first round of e). The second round of e is the first
round of eγi , and so on.

2.2. The rendezvous problem

The rendezvous problem consists in a finite process during which, for a given k, k agents
meet and stop at the same node. Initially no agent is present in the graph. Each agent
is placed at any time, in any order, and on any node of the graph. Any execution of a
rendezvous protocol eventually leads the system in a final configuration where the k agents
are located at the same node.

3. Lower Bounds

In this section, we gives two asymptotic lower bounds: one for the round complexity (The-
orem 4), the other for the space complexity (Theorem 5).

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

6 F Carrier, S Devismes, F Petit, and Y Rivierre

In the following, we say that an agent explores the graph if it traverses all edges of the
graph at least once. (Consequently, all nodes are visited by the agent at least once.)

The three next lemmas are technical ones. The first is used to prove the two bounds.
The two others are used in the proof of the space complexity bound only.

Lemma 1. LetA be a rendezvous algorithm for general graphs. In any execution ofA, at
least one agent explores the graph.

Proof. Assume, for the purpose of contradiction, that there is a rendezvous algorithm A
where no agent explores the graph.

Consider an execution of A for a team of agents a1,. . . ak in a graph Ga = (Va, Ea).
Assume that a1 starts first. Agents a2. . . ak can stay not activated during an arbitrary long
time. By assumption, there exists an edge {ua1 ,va1 } that a1 never traverses. Let i (resp. j) the
local index of this edge at ua1 (resp. va1). Let Ea1 be the maximal prefix of execution where
a1 is the only activated agent. Two cases are possible: either a1 eventually stops at some
node in Ea1 or Ea1 can be infinitely extended.

Consider the same reasonning with a graph Gb = (Vb, Eb) and a team of agents
b1,. . . bk′ . Then, there exists an edge {ub1 ,vb1 } that b1 never traverses. Let s (resp. t) the
local index of this edge at ub1 (resp. vb1). Let Eb1 be the maximal prefix of execution where
b1 is the only activated agent. Two cases are possible: either b1 eventually stops at some
node in Eb1 or Eb1 can be infinitely extended.

Consider now a graph G = (V, E), where V = Va ∪ Vb and E = Ea ∪ Eb ∪

{{ua1 , ub1 }, {va1 , vb1 }} \ {{ua1 , va1 }, {ub1 , vb1 }} (refer to Figure 1). The local indices of {ua1 , ub1 }

at ua1 and ub1 are i and s, respectively. The local indices of {va1 , vb1 } at va1 and vb1 are j and
t, respectively. The other local indices remain unchanged.

Consider an execution ofA in G with only agents a1 and b1. Agents a1 and b1 can start
at the same node as in Ea1 and Eb1 , respectively. As a consequence, they can behave as in
Ea1 and Eb1 . Indeed, they do not visit the any common node so they act as if they were
alone. In particular they never traverse edges {ua1 , ub1 } and {va1 , vb1 } and the rendezvous
never occurs, a contradiction. �

Lemma 2. Any graph exploration requires Ω(log ∆) bits in each whiteboard.

Proof. Consider an agent a that explores the graph. As a is oblivious, it can only use
the whiteboard to store information about its traversal. To perform a deterministic traversal
of the graph, in each node v, a has to know whether all the edges incident to v have been
traversed or not. So, a needs Ω(log(δv)) bits in the whiteboard of v to perform its traversal
and the lemma holds. �

Note that Lemma 1 shows that in every rendezvous, at least one agent a explored the
graph. However, this does not prove that the exploration (and by the way, the execution)
eventually terminates. Now, termination is required to obtain a rendezvous. As shown in
the next lemma, Ω(logLmax) additional bits in each whiteboard are necessary to implement
termination.

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

Asymptotically Optimal Deterministic Rendezvous 7

Ga Gb

ua1

va1

ub1

vb1

a2 b2

a1 b1

.
ak bk′

G

ua1

va1

ub1

vb1

a1 b1

Fig. 1: Graph G used in the proof of Lemma 1.

The next lemma uses the notion of κ-regular graph. A graph G is κ-regular if the degree
of every node is equal to κ.

Lemma 3. In any deterministic rendezvous algorithm for general graphs, there are at least
Ω(logLmax) bits in each whiteboard whose value depends on agent labels.

Proof. LetA be a deterministic rendezvous algorithm for general graphs. Consider a team
of k agents a0 . . . ak−1 and a κ-regular connected graph G of n ≥ k nodes.

UsingA, a deterministic rendezvous of a0 . . . ak−1 can be done in G. By definition, once
the rendezvous is achieved, a0 . . . ak−1 are placed at a unique node v0.

Nodes are anonymous. Moreover, agents are oblivious and can only communicate using
whiteboards. So, the common decision to stop at v0 is taken according to the whiteboard
content of v0. Moreover, the whiteboard of v0 must be different of any other whiteboard.
Hence,A allows, in particular, to elect a leader among the nodes of G, as stated in [3].

Every node v of G is anonymous, of degree κ, and every edge incident to v is arbitrar-
ily labeled with a value in 0 . . . κ − 1. So, the value in the whiteboard distinguishing the
leader node v0 can only be discriminated using the From() functions and/or the labels of
the agentsa. Clearly, the From() functions are not sufficient because at the first activation,
the From() function of every agent returns ⊥ and thereafter returns the number of the chan-
nel from which the agent arrived at a node. Therefore, the only way to ensure the unicity
of some value in the whiteboard of v0 is that the value that depends on some agent labels
(remember that at least one of them is unique) and has Ω(Lmax) possible states. �

By Lemma 1, in any deterministic rendezvous algorithm, at least one agent performs a
full traversal of the network. In our model, such a traversal is done in Ω(m) rounds where

aNote that the leader can be selected using both From() functions and agent labels like in our algorithm.

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

8 F Carrier, S Devismes, F Petit, and Y Rivierre

m is the number of edges. Hence, the next theorem holds:

Theorem 4. Any deterministic rendezvous is done in Ω(m) rounds where m is the number
of edges.

By Lemmas 1, 2, and 3, follows:

Theorem 5. Any deterministic rendezvous algorithm requires Ω(log(∆) + log(Lmax)) bits
of memory in the whiteboard of each node.

4. Algorithm

In this section, we propose a rendezvous algorithm working in the model given in Sec-
tion 2. An informal description of our algorithm (Algorithm 1) is given in Subsection 4.1.
In Subsection 4.2, we prove its correctness and study its complexity, showing then it is
asymptotically optimal in both space and time complexities.

Algorithm 1 Rendezvous of multiple agents in an undirected graph.
Constants of an agent a:

labela : Agent label.

Primitives at a node v:
Go(edge) The agent moves through the specified edge.
From() ∈ {0, 1, . . . , δv − 1} ∪ {⊥} Returns the edge from which the agent comes, ⊥ otherwise.

Variables at a node v:
current ∈ {0, 1, . . . , δv − 1} ∪ {⊥} Edge being currently explored by local host, initialized to ⊥.
home : Boolean State if the node is currently considered as a home by some agent, initialized to f alse.
host : Label Agent of smallest label having visited this node, not initialized.

Macros of an agent a at a node v:
Explore(edge) = current ← edge; Go(edge)
Next() = (From() + 1) mod δv

Predicates at a node v:
FirstS tep ≡ From() = ⊥

NewNode ≡ current = ⊥ ∨ labela ≺ host
OwnNode ≡ current , ⊥ ∧ host = labela ∧ From() , ⊥
IAmAGuest ≡ current , ⊥ ∧ host ≺ labela
Cycle ≡ current , From()
HostHome ≡ home = true
End ≡ HostHome ∧ (Next() = 0)

Guarded commands of an agent a at a node v:
StartAsHost : NewNode ∧ FirstS tep −→ host ← labela; home← true; Explore(0)
ExploreNewNode : NewNode ∧ ¬FirstS tep −→ host ← labela; home← f alse; Explore(Next())
ExploreNextEdge : OwnNode ∧ ¬Cycle ∧ ¬End −→ Explore(Next())
UndoCycle : OwnNode ∧Cycle −→ Go(From())
FollowAsGuest : IAmAGuest ∧ ¬HostHome −→ Go(current)

4.1. Overview

In the following, we call host the unique agent with the smallest label. All other agents are
called guests. The principle of the algorithm is to group all agents at the host home.

Our algorithm works in two phases: the traversal and assembling phases. Each agent
starts by a traversal phase during which it builds a spanning tree rooted at its home and

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

Asymptotically Optimal Deterministic Rendezvous 9

writes its label in all the whiteboards. This phase is only aborted once the agent learns that
it is not the host. In this case, it switches to the assembling phase. Note that the host always
completes its traversal and this traversal terminates at its home. The assembling phase is
performed by the guests only. In this phase, a guest follows the edges it believes to be in
the host spanning tree in order to reach the host home.

More precisely, the host builds a spanning tree rooted at its home by writing the home,
current, and host variables in all the whiteboards. At the beginning, no agent knows who
is the host, what is the host label, and where is the host home. So, every agent acts as it
is the host until it has evidence of the contrary. To obtain such an evidence, every agent
writes its label into the whiteboards during the spanning tree construction until discovering
a node marked with a smaller label. In this case, it switches to a second phase: it uses
the information in the whiteboards to follow a path of the host spanning tree to its home.
However, guests may make mistakes either (1) by wrongly considering another guest agent
(with a smaller label) as the host agent or (2) by following a cycle in a tree still under
construction. Now, each time an agent is activated at a node where the whiteboard contains
a label that is greater than its own, it considers the node as unvisited and overwrites the
whiteboard. Also, the host’s writings are never overwritten because its label is unique and
minimum. As a consequence, the traversal of the host eventually terminates in its home:
the host stays forever in its home, a spanning tree rooted at the host home is available, and
the host label is written in all host variables. From that point on, no mistake is possible
anymore. That is, all guests agree on the host label and follow the host spanning tree stored
into the whiteboards until reaching the host home: the rendezvous is eventually achieved.

We now describe the behavior of the host and the guests separately.

The host. The host h detects its first activation thanks to the From() function that returns
⊥. In this case, it marks its home by writing information in the whiteboard: a home variable
and a host variable are set to true and labelh respectively. Then, starting from its home, h
performs a depth-first traversal to construct the spanning tree and broadcast its label. To
that end, it initializes the current variable of the whiteboard to 0 and leaves the node by
edge 0. Upon arriving into an unvisited node, either the whiteboard is empty (host =⊥) or
it has been written by a guest g (host = labelg with labelh ≺ labelg). In both cases, h writes
(or overwrites) the whiteboard by assigning the host variable to its label labelh and the
home variable to f alse (this latter assignment erases the guest homes). Then, h continues
its traversal by assigning current to From() + 1 (mod δv) and leaving the node by the edge
pointed by current. Upon arriving into an already visited node (i.e., a node where host =

labelh), two cases are possible for h: (i) either current , From(), (ii) or current = From().
In case (i), h has followed a cycle, so it returns to the node it comes from (using From()).
In case (ii), h has been backtracked because the traversal from the edge it comes is done.
Hence it increments the current variable and then leaves the node by the current edge in
order to continue the traversal. Using this method, h eventually terminates its traversal at its
home: when it arrives in a node v where host = labelh, home = true, and current = δv − 1.
In this case, a spanning tree rooted at its home is described by the current variables in all
the whiteboards and every host variable is set to labelh.

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

10 F Carrier, S Devismes, F Petit, and Y Rivierre

The guests. Consider any guest g. Agent g acts as the host (i.e. it performs a traversal
of the graph) until it is activated at a node where host ≺ labelg. Then, g switches to the
assembling phase: each time g is activated, it decides that it is a guest because host ≺ labelg
and, as a consequence, it leaves the node by the edge pointed by current if home , true,
otherwise it stays at the node (it believes to be in the host home). Using this mechanism,
g eventually definitively stops at the host home because the current variables eventually
describe a spanning tree rooted at the host home which is eventually the only node where
home = true holds.

Note that a guest may arrive at nodes written by agents having the same label. In this
case, the guest believes to be in a node that it already visited (because it is oblivious). This
situation does not make the algorithm fails because the nodes are eventually visited by the
host and, consequently, marked with the host label which is unique.

4.2. Correctness

We first consider the behavior of the host agent h. From the code of Algorithm 1, we can
remark that the host label being minimal, h only executes the traversal phase.

Below, we show that the traversal of the host h can only terminate at its home.

Lemma 6. When the traversal of h terminates, h is located at its home vh.

Proof. Assume, by the way of contradiction, that the traversal of h terminates at a node
v , vh.

When h is activated in v for the first time, From() returns a value different of ⊥ and,
as a consequence, h sets the variables homev and hostv to f alse and labelh, respectively
(action ExploreNewNode). Moreover, if currentv = ⊥, h sets currentv to a value different
of ⊥ (actually, the value returned by (From() + 1) mod δv).

From that point, no agent other than h can write into the whiteboard of v and h never
overwrites homev and hostv. Moreover, h never sets currentv to ⊥.

Hence, when h terminates its traversal at v, ¬End and OwnNode hold because homev =

f alse, currentv , ⊥, hostv = labelh, and From() , ⊥.
As a consequence, either action ExploreNextEdge or action UndoCycle of h is enabled:

h cannot terminate its traversal at v, a contradiction. Hence, h can only terminate at its home
and the lemma holds.

Lemma 7. If h terminates its traversal at its home vh, then the following conditions hold:

(1) homevh = true.
(2) hostvh = labelh.
(3) currentvh = From() = δvh − 1.

Proof. First, h starts its traversal by action StartAsHost. After executing this action, From()
always returns a value different of ⊥.

Assume now that h terminates its traversal in its home vh. Then, every action of h at vh

are disabled.

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

Asymptotically Optimal Deterministic Rendezvous 11

As From() , ⊥, predicate ¬FirstS tep holds. So, predicate NewNode does not hold oth-
erwise action ExploreNewNode is enabled. As a consequence, hostvh = labelh (condition
(2)) and currentvh , ⊥.

As From() , ⊥, hostvh = labelh, and currentvh , ⊥, predicate OwnNode holds. So,
predicate Cycle does not hold otherwise action UndoCycle is enabled. As a consequence,
currentvh = From() , ⊥.

Finally, as predicate OwnNode ∧ ¬Cycle holds, predicate End holds otherwise ac-
tion ExploreNextEdge is enabled. As a consequence, homevh = true (condition (1)) and
From() = δvh −1. Hence, currentvh = From() = δvh −1 (condition (3)) and the lemma holds.

In the following, Lemmas 8 to 10 show that h traverses each edge at most 4 times. As a
corollary of this result, we can state that h eventually terminates its traversal.

We say that a node v designates the link from v to v′ for agent a if and only if hostv =

labela and currentv = i where i is the local index of {v, v′} at node v. Moreover, an agent
a explores the edge {v, v′} from v if it is activated at node v and, consequently, it executes
currentv ← i where i is the local index of {v, v′} at node v.

Lemma 8. For every node v, for every edge e incident to v, the host agent h explores e
from v at most once.

Proof. We prove this lemma by induction on the order h visits the nodes.

• Base Case: The first node visited by h is its home vh. When h is activated for the
first time in vh, From() returns ⊥ and predicate NewNode holds because the label
of h is unique and minimal. So, h executes action StartAsHost: hostvh , homevh ,
and currentvh are set to labelh, true, and 0, respectively. From that point, no agent
other than h can write into the whiteboard of vh and h never overwrites homevh and
hostvh . Moreover, h can only increment currentvh one by one (modulo δvh) using
action ExploreNextEdge until δvh − 1. After that, h never more modifies currentvh

and the induction holds in this case.
• Induction Hypothesis: Let k > 0. Let vk be the kth node visited by h. Assume that

for every node vi visited by h before vk, for every edge ei incident to vi, h explores
ei from vi at most once.

• Inductive Step: Assume, by the way of contradiction, that h explores an edge
from vk at least twice.

When h is activated for the first time in vk, From() returns a local index i
(with i , ⊥) and predicate NewNode holds because the label of h is unique and
minimal. So, h executes action ExploreNewNode: hostvk , homevk , and currentvk

are set to labelh, f alse, and (i+1) mod δvk , respectively. From that point, no agent
other than h can write into the whiteboard of vk and h never overwrites homevk and
hostvk . Moreover, h can only increment currentvk one by one (modulo δvk) using
action ExploreNextEdge. Consequently, before exploring an edge for the second
time from vk, h must explore the edge {vk, v`} (with ` < k) from vk where {vk, v`}

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

12 F Carrier, S Devismes, F Petit, and Y Rivierre

is the edge of local index i at node vk.
So, let us focus on edge {vk, v`}. Let j be the local index of {vk, v`} at node

v`. When v` sends h to vk for the first time, From() returns a value different of
j because vk was never visited by h. From the code of Algorithm 1, either Ex-
ploreNewNode or ExploreNextEdge was executed to send h to vk. After executing
one of these actions, hostv` and currentv` are equal to labelh and j, respectively.
From that point, no agent other than h can write into the whiteboard of v`, h never
overwrites hostv` , and currentv` remains equal to j until receiving h from vk.

When h is activated for the first time in vk, either (i + 1) mod δvk = i (that is
the degree of vk is one) or vk sends h to another node than v`. In this latter case,
until vk sends back h to v`, From() , i when h is activated in vk, indeed each time
v` receives h from a node different of vk it directly backtracks h to the node.

Thus, in all cases, currentvk must be set to i so that vk sends h to v`. After this
sending, currentvk remains to i until vk receives h again from v`. Moreover, when
v` receives h from vk, From() = j = currentv` and two cases are possible: either (1)
j = δv` − 1 and v` is the home of h or (2) currentv` is incremented and h is sent to
currentv` . In the former case, the traversal of h terminates and, as a consequence,
no edge incident to vk is explored from vk at least twice, a contradiction. In the
latter case, currentv` , j forever by induction hypothesis and while v` does not
received h from vk, From() , j and consequently, v` does not sent h to vk. To sum
up, vk cannot send h to v` before v` sends h to vk and conversely. As a consequence,
currentvk remains fixed forever, which is a contradiction: the induction holds in
this case.

Lemma 9. Let e be an edge between nodes v and v′. If h leaves v or v′ by edge e, then v or
v′ designates e for h.

Proof. Assume, by the way of contradiction, that h leaves v or v′ by e while neither v nor
v′ designates e for h. Consider the first time, h does that and, without loss of generality,
assume that h leaves v. Then, from the code of Algorithm 1, when h is activated to leave v,
From() = i where i is the local index of e at v. So, this means that, h previously arrived at v
from edge e and, by hypothesis, when h leaves v′ to v, (1) hostv = labelh and currentv = i
or (2) hostv′ = labelh and currentv′ = j where j is the local index of e at node v′.

In the former case, we obtain a contradiction because when h arrives in node v, no other
agent modified h’writings and either (i) i = δv − 1, v is the home of h (as a consequence
hostv = labelh), and the traversal of h is terminated or (ii) currentv is incremented and h
leaves v through the edge of index currentv. If currentv = i, v designates e for h when h
leaves v by e, a contradiction. Otherwise, h leaves v through another edge than e.

In the latter case, no other agent has modified h’writings when h arrived in v from v′.
So, v′ still designates e for h when h is activated to leave v by e, a contradiction.

Lemma 10. Host agent h traverses an edge e from node v at most twice.

Proof. Let i be the local index of e at node v. When h decides to traverse an edge e from

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

Asymptotically Optimal Deterministic Rendezvous 13

node v, the two following cases are possible:

• currentv = i. In this case, currentv remains equal to i until v receives h by edge e
(no other agent can overwrite h writings). When v receives h by edge e either (i)
i = δv − 1, v is the home of h, and the traversal of h is terminated or (ii) currentv
is incremented to a value different of i by Lemma 8, currentv , i forever. Hence,
this case occurs only once.

• currentv , i. In this case, currentv′ = j where v′ is the other node incident to
e and j is the local index of e at node v′ by Lemma 9. When v′ receives h from
edge e, then either (i) j = δv − 1, v′ is the home of h, and the traversal of h is
terminated or (ii) currentv′ is incremented to a value different of j and by Lemma
8, currentv′ , j holds forever. Thus, this case can occur only once.

Hence, we can conclude that h traverses e from node v at most twice.

Corollary 11. Host agent h terminates its traversal at its home in at most 8m rounds where
m is the number of edges.

Proof. By Lemma 10, h can leave any node v at most 2.δv. So, during its traversal, h
executes at most

∑
v∈V 2.δv edge-crossings. By the Handshaking Lemma [15],

∑
v∈V 2.δv =

4.m. So, h executes at most 4m edge-crossings. Now, each edge-crossing is performed in at
most one round and each edge-crossing is preceded by an activation in a node performed in
at most one round. Hence, h performed its traversal in at most 8m rounds and, by Lemma
6, this traversal terminates at its home which concludes the proof.

Let us consider now the subgraph of G made of the “traces” of h during its traversal. In
the next lemmas (Lemmas 12 and 13), we show that this subgraph is a spanning tree of G.
More formally, let vh be the home of h and V ′ ⊆ V be the subset of nodes such that ∀v ∈ V ′,
hostv = h when the traversal of h is terminated. Let E′ be a set of directed edges such that
(v′, v) ∈ E′ if and only if v′ ∈ V ′ \ {vh} and currentv′ designates {v′, v}. Let T = (V ′, E′). An
in-tree [4] is an directed tree in which a single vertex (called root) is reachable from every
other one.

Lemma 12. T is an in-tree.

Proof. Assume, by the way of contradiction, that T is not an in-tree. Then, two cases are
possible:

• T contains a directed cycle v0, . . . , vc. The traversal of h being sequential, we can
consider the last node, say vi, where the current variable was modified to create the
cycle. First, by definition of T , vi is not the home of h. Then, after vi designates
the edge e of the cycle for h, h leaves the node through e. Upon arriving in the
destination node, vi+1, either (1) vi+1 designates e for h (in this case the length of
the cycle is two) or (2) vi+1 designates for h an edge that is not e.

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

14 F Carrier, S Devismes, F Petit, and Y Rivierre

In the former case, if the degree of vi+1 is one, then h is sent by to vi, and
upon arriving in vi, the degree of vi is more than one (otherwise vi or vi+1 is the
home of h because there are exactly two nodes in the graph) and currentvi is
incremented, a contradiction. If the degree of vi+1 is more than one, then currentvi+1

is incremented, a contradiction.
In the latter case, upon arriving in vi+1, h is sent by to vi. Upon arriving in vi,

if the degree of vi is one, then h is sent back to vi+1 and the traversal of h never
terminates, a contradiction to Corollary 11. Otherwise, currentvi is incremented, a
contradiction.

• T has several connected components. Then, as T cannot contain a cycle, we can
deduce that some node v in T designates an edge e for h linking v to a node v′

that is not in T . After v designates e for h, h was sent to v′ through e. Once in
v′, h wrote its label in the whiteboard if it was not already written. Now, from
that point, no agent other than h can write into the whiteboard of v′ and h never
overwrites hostv′ . So, v′ belongs to T , a contradiction.

Hence, T contains no directed cycle and only one connected component: T is an in-tree.

Lemma 13. T is a spanning in-tree of G.

Proof. Assume, by the way of contradiction, that T is not a spanning in-tree of G. By
lemma 12, T is a in-tree. So, this means that there exists a node v in G that is not in T . That
is, once the traversal of h is terminated, the host variable of the node does not contain the
label of h and, as a consequence, has been never visited by h. As h visits at least one node
(its home) and G is connected, there is at least one node v unvisited by h that is neighbor
of a node v′ visited by h.

The first time v′ is visited by h, v′ received h from an edge e = {v′, v′′}. Let i be the
local index of e at v′. As v′ was not already visited by h, v′ does not designate any edge
for h and, by Lemma 9, v′′ designates e for h. From that point, v′′ designates e for h until
receiving h through e, i.e., until h is activated in v′′ and currentv′′ = From().

Moreover, the first time v′ is visited by h, hostv′ and currentv′ are set to labelh and
i + 1 mod δv′ , respectively. From that point, hostv′ is fixed and only h can modify currentv′ .
Now, v is never visited from v′ and currentv′ can only be incremented modulo δv′ . So, h is
never sent back to v′′ through {v′, v′′}. Thus, the value of currentv′′ is fixed and each time h
is activated in v′, currentv′′ , From().

Inductively, we can deduce that each time h is activated in its home vh, currentvh ,

From(), which contradicts Lemmas 6, 7, and Corollary 11.

We are now ready to state our main result (Theorem 15). It requires the following
technical result:

Lemma 14. A rendezvous between all agents occurs within at most 2(n − 1) rounds after
the host agent h terminates its traversal.

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

Asymptotically Optimal Deterministic Rendezvous 15

Proof. First, after h terminates its traversal, the variable home is equal to true at its home
by Lemma 7.

Then, when h is activated at a node, From() returns ⊥ only if h is at its home. So, each
time h visits for the first time a node v that is not its home it executes action ExploreNewN-
ode: homev is set to f alse and hostv is set to labelh. After that, no agent other than h can
write into the whiteboard of v and h never overwrites homev and hostv. So, homev = f alse
and hostv = labelh forever.

Now, by Lemma 13, all nodes are visited by h before the end of its traversal. So, after
h terminates its traversal, for every node v, homev = true if and only if v is the home of h.

Moreover, by Lemma 13, for every node v, hostv = labelh and currentv designates an
edge of a spanning tree rooted at the home of h.

So, for each guest agent g, while g is not at the home of h, g is enabled and when
activated, it moves toward the spanning tree T to the home of h. The height of T is bounded
by n−1. So, after crossing at most n−1 edges and n−1 nodes, any guest is at the home of h.
Hence, at most 2(n−1) rounds after the host agent h terminates its traversal, the rendezvous
is achieved.

Theorem 15. Algorithm 1 is a deterministic rendezvous algorithm satisfying the following
properties:

(1) It allows agents to meet in at most 8m + 2(n − 1) rounds.
(2) It is asymptotically optimal in rounds.
(3) It is asymptotically optimal in space.

Proof.

• Property (1): Immediate from Corollary 11 and Lemma 14.
• Property (2): As G is connected, we have n ≤ m. Hence, from Property (1), we

know that the rendezvous occurs in O(m) rounds, which is asymptotically optimal
by Theorem 4.

• Property (3): By checking Algorithm 1, we can remark that the space require-
ment of Algorithm 1 matches the result of Theorem 5. Hence, Algorithm 1 is
asymptotically optimal in space.

5. Some necessary conditions

In this section, we prove that some of the conditions we used to build the model described
in Section 2 are necessary to deterministically solve the rendezvous problem.

In Section 2, we formalized the deterministic rendezvous problem in a model where
few conditions have been added to the initial weak scenario presented in the introduction
(Section 1). This set of conditions is:

(1) Agents are labeled and nodes are provided with whiteboards.
(2) There is a strict extremum label assigned to a unique agent.
(3) Edges have local indices at nodes.

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

16 F Carrier, S Devismes, F Petit, and Y Rivierre

Below, we show that the above three conditions are necessary.

Assume by contradiction that one of these conditions can be ignored.

(1) Removing agent labels or node whiteboards brings back to the anonymous rendezvous
problem which has been proved not to be solvable in this setting [3].

(2) Removing the strict extremum on agent labels or the unicity of this label forbids to
particularize an agent. As shown in the proof of Lemma 3, the achievement of a deter-
ministic rendezvous is subjected to the existence of a unique agent that decides of the
meeting point. Hence, this property is also necessary.

(3) Removing edge local indices transforms agent moves into a random walk. Then the
algorithm is not truly deterministic.

So, removing any of these conditions makes the rendezvous problem impossible to be
solved by a deterministic algorithm. Thus, this set of conditions is minimal.

6. Conclusion

We considered the deterministic rendezvous problem of mobile agents in simple undi-
rected anonymous connected graphs. We provided a model with several minimal hypoth-
esis. Then, we proved asymptotical bounds, both in memory size and number of rounds,
for any deterministic rendezvous algorithm in our model. We gave an algorithm that is
asymptotically optimal in both space and round complexities.

A natural extension of this work would be to find exact bounds and a solution that
exactly matches these bounds. Another future work would be to investigate rendezvous in
directed connected graphs. Such graphs can model wireless networks where antenna ranges
are heterogeneous. In directed connected graphs, a node may be not reachable from an
other and conversely. Hence, rendezvous is not always achievable. Therefore, an interesting
question arises: “What is the maximal class of directed graphs that admit a solution?”.
We conjecture that the class of graph containing one sink component [18] (n.b., a sink
component is a subgraph that any agent cannot leave) is a good candidate. Of course,
optimal bounds for the rendezvous in such graphs is also an open question.

References
[1] Steven Alpern. Hide and seek games. Seminar at Institut fur Hohere Studien, Wien, July 1976.
[2] Lali Barrière, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. Can we elect if we cannot

compare? In SPAA, pages 324–332. ACM, 2003.
[3] Lali Barrière, Paola Flocchini, Pierre Fraigniaud, and Nicola Santoro. Rendezvous and election

of mobile agents: Impact of sense of direction. Theory Comput. Syst., 40(2):143–162, 2007.
[4] C. Berge. Graphes. Gauthiers-villars, Paris, 3e édition, 1983.
[5] Lélia Blin, Maria Gradinariu Potop-Butucaru, and Sébastien Tixeuil. On the self-stabilization

of mobile robots in graphs. In Eduardo Tovar, Philippas Tsigas, and Hacène Fouchal, editors,
OPODIS, volume 4878 of LNCS, pages 301–314. Springer, 2007.

[6] Alain Bui, Ajoy K. Datta, Franck Petit, and Vincent Villain. Snap-stabilization and pif in tree
networks. Distributed Computing, 20(1):3–19, 2007.

July 30, 2014 11:13 WSPC/INSTRUCTION FILE rdv

Asymptotically Optimal Deterministic Rendezvous 17

[7] Fabienne Carrier, Stéphane Devismes, Franck Petit, and Yvan Rivierre. Space-optimal deter-
ministic rendezvous. In Tenth International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 2009), Second International Workshop on Reliability,
Availability, and Security (WRAS 2009), pages 342–347, Hiroshima, Japan, 2009.

[8] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Solving the robots
gathering problem. In ICALP, pages 1181–1196, 2003.

[9] Jurek Czyzowicz, Leszek Gasieniec, and Andrzej Pelc. Gathering few fat mobile robots in the
plane. Theor. Comput. Sci., 410(6-7):481–499, 2009.

[10] Shantanu Das, Matús Mihalák, Rastislav Srámek, Elias Vicari, and Peter Widmayer. Ren-
dezvous of mobile agents when tokens fail anytime. In Theodore P. Baker, Alain Bui, and
Sébastien Tixeuil, editors, OPODIS, volume 5401 of LNCS, pages 463–480. Springer, 2008.

[11] Gianluca De Marco, Luisa Gargano, Evangelos Kranakis, Danny Krizanc, Andrzej Pelc,
and Ugo Vaccaro. Asynchronous deterministic rendezvous in graphs. Theor. Comput. Sci.,
355(3):315–326, 2006.

[12] Dwight Deugo. Mobile agents for electing a leader. In ISADS, pages 324–327, 1999.
[13] A. Di Stefano, L. Lo Bello, and C. Santoro. Naming and locating mobile agents in an internet

environment. In Enterprise Distributed Object Computing Conference, EDOC ’99, pages 153–
161. IEEE, 1999.

[14] S Dolev, A Israeli, and S Moran. Uniform dynamic self-stabilizing leader election. IEEE Trans-
actions on Parallel and Distributed Systems, 8(4):424–440, 1997.

[15] L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii Academiae Sci-
entiarum Imperialis Petropolitanae, 8:128–140, 1736. Reprinted and translated in Biggs, N.
L.; Lloyd, E. K.; Wilson, R. J. (1976), Graph Theory 17361936, Oxford University Press.
http://math.dartmouth.edu/˜euler/docs/originals/E053.pdf.

[16] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Computing without communicating: Ring
exploration by asynchronous oblivious robots. In OPODIS, pages 105–118, 2007.

[17] P. Flocchini, D. Ilcinkas, A. Pelc, and N. Santoro. Remembering without memory: Tree explo-
ration by asynchronous oblivious robots. In SIROCCO, volume 5058 of LNCS, pages 33–47.
Springer, 2008.

[18] Fabı́ola Greve and Sébastien Tixeuil. Knowledge connectivity vs. synchrony requirements for
fault-tolerant agreement in unknown networks. In DSN, pages 82–91. IEEE Computer Society,
2007.

[19] Ralf Klasing, Euripides Markou, and Andrzej Pelc. Gathering asynchronous oblivious mobile
robots in a ring. Theor. Comput. Sci., 390(1):27–39, 2008.

[20] Dariusz R. Kowalski and Adam Malinowski. How to meet in anonymous network. In Structural
Information and Communication Complexity, volume 4056 of LNCS, pages 44–58. Springer
Berlin / Heidelberg, 2006.

[21] Dariusz R. Kowalski and Andrzej Pelc. Polynomial deterministic rendezvous in arbitrary
graphs. In ISAAC, pages 644–656, 2004.

[22] Sudin Shrestha, Xu Shi-yi, and Jagath Ratnayeke. Mobile agent platform and naming scheme
of agents. Journal of Shanghai University (English Edition), 8(2):177–179, 2004.

[23] Xiangdong Yu and Moti Yung. Agent rendezvous: A dynamic symmetry-breaking problem. In
ICALP ’96: Proceedings of the 23rd International Colloquium on Automata, Languages and
Programming, pages 610–621, London, UK, 1996. Springer-Verlag.

