
Stabilizing Leader Election in Partial

Synchronous Systems with Crash Failures ?

C. Delporte-Gallet a, S. Devismes b,∗, H. Fauconnier a

aLIAFA UMR 7089, Université Denis Diderot, France
bVERIMAG UMR 5104, Université Joseph Fourier, France

Abstract

This article deals with stabilization and fault-tolerance. We consider two types of
stabilization: the self- and the pseudo- stabilization. Our goal is to implement the
self- and/or pseudo- stabilizing leader election in systems with process crashes,
weak reliability, and synchrony assumptions. We try to propose, when it is possible,
communication-efficient implementations. Our approach allows to obtain algorithms
that tolerate both transient and crash failures.

Note that some of our solutions are adapted from existing fault-tolerant algo-
rithms. The motivation here is not to propose new algorithms but merely to show
some assumptions required to obtain stabilizing leader elections in systems with
crash failures. In particular, we focus on the borderline assumptions where we go
from the possibility to have self-stabilizing solutions to the possibility to only have
pseudo-stabilizing ones.

Key words: Fault-tolerance, self-stabilization, pseudo-stabilization, leader election.

1 Introduction

Self-stabilization [2] is a versatile technique to design algorithms tolerating
transient failures: a self-stabilizing algorithm, regardless of the initial config-
uration of the system, guarantees that the system reaches in a finite time a
configuration γ from which it cannot deviate from its intended behavior, i.e.,
every possible execution suffix starting from γ is correct.

? A preliminary version of this article was presented in SSS’07, see C. Delporte-
Gallet, S. Devismes, H. Fauconnier (2007) [1].
∗ Corresponding author.

Email addresses: cd@liafa.jussieu.fr (C. Delporte-Gallet),
stephane.devismes@imag.fr (S. Devismes), hf@liafa.jussieu.fr (H.
Fauconnier).

Preprint submitted to Elsevier 30 July 2014



A weaker property called pseudo-stabilization is introduced in [3]: a pseudo-
stabilizing algorithm, regardless of the initial configuration of the system, guar-
antees that the system reaches in a finite time a configuration from which it
does not deviate from its intended behavior. Such an algorithm can deviate
from its intended behavior an arbitrary but finite number of time, hence each
of its executions has a correct suffix.

Another approach is the fault-tolerance: fault-tolerance is a property that en-
ables a system to continue operating (possibly in a degraded mode) rather
than failing completely, when some components of the system crash. One goal
of this article is to obtain algorithms that are both fault-tolerant and stabiliz-
ing. For this, we study to the (eventual) leader election: this problem consists
in making the system converge to a configuration from which the same alive
process is forever distinguished as the leader. The leader election has been ex-
tensively studied in both stabilizing (e.g., [4,5]) and fault-tolerant (e.g., [6,7])
areas.

The stabilizing algorithms are usually not designed to withstand crash fail-
ures. Some derived approaches, generally called fault-tolerant (self- or pseudo-)
stabilization have been proposed in [8–10] to design algorithms that (self- or
pseudo-) stabilize even when some crashes occur dynamically in the network.
But, as proved in the same articles, without very strong assertions fault-
tolerant self-stabilization is impossible to ensure and concerning the leader
election problem we prove that fault-tolerant self-stabilization is intrinsically
impossible to solve. Hence we consider systems in which failures of processes
are static. In these systems, we study self-stabilization in systems with static
crash failures (SSSCF) and pseudo-stabilization in the same systems (PSSCF).
We prove that considering only static process failures is not a restriction
here because for the considered problem, PSSCF is equivalent to fault-tolerant
pseudo-stabilization.

The impossibility results in [11,9] constraints us to make assumptions on the
link timeliness. So, we look for the weakest assumptions allowing to obtain
SSSCF or PSSCF leader election algorithm in fully connected networks where
some processes may crash.

We also consider the communication-efficiency (denoted as CE in the rest of
the article): an algorithm is communication-efficient if eventually it uses only
n−1 unidirectionnal links where n is the number of processes, which is optimal
[12].

We show that the notions of immediate timeliness and eventually timeliness are
in some sense equivalent in the fault-tolerant stabilization. As a consequence,
we only consider timeliness properties that are immediate. In the systems we
study: (1) all the processes are timely and can communicate with each other

2



but any of them can crash and (2) some links may have timeliness or reliability
properties. Our starting point is the fully timely system noted S4. We show
that the SSSCF leader election can be communication-efficiently implemented
in S4. We then show that such a strong timeliness is required in the systems we
consider to obtain a CE-SSSCF leader election. Nevertheless, we also show that
a SSSCF leader election that is not communication-efficient can be obtained
in a weaker system (S3), e.g., any system having a timely bi-source that is a
process whose all input and output links are timely[13]. More generally, we
show that a system having at least one path of timely links between each
pair of alive processes is required to obtain the SSSCF leader election. We
then consider the PSSCF. We show that a CE-PSSCF leader election can be
done in some weak systems where the SSSCF leader election cannot be done:
any system having a timely source that is a process whose all ouput links are
timely[14](S2). Using a previous result of Aguilera et al [14], we then recall
that communication-efficiency cannot be done if we consider systems having
at least one timely source but no fair hub (a hub is a process whose all links are
fair lossy) (S1). However, we show that a non-communication-efficient PSSCF

solution can be implemented in such systems. Finally, we conclude with the
basic system where all links can be asynchronous and lossy (S0): the leader
election has neither SSSCF nor PSSCF solution in S0 [14,9].

2 Preliminaries

2.1 Distributed Systems

Begin by recalling general definitions for stabilization in distributed systems.
We model the executions of an algorithm A in the system S using the pair
(C,7→) where C is the set of configurations and 7→ is a binary transition relation
on C. A configuration is defined as the product of the states of the processes
and the state of the environment. The state of each process is the state of its
local memory and the state of the environment depends on the system S. A
step γ 7→ γ′ is either a step of some process p (e.g. writing a message in a
communication link) or a step of the system (e.g. delivering a message). We
consider executions with time: an execution of A in S is a maximal sequence
e = γ0,τ0,γ1,τ1,. . .,γi−1, τi−1, γi,. . . such that ∀i ≥ 0, γi ∈ C, γi 7→ γi+1, and the
transition γi 7→ γi+1 occurs after τi time units. For each configuration γ in e,
−→eγ denotes the suffix of e starting in γ, conversely, ←−eγ denotes the associated
prefix, i.e., e = ←−eγ−→eγ . More generally, given configuration γ, −→γ denotes the
set of all suffixes for all the executions beginning in configuration γ.

A specification is a predicate over the executions. Let A be an algorithm in
the system S. Let F be a specification, and given some set I of initial config-
urations we say that algorithm A satisfies F for I in S if all the executions
beginning in configurations belonging to I satisfy F .

For stabilizing properties, we consider that the executions can start from any

3



configuration.

A is self-stabilizing for F in S if and only if in any execution of A in S, there
exists a configuration γ such that all possible suffixes in −→γ satisfy F .

A is pseudo-stabilizing for F in S if and only if in any execution of A in S,
there exists a suffix that satisfies F .

2.2 Fault-Tolerance and Stabilization

Given system S, to deal with crashes, we define Scrash in such a way that
the environment of any configuration gives the set of processes that are alive
and a step of a processe is possible only if this process is alive. By definition
a process that is not alive is said crashed or dead. More precisely, if γ is a
configuration then A(γ) denotes the set of processes that are alive in state γ.
Only a process that is alive can make a step: if γ 7→ γ′ by a step of process
p in S, then p ∈ A(γ). Moreover there is no reparation and a process dead is
dead forever: if p /∈ A(γ) then for all γ′ such that γ 7→ γ′, p /∈ A(γ′).

Classically, stabilizing algorithms withstand the transient faults because, after
such failures, the system can be in an arbitrary configuration and, in this case,
a stabilizing algorithm guarantees that the system recovers a correct behavior
in a finite time without any external intervention if no transient fault appears
during this convergence. To show the stabilization, we observe the system from
the first configuration after the end of the last transient fault, yet considered
as the initial configuration of system. Actually, if we prove that from such a
configuration, an algorithm guarantees that the system recovers a correct be-
havior in a finite time, it means that the algorithm guarantees that the system
will recover if the time between two periods of transient faults is sufficiently
large. Henceforth, such an algorithm can be considered as tolerating transient
faults.

Here, as in [8–10], we not only consider transient faults: our systems may go
through transient as well as crash failures. A crashed process definitively stops
to execute its local algorithm. In this way crashes are not transient failures. In
order to deal with this kind of failures we consider two types of systems, where
in the first ones process failures are static and in the second ones processes
may crash dynamically.

In the first ones, we denote Sstatic, we consider the crashes in the same way
that transient faults. That is, we consider the first configuration after the last
crash as the initial configuration of the system. Hence, given Scrash, for Sstatic
we have: if γ 7→ γ′ then A(γ) = A(γ′).

We say that algorithm A is (self- pseudo-) stabilizing for F for system S with
static crash failures if and only if A is (self- pseudo-) stabilizing for F in

4



Sstatic.

As crashes do not occur dynamically, any process that is alive in the initial
configuration is alive forever. Any subset of processes may be crashed in the
initial configuration. The fact that we consider only initial crashes corresponds
to the classical stabilizing approach. Our fault-tolerant stabilizing algorithms
guarantee that if the time between two periods of failures — these periods
can contain an arbitrary number of process crashes and transient failures —
is sufficiently large, then the system eventually recovers.

If we do not restrict to initial crashes, we have systems Sdyn in which in any
configuration any alive process may crash. More precisely, given Scrash, we
define Sdyn in such a way that for each γ, for each p ∈ A(γ) there is a step
γ 7→ γ′ such that γ and γ′ differs only concerning the set of processes that are
alive and A(γ′) = A(γ)− {p}. 1

If we do not consider transient faults, given some set I of initial configu-
rations, we get the classical definition of fault-tolerance: an algorithm A is
fault-tolerant for F with initial configurations I if and only if A satisfies F in
system Sdyn for I.

As usual, stabilization consider that the executions can start from any con-
figuration and then all configurations are considered as being initial. We say
that algorithm A is fault-tolerant (self- pseudo-) stabilizing for F in system S
if A is (self- pseudo-) stabilization in Sdyn.

Clearly, fault-tolerant stabilization is stronger than stabilization for systems
with static crash failures

Observation 1 If A is fault-tolerant (self- pseudo-) stabilizing for F in sys-
tem S, then it is also (self- pseudo-) stabilizing for F in system S with static
crash failures.

2.3 Leader Election

In this article we are interested in the leader election problem. In this problem,
each process p has a variable Leaderp that holds the identity of a process.
The leader election has to ensure that (1) all alive processes should hold the
identity of the same process forever and (2) that this process is alive forever.
More precisely, q is a leader in configuration γ if every alive process p has its
Leaderp variable set to q. Given an execution e and γ a configuration in e, q

1 We consider here that there is no restriction on the process that may crash, it
is straightforward to extend these definitions for systems with some restrictions on
the set of crashed process (e.g. systems with a majority of correct processes).

5



is elected in γ for e if and only if q is leader in γ and for every configuration
γ′ in −→eγ , q is elected in γ′ and q ∈ A(γ′).

Then the predicate on execution e of the leader election for stabilization is:
some process is elected in the first configuration of e.

Let A be a pseudo-stabilizing algorithm for leader election, let e any execution
of A in Sdyn, there is some suffix f of e such that there is no new crash in f ,
let γ be the first configuration in f , then f is an execution of A in Sstatic and
there is some suffix g in f that ensure the election of some process, and then
for e there is some suffix for which some process is elected, proving that A is
also fault-tolerant pseudo-stabilizing. Then we have:

Observation 2 A is fault-tolerant pseudo-stabilizing for leader election if and
only if A is pseudo-stabilizing for leader election in system with static crash
failures.

Classically, in fault-tolerance, we consider the eventual leader election problem
defined by the predicate: in any execution e from initial state there is some
configuration γ in e such that some process is elected in γ for e. From a sim-
ilar argument to Observation 2, a pseudo-stabilizing algorithm for the leader
election problem in system with static crash failures is also fault-tolerant al-
gorithm for the eventual leader election for every initial configuration.

Observation 3 If A is self- or pseudo- stabilizing for leader election in sys-
tems with static crash failures or A is fault-tolerant self- or pseudo- stabilizing
for leader election then A is fault-tolerant for the eventual leader election for
every initial configurations.

But, concerning fault-tolerant self-stabilizing, remark that there is no fault-
tolerant self-stabilizing algorithm for the leader election: by contradiciton,
assume that there is such an algorithm, and consider some execution with
at least two processes, say p and q, that are alive forever, assume that there
is some configuration for which p is elected, then in Sdyn, p may crash in γ
and then we get a suffix in −→γ for which p is not elected. Then there is no
configuration in which some process is elected in all suffixes. Hence we have:

Observation 4 There is no fault-tolerant self-stabilizing algorithm for leader
election.

Observations 4 and 2 prove that the properties of fault-tolerant stabilization
may be deduced from pseudo-stabilization for systems with static crash fail-
ures. Then for the leader election problem only self-stabilization and pseudo-
stabilization for system with static crash failures (denoted by SSSCF and
PSSCF) are interesting and in the following we consider only them.

6



2.4 Message-Passing Model

2.4.1 Processes

The processes execute their program by taking atomic steps. In a step a process
executes two actions in sequence: (1) either it tries to receive one message from
another process, or sends a message to another process, or does nothing, and
then (2) changes its state.

We assume that there exists a known non-null lower bound on the time re-
quired by the alive processes to execute a step. Moreover, every alive process
is assumed to be timely, i.e., it satisfies a non-null upper bound on the time
it requires to execute each step. Our algorithms are structured as a repeat
forever loop in which each process executes only a bounded number of steps
in each loop iteration. Hence, each alive process satisfies a lower and an upper
bound, noted α and β, respectively, on the time it requires to execute a loop
iteration. We assume that α and β are known by each process. Without loss
of generality, we also assume that α = 1 and β ∈ N∗.

Observation 5 For every time t, an alive process p executes at least one
complete loop iteration during the time interval [t, t+ 2β[.

2.4.2 Links

The processes can send messages over directed links. There is a directed link
from each process to all the others. A message m carries a type T and a data
D. For each incoming link (q,p) and each type T , the process p has a buffer,
Bufferp[q,T ], that can hold one single message of type T . Bufferp[q,T ] =⊥
when it holds no message. If q sends a message m to p and the link (q,p) does
not lose m, Bufferp[q,T ] is eventually set to m. If it happens, we say that
message m is delivered to p from q. If Bufferp[q,T ] was set to some previous
message, this message is overwritten. When p takes a step, it may choose a
process q and a type T to read the content of Bufferp[q,T ]. If Bufferp[q,T ]
contains a message m, we say that p receives m from q and Bufferp[q,T ] is
automatically reset to ⊥. Otherwise p does not receive any message in this
step. In either case, p may change its state to reflect the outcome.

A fair link (p,q) satisfies: for each type of message T , if p sends infinitely many
messages of type T to q, infinitely many messages of type T are delivered to
q from p. A link (p,q) is reliable if every message sent by p to q is eventually
delivered to q from p. A link (p,q) is timely if there exists a constant δ such
that, for every execution and every time t, each message m sent to q by p at
time t is delivered to q from p within time t+ δ (any message that is initially
in a timely link is delivered within time δ). A link (p,q) is eventual timely if
there exists a constant δ for which every execution satisfies: there is a time t
such that every message m that p sends to q at time t′ ≥ t is delivered to q
from p by time t′ + δ (any message that is already in an eventual timely link

7



Systems Properties

S0 Links: arbitrary slow, lossy, and initially not necessarily empty

Processes: can be initially crashed, timely forever otherwise

variables: initially arbitrary assigned

S1 S0 with at least one timely source

S2 S0 with at least one timely source and at least one fair hub

S3 S0 with at least one timely bi-source

S4 S0 with all links timely

Fig. 1. Systems considered in this article (∀i, 0 < i ≤ 4, Si ⊂ Si−1).

at time t is delivered within time t+ δ). We assume that every process knows
δ and without loss of generality, δ is a multiple of β: let σ ∈ N∗, δ = σ × β.

2.4.3 Particular Characteristics

A timely source (resp. an eventual timely source) [14] is a timely process having
all its output links that are timely (resp. eventual timely). A timely bi-source
(resp. an eventual timely bi-source) [13] is a timely process having all its (input
and output) links that are timely (resp. eventual timely). The digraph G =
(V ,E) is a timely routing overlay (resp. eventual timely routing overlay) if V is
the set of all timely processes, E only contains timely (resp. eventual timely)
links, and G is strongly connected. A fair hub [14] is an alive process having
all its (input and output) links that are fair.

2.4.4 Systems

All our systems satisfy: (1) the value of the variables of every alive process
can be arbitrary in the initial configuration, (2) every link can initially contain
a finite but unbounded number of arbitrary messages, and (3) except if we
explicitly state, there is no assumption on the fairness and the timeliness of
the links.

The system S0 corresponds to the system where no further assumptions are
made: in S0, the links can be arbitrary slow or lossy. In S1, we assume that
there exists at least one timely source whose identifier is unknown. In S2, we
assume that there exists at least one timely source and at least one fair hub.
The timely source and the fair hub can be the same process or not, their
identifiers are unknown. In S3, we assume that there exists at least one timely
bi-source whose identifier is unknown. In S4, all links are timely. Figure 1
summarizes the properties of our systems.

Remark 1 Any variable can be arbitrary assigned in the initial configuration.
In particular, the program counter may not point to the first instruction in the
initial configuration. This may cause some problems in the first loop iteration:
if the program counter initially points to an instruction in an if block, the
instruction is executed without the guarantee that the test of the if is true.

8



However, such a problem can only appear during the first loop iteration.

2.4.5 Timeliness vs. Eventual Timeliness

Theorems 1 and 2 justify why we use the timeliness instead of eventual time-
liness.

Below we use the following notations: Let A be an algorithm. Let F be a
specification. Let S be a system having some timely links. Let S ′ be a system
having some eventual timely links such that a link is timely in S if and only
if this link is eventual timely in S ′.

Theorem 1 A is PSSCF for F in S if and only if A is PSSCF for F in S ′.

Proof. Since the if part is trivial by definition, we focus on the only if part:
Assume, by contradiction, that A is PSSCF for F in S but not PSSCF for F
in S ′. Then, there exists an execution e of A in S ′ such that no suffix of e
satisfies F . Let γ be the configuration of e from which all the eventual timely
links of S ′ are timely. As no suffix of e satisfies F , no suffix of −→eγ satisfies
F too. Now, −→eγ is a possible execution of A in S because (1) γ is a possible
initial configuration of S and (2) every eventual timely link of S ′ is timely
in −→eγ . Hence, as no suffix of −→eγ satisfies F , A is not PSSCF for F in S — a
contradiction. 2

Following similar arguments, we have:

Theorem 2 A is SSSCF for F in S if and only if A is SSSCF for F in S ′.

3 System S4

We first consider System S4. From [8], we already know that SSSCF leader elec-
tion algorithms can be implemented in such systems. Here we show that SSSCF
can be not only but communication-efficiently achieved in those systems.

3.1 CE-SSSCF Leader Election in S4

The goal of our algorithm, Algorithm 1, is to elect the alive process with the
smallest identifier.

To obtain the communication-efficiency, Algorithm 1 uses only one message
type (ALIVE) and proceeds as follows:

(1) A process p periodically sends ALIVE messages containing its own identifier
only if it believes to be the leader, i.e., only if Leaderp = p.

Using this mechanism, Algorithm 1 is communication-efficient because, since
the system is stabilized, there is only one leader. Note that the leader must

9



periodically send ALIVE messages to be not suspected of being crashed.

We want that the smallest alive process ` eventually satisfies Leader` = `
forever. To that goal, we use the following principle:

(2) If a process p receives no (ALIVE) message from q such that q < p and
q ≤ Leaderp during a well-chosen period of time, then it starts to believe
to be the leader, i.e., Leaderp ← p.

Thanks to (2), the smallest alive process ` eventually satisfies Leader` = `
even if Leader` is initially assigned to a smaller identifier of a crashed or
non-existing process. Moreover, at that time ` starts sending ALIVE message
according to (1) and, thanks to (2), every other alive process p eventually
satisfies Leaderp ≥ ` forever. It remains now to guarantee that all other alive
processes eventually definitely adopt ` as leader. To that goal, we proceed as
follows:

(3) When a process p receives an (ALIVE) message from q, p sets Leaderp to
q if q < p and q ≤ Leaderp.

To implement principles (1) and (2), we uses two counters: SendT imerp and
ReceiveT imerp. These counters are incremented at each loop iteration in order
to evaluate a particular time interval. Using the lower and upper bound on
the time to execute an iteration of this loop, each process p knows how many
iterations it must execute before a given time interval passed.

Algorithm 1 CE-SSSCF Leader Election in S4, code for every process p
1: variables:
2: Leaderp ∈ {1,. . . ,n}
3: SendT imerp, ReceiveT imerp: non-negative integers
4: repeat forever
5: for all q ∈ V \ {p} do
6: if receive(ALIVE) from q then
7: if (q < p) ∧ (q ≤ Leaderp) then
8: Leaderp ← q
9: ReceiveT imerp ← 0
10: end if
11: end if
12: end for
13: SendT imerp ← SendT imerp + 1
14: if SendT imerp ≥ σ then
15: if Leaderp = p then
16: send(ALIVE) to every process except p
17: end if
18: SendT imerp ← 0
19: end if
20: ReceiveT imerp ← ReceiveT imerp + 1
21: if ReceiveT imerp > 5δ then
22: Leaderp ← p
23: ReceiveT imerp ← 0
24: end if
25: end repeat

10



3.2 Correctness of Algorithm 1 in S4

We recall that in the following proofs, we assume that the initial configuration
of the system is arbitrary. Also, we will denote by ` the alive process with the
smallest identifier.

Lemma 1 For every alive process p, if p receives a message m from q at time
t > δ + 2β, then q is alive and q sends m.

Proof. First, as we only consider initial crashes, p can only receive messages
that are either initially in a link or sent by alive processes. Hence, to prove
the lemma, we just have to show that p cannot receive a message that was
initially in a link after time δ + 2β.

Now, after δ times, all messages initially in the links are delivered. Moreover,
at every loop iteration p tries to receive a message for each other process and
p executes a complete loop iteration at least every 2β times. Hence, after time
δ + 2β, p can only receive messages that were sent by alive processes and the
lemma holds. 2

According to Remark 1 (page 8), we have the following observation:

Observation 6 A process p sets Leaderp to q 6= p at time t > β (Line 8)
only if (q < p) and (q ≤ Leaderp) at time t.

Lemma 2 Leader` = ` at every time t such that t > (5β + 1)δ + 4β.

Proof. Let t > δ + 2β. From time t, any ALIVE message that ` receives was
sent by an alive process q such that q > ` by Lemma 1 and the definition of `.
Hence, if Leader` = ` holds, then Leader` = ` holds forever by Observation 6.
Assume now that Leader` 6= `. Then, ` points the first instruction of the loop,
at most at time t+β. From that time, while ReceiveT imer` ≤ 5δ, ` increments
ReceiveT imer` at each loop iteration and each loop iteration is performed in
at most β times. Hence, at the latest in the 5δ + 1th loop iteration from time
t + β, ` satisfies the test of Line 21, sets Leader` to ` (Line 22), and then
Leader` = ` holds forever by Lemma 1, the definition of `, and Observation
6. Hence, Leader` = ` holds forever after at most (5δ+ 1)×β from time t+β
with t > δ + 2β, and the lemma holds. 2

Similar to Lemma 2, we obtain the following lemma:

Lemma 3 For every alive process p, Leaderp ≥ ` at every time t such that
t > (5β + 1)δ + 4β.

Lemma 4 For every time t > (5β + 1)δ + 4β, ` sends an ALIVE message to
every other process during the time interval [t, t+ δ + β].

11



Proof. Let t be any time such that t > (5β + 1)δ + 4β. From time t, the
program counter of ` points to the first loop instruction at time t′ ≤ t + β.
From time t′, ` executes a complete loop iteration at most every β times. Also,
from time t′, while SendT imer` < σ, SendT imer` is incremented at each loop
iteration. So, as SendT imer` is always greater or equal to 0, SendT imer` ≥ σ
becomes true at the latest during the σth loop iteration from time t′ and ` sends
ALIVE to any other process in the same loop iteration because Leader` = `
(Lemma 2). Hence, from time t′, ` sends ALIVE to every other process in at
most σ× β times, i.e., in at most δ times. As t′ ≤ t+ β, the lemma is proven.
2

Lemma 5 For every alive process p, Leaderp = ` at every time t such that
t > (5β + 3)δ + 8β.

Proof. Let t > (5β + 1)δ + 4β. We prove the lemma in two steps:

(1) We first prove that if p receives an ALIVE message from ` at time t′ > t,
then Leaderp ≥ ` holds forever from time t′ + β.

(2) We then prove that p receives an ALIVE message from ` at most at time
t+ 2δ + 3β.

Proof of (1): Assume that p receives an ALIVE message from ` at time t′ > t.
Then, from the code of Algorithm 1 and Lemma 3, p satisfies Leaderp = `
and ReceiveT imerp = 0 at the end of the loop iteration, i.e., before time
t′ + β. Assume, by the contradiction, that Leaderp 6= ` eventually holds after
time t′+β. Then, this means that p executes at least 5δ consecutive complete
loop iterations, i.e. at least 5δ times, without any ALIVE message from ` was
delivered to p. By Lemma 4 and the fact that any message is delivered at most
δ times after its sending, we obtain a contradiction. Hence (1) is proven.

Proof of (2): By Lemma 4, ` sends an ALIVE message to p during the time
interval [t, t+δ+β]. Then, this message is delivered to p at most δ times after.
As p tries to receive a message from ` at each loop iteration (at most every
2β times), p receives an alive message from ` before time t + 2δ + 3β, which
completes the proof. 2

Theorem 3 Algorithm 1 implements a CE-SSSCF leader election in system
S4.

Proof. By Lemma 5, starting from any configuration, the system reaches in
a bounded time a configuration γ from which there is an alive process that is
the unique leader forever: after that time, the system cannot deviate from its
specification whatever the execution suffix, i.e., Algorithm 1 is a SSSCF leader
election algorithm. Also, once the system is stabilized, only one process, `,
sends messages: Algorithm 1 is communication-efficient. 2

12



4 System S3

In the previous section, we saw that CE-SSSCF leader election can be imple-
mented in S4. We now show that such a strong system is required to implement
a leader election that is both SSSCF and communication-efficient: CE-SSSCF
leader election cannot be solved in S3. However, we will show that a non-
communication-efficient SSSCF leader election can be implemented in S3.

4.1 Impossibility of the CE-SSSCF Leader Election in S3

To prove this impossibility, we show that no CE-SSSCF leader election can be
implemented in S4

−: any system S0 having (1) all its links that are reliable and
(2) all its links that are timely except at most one which can be asynchronous.

Lemma 6 Let A be a SSSCF leader election algorithm in S4
−. In every ex-

ecution of A, every alive process p satisfies: from any configuration where
Leaderp 6= p, ∃k ∈ R+ such that p modifies Leaderp if it receives no message
during k times.

Proof. Assume, by contradiction, that there exists an execution e where there
is a configuration γ from which a process p satisfies Leaderp = q forever with
q 6= p while p receives message forever. As A is SSSCF, it can start from any
configuration. So, −→eγ is a possible execution. Let γ′ be a configuration which
is identical to γ except that q is crashed in γ′. Consider any execution eγ′
starting from γ′ where p receives no message forever. As p cannot distinguish
−→eγ and eγ′ , it behaves in eγ′ as in −→eγ : it keeps q as leader while q is crashed —
a contradiction. 2

Theorem 4 There is no CE-SSSCF leader election algorithm in S4
−.

Proof. Assume, by contradiction, that there exists a CE-SSSCF leader election
algorithm A in S4

−.

Consider an execution e where no process crashes and all the links behave as
timely. By definition of self-stabilization and Lemma 6, there exists a config-
uration γ in e such that in any suffix starting from γ: (1) there exists an alive
process ` such that any alive process p satisfies Leaderp = ` forever, and (2)
messages are received infinitely often through at least one input link of each
alive process except perhaps `.

Let −→eγ be the suffix of e where every alive process p satisfies Leaderp = `
forever. Communication-efficiency and (2) implies that messages are received
infinitely often in −→eγ through exactly n− 1 links of the form (q,p) with p 6= `.

13



Let E be the set of the n− 1 links where messages are sent infinitely often in
−→eγ .

Consider now an execution e′ identical to e except that there is a time after
which some link (q,p) ∈ E arbitrary delays the messages. (q,p) can behave as
a timely link an arbitrary long time, so, e and e′ can have an arbitrary large
common prefix. In particular, e′ can begin with any prefix of e of the form
←−eγe′′ with e′′ a non-empty prefix of −→eγ . Now, after any prefix ←−eγe′′, (q,p) can
start to arbitrary delay the messages and, in this case, p eventually changes
its leader by Lemma 6. Hence, for any prefix ←−eγe′′, there is a possible suffix of
execution in S4

− where p changes its leader: this contradicts the definition of
self-stabilization. 2

By definition, any system S4
− having n ≥ 3 processes is a system S3. Hence:

Corollary 1 There is no CE-SSSCF leader election algorithm in S3 for n ≥ 3
processes.

4.2 SSSCF Leader Election in S3

Algorithm 2 SSSCF Leader Election on S3, code for every process p
1: variables:
2: Leaderp ∈ {1,. . . ,n}
3: SendT imerp, ReceiveT imerp: non-negative integers
4: Collectp, OtherAlivesp: sets of non-negative integers
5: macro:
6: Alivesp = OtherAlivesp ∪ {p} /∗ this macro is just used to simplify the code ∗/
7: repeat forever
8: for all q ∈ V \ {p} do
9: if receive(ALIVE-r) from q then
10: Collectp ← Collectp ∪ {r} /∗ p collects the IDs of the alive processes ∗/
11: if q = r then
12: send(ALIVE-r) to every process except p and q /∗ relay ∗/
13: end if
14: end if
15: end for
16: SendT imerp ← SendT imerp + 1
17: if SendT imerp ≥ σ then
18: send(ALIVE-p) to every process except p /∗ p periodically sends ALIVE-p ∗/
19: SendT imerp ← 0
20: end if
21: ReceiveT imerp ← ReceiveT imerp + 1
22: if ReceiveT imerp > 3δ + 6β then /∗ p periodically computes its leader ∗/
23: OtherAlivesp ← Collectp
24: Leaderp ← min(Alivesp)
25: Collectp ← ∅
26: ReceiveT imerp ← 0
27: end if
28: end repeat

Algorithm 2 implements a SSSCF leader election in S3. In the algorithm, each
process locally computes in an Alives set the list of all alive processes and
designates as leader the smallest process of the set. The Alives sets are com-
puted in two steps. First, each process p regularly sends ALIVE-p messages
through all its links. Secondly, each message is relayed once: when receiving

14



an ALIVE-r message from a process q, the process p retransmits it to all the
other processes (except q) only if q = r. Using this method, any alive process
p regularly receives an ALIVE-q message for each alive process q 6= p within a
bounded period of time. Hence, each process p can periodically evaluate in a
Collectp set the IDs of every other alive process: the IDs contained in all the
messages it recently received. Eventually, the IDs of every crashed process dis-
appear forever from the Collect sets because each message is relayed at most
once. Moreover, the timely bi-source guarantees that the IDs of each other
alive process are put into the Collect sets of all alive processes every bounded
period of time. Hence, by periodically assigning the content of Collectp to the
set OtherAlivesp, OtherAlivesp converges to the set of all the alive processes
different of p. Finally, p just has to periodically output the smallest ID in the
set Alivesp = OtherAlivesp ∪ {p} so that the system converges to an unique
leader.

4.3 Correctness of Algorithm 2 in S3

We recall that in the following proofs, we assume that the initial configuration
of the system is arbitrary.

Lemma 7 Every alive process eventually no more receives ALIVE-q messages
where q is a crashed process.

Proof. The lemma holds because every ALIVE-q message is relayed at most
once and the (initially) crashed processes never send messages. 2

Lemma 8 An alive process p sends ALIVE-p to all other processes at least
every δ + β times.

Proof. Any alive process p sends ALIVE-p to all other processes every σ
complete loop iteration. p starts its first complete loop iteration after at most
β times and then executes a complete loop iteration at most every β times.
Hence, p sends ALIVE-p to all other processes at most every σ × β + β times,
i.e., at most every δ + β times. 2

Lemma 9 Let p and q be two alive processes such that p 6= q, p receives an
ALIVE-q message at least every 3δ + 6β times.

Proof. The two following claims prove the lemma:

(1) p receives an ALIVE-q message from q at least every 2δ + 3β times if q or
p is the timely bisource.
Claim Proof: q sends an ALIVE-q message to p at least every δ + β times
by Lemma 8. As p or q is the timely bi-source, the link (q,p) is a timely
one, i.e., any message in this link is delivered in at most δ times. Finally,
every message is received at most one loop iteration after its delivery, i.e.,
2β times by Observation 5 (page 7).

15



(2) p receives an ALIVE-q message at least every 3δ+6β times if neither q nor
p are the timely bisource.
Claim Proof: Let b be the timely bi-source, b receives an ALIVE-q message
from q at least every 2δ + 3β times (1). After each reception of ALIVE-q
messages from q, b sends ALIVE-q to p in the same loop iteration, i.e., within
β times. As the link (b,p) is timely, any message in this link is delivered in at
most δ times. Finally, every message is received at most one loop iteration
after its delivery, i.e., 2β times by Observation 5 (page 7).

2

Lemma 10 For every alive process p, Alivesp is eventually equal to the set
of all alive processes forever.

Proof. The two following claims prove the lemma:

1. Eventually Alivesp only contains IDs of alive processes.
Claim Proof: Immediate from Lemma 7.

2. Alivesp eventually contains the IDs of every alive process q forever.
Claim Proof: If p = q, the claim trivially holds. So, consider that p 6= q.
In the algorithm, p periodically resets Collectp to ∅. After p resets Collectp,
p resets ReceiveT imerp to 0, and waits at least 3δ+ 6β + 1 loop iterations,
i.e., at least 3δ + 6β + 1 times, before setting OtherAlivesp to Collectp.
During this period, p receives at least one ALIVE-q message for q by Lemma
9 and inserts q into Collectp, which proves the claim.

2

From Lemma 10, we can deduce:

Theorem 5 Algorithm 2 implements a SSSCF leader election in S3.

5 System S2

We saw that SSSCF leader election can be done in S3. We now show that this
result is due to the existence of an eventual timely routing overlay. Indeed, we
now prove that SSSCF leader election cannot be achieved in a system that does
not contain an eventual timely routing overlay. Hence, it is also impossible
to implement a SSSCF leader election in S2. However, we will show that a
CE-PSSCF leader election can be done in S2. The algorithm we propose —
Algorithm 3— is an adaptation of an algorithm provided in [14]. It is important
to note that any system S3 is also a system S2: a timely bi-source is both a
source and a fair hub. Hence, Algorithm 3 also implements a CE-PSSCF leader
election in S3.

16



5.1 Impossibility of the SSSCF Leader Election in S2

To prove this impossibility, we show that no CE-SSSCF leader election can be
implemented in a particular case of S2: let S3

− be any system S2 having all
its links that are reliable but containing no eventually timely overlay.

Let m be a message sent at time t. We say that a message m’ is older than
m if and only if m’ was initially in a link or m’ was sent at time t′ such that
t′ < t. We call causal sequence any sequence p0,m1,. . . ,pk−1,mk such that: (1)
∀i, 0 ≤ i < k, pi is a process and mi+1 is a message, (2) ∀i, 1 ≤ i < k, pi
receives mi from pi−1, and (3) ∀i, 1 ≤ i < k, pi sends mi+1 after the reception
of mi. In this case, we say that mk causally depends on p0. We also say that mk

is a new message that causally depends on p0 after the message mk′ if and only
if there exists two causal sequences p0,m1,. . . ,pk−1,mk and p0,m1′ ,. . . ,pk′−1,mk′

such that m1′ is older than m1.

Lemma 11 Let A be a SSSCF leader election algorithm in S3
−. In every ex-

ecution of A, every alive process p satisfies: from any configuration where
Leaderp 6= p, ∃k ∈ R+ such that p changes its leader if it receives no new
message that causally depends on Leaderp during k times.

Proof. Assume, by contradiction, that there exists an execution e where
there is a configuration γ from which a process p receives no new message
that causally depends on q 6= p while satisfying Leaderp = q forever. As A is
SSSCF, it can start from any configuration. So, −→eγ is a possible execution of A.
Let γ′ be a configuration that is identical to γ except that q is crashed in γ′.
As p only received the messages that do not causally depend on q in −→eγ , there
exists a possible execution −→eγ′ starting from γ′ where p received exactly the
same messages as in −→eγ . Hence, p cannot distinguish −→eγ and −→eγ′ and p behaves
in −→eγ′ as in −→eγ : it keeps q as leader forever while q is crashed: A is not a SSSCF

leader election algorithm — a contradiction. 2

Theorem 6 There is no SSSCF election algorithm in system S3
−.

Proof. Assume, by contradiction, that there exists a SSSCF leader election
algorithm A in system S3

−. By definition of self-stabilization, in any execution
of A, there exists a configuration γ such that in any suffix starting from γ
there exists an unique leader and this leader no more changes. Let e be an
execution of A where no process crashes and every link is timely. Let ` be the
alive process which is eventually elected in e. Consider now any execution e′

identical to e except that there is a time after which there is at least one link in
each path from ` to some process p that arbitrary delays the messages. Then,
e and e′ can have an arbitrary large common prefix. Hence, it is possible to
construct executions of A beginning with any prefix of e where ` is eventually
elected but in the associated suffix, any causal sequence of messages from `
to p is arbitrary delayed and, by Lemma 11, p eventually changes its leader

17



to a process q 6= `. Thus, for any prefix ←−e of e where a process is eventually
elected, there exists a possible execution having←−e as prefix and an associated
suffix −→e in which the leader eventually changes: this contradicts the definition
of self-stabilization. 2

By Theorem 6, follows:

Corollary 2 There is no SSSCF leader election algorithm in system S2.

5.2 CE-PSSCF Leader Election in S2

Our algorithm (Algorithm 3) uses the same principle as Algorithm 1 to obtain
the communication-efficiency : each process periodically sends ALIVE to all
other processes only if it thinks to be the leader. Using this principle, the basic
scheme of the algorithm is the following:

(1) Each process stores in an Actives set its own ID and the IDs of processes
from which it recently receives ALIVE.

(2) Each process periodically chooses its leader in its Actives set.

Due to the arbitrary initial configuration, variables may have initial strange
values. To deal with this, variables are either only incremented or periodi-
cally refreshed. Variables as Counterp[p] can be only incremented. Variables
as Counterp[q] is refreshed each time a message is received from q. Variables as
Collectp are refreshed at each complete loop iteration by what has happened
in the current loop and in the previous one.

Hence, after a constant number of iteration loop and the reception of messages
effectively sent by processes, the value of these variables become “correct”. For
example, Counterp[q] will be the value known by process p of Counterq[q].
Moreover, we have the property that: Counterq[q] is bounded by c if and only
if Counterp[q] is bounded by c.

As in [14], several problems have to be solved. The first one concerns the way
a process chooses its leader. A simple way to choose a leader is to choose
the smallest identifier in Actives. However, due to asynchrony of the links,
the leadership can oscillate among some alive processes. To fix this problem,
Aguilera et al propose in [14] the use of accusation’s counters: each process
p stores in Counterp[p] an estimation of how many times it was previously
suspected to be crashed by all other processes. When p sends an ALIVE mes-
sage, it now includes its current value of Counterp[p]. Each process q keeps
in Counterq[p] the most up-to-date value of the accusation counter of p and
periodically chooses as leader the process of Activesq having the smallest ac-
cusation value (identifiers are used to break ties). After choosing its leader, if
it is a new one, q sends an ACCUSE-` message to the previous leader ` so that it
increments its accusation counter. The hope is that the counter of each source

18



Algorithm 3 CE-PSSCF Leader Election on S2, code for every process p
1: variables:
2: Leaderp ∈ {1,. . . ,n}, OldLeaderp ∈ {1,. . . ,n}
3: SendT imerp, ReceiveT imerp: non-negative integers
4: Counterp[1 . . . n], Phasep[1 . . . n]: arrays of non-negative integers
5: Collectp, OtherActivesp: sets of non-negative integers
6: CheckCollectp, CheckSetp: sets of 2-uple of integers
7: macro:
8: Activesp = OtherActivesp ∪ {p}
9: repeat forever
10: for all q ∈ V \ {p} do
11: if receive(ALIVE,qcnt,qph) from q then
12: Collectp ← Collectp ∪ {q}
13: Counterp[q] ← qcnt
14: Phasep[q] ← qph
15: if q 6= Leaderp then /∗ q is not the leader of p, so ∗/
16: send(CHECK,Leaderp,Phase[Leaderp]) to q /∗ p asks q to check its leader ∗/
17: end if
18: end if
19: if receive(ACCUSE-r,rph) from q then
20: if r = p then
21: if rph = Phasep[p] then /∗ p tests if the accusation is legitimate ∗/
22: Counterp[p]← Counterp[p] + 1
23: end if
24: else
25: send(ACCUSE-r,rph) to r /∗ p relays the accusation ∗/
26: end if
27: end if
28: if receive(CHECK,r,rph) from q then
29: CheckCollectp ← CheckCollectp ∪ {(r,rph)}
30: end if
31: end for
32: SendT imerp ← SendT imerp + 1
33: if SendT imerp ≥ σ then
34: if Leaderp = p then /∗ if p believes to be the leader, then ∗/
35: send(ALIVE,Counterp[p],Phasep[p]) to every process except p /∗ p sends ALIVE ∗/
36: end if
37: SendT imerp ← 0
38: end if
39: ReceiveT imerp ← ReceiveT imerp + 1
40: if ReceiveT imerp > 5δ then
41: for all q ∈ OtherActivesp \ (Collectp ∩OtherActivesp) do
42: send(ACCUSE-q,Phasep[q]) to every process except p
43: end for
44: for all (r,rph) ∈ {(q,qph) ∈ CheckSet, q /∈ Collectp} do
45: send(ACCUSE-r,rph) to every process except p
46: end for
47: OtherActivesp ← Collectp
48: Collectp ← ∅
49: CheckSetp ← CheckCollectp
50: CheckCollectp ← ∅
51: OldLeaderp ← Leaderp
52: Leaderp ← r such that (Counterp[r],r) = min{(Counterp[q],q) : q ∈ Activesp}
53: if (OldLeaderp = p) ∧ (Leaderp 6= p) then /∗ p looses its leadership ∗/
54: Phasep[p]← Phasep[p] + 1
55: end if
56: ReceiveT imerp ← 0
57: end if
58: end repeat

remains bounded and, so, a source is eventually elected.

As, several links are not fair in S2, several ACCUSE-r messages can be lost.
To solve this problem, each ACCUSE-r message is relayed once. If a process q
accuses a process p infinitely often, with the help of the fair hub, p receives

19



infinitely many ACCUSE-p messages. Note that this scheme preserves the com-
munication efficiency: once a permanent leader is elected, there is no new
accusation and the relaying stops.

The second problem is the following. The aim of the accusation counter is that
the processes that communicate well do not increase their accusation counter
infinitely many times.

A source s can stop to consider itself as the leader when it selects another
process p as its leader (a process in Activess with a smaller counter). In this
case, the source voluntarily stops sending ALIVE messages for the communi-
cation efficiency. To avoid that other process that considered s as its leader
eventually suspects s and sends ACCUSE-s messages a mechanism is added so
that a source increments its own accusation counter only a finite number of
times. A process now increments its accusation counter only if it receives a
“legitimate” accusation: an accusation due to the delay or the loss of one of
its ALIVE message and not due to the fact that it voluntarily stopped send-
ing messages. To detect if an accusation is legitimate, each process p saves in
Phasep[p] the number of times it looses the leadership in the past and includes
this value in each of its ALIVE messages. Hence, when q wants to accuse p, it
now includes its own view of p’s phase number in the ACCUSE-p message. This
ACCUSE-p message will be considered as legitimate by p only if the phase num-
ber it contains matches the current phase value of p. Also, whenever p loses
the leadership and stops sending ALIVE messages voluntarily, p increments
Phasep[p] and does not send the new value to any other process.

There is a last problem to solve. Due to the fact that several links can be
lossy, the alive processes may be split into two subsets Πp and Πq such that
processes in Πp (including p) and processes in Πq (including q) have p and q as
permanent leader, respectively. To prevent this problem while preserving the
communication-efficiency, we use the fact that the fair hub h receives timely
ALIVE messages from both p and q. When h receives an ALIVE message from
a process q that is not its leader, it sends a (CHECK,p,php) message to q where
php corresponds to the phase value of its leader p. When q receives such a
message it stores the tuple (p,php) into a list and waits for receiving an ALIVE

message from p. If the link (p,q) is too slow or lossy, q eventually sends an
(ACCUSE-p,php) message. Hence, using this method, the previous problem is
solved: p eventually loses its leadership due to the ACCUSE-p messages gener-
ated by q.

5.3 Correctness of Algorithm 3 in S2

We recall that in the proofs, we assume that the initial configuration of the
system is arbitrary. Also, we will denote by vartp the value of varp at time t.
Finally, we will denote by s the timely source and by h the fair hub.

20



Lemma 12 Let p and q be two distinct alive processes. If q ∈ Activesp holds
infinitely often, then p receives ALIVE messages from q infinitely often.

Proof. As q 6= p, q ∈ Activesp holds infinitely often and implies that
q ∈ Collectp holds infinitely often. Now, Collectp is periodically reset to ∅ and
q is inserted into Collectp only if p receives ALIVE from q, hence the lemma
holds. 2

According to Remark 1 (page 8), we have the following observation:

Observation 7 After the first loop iteration (i.e., after at most β times),
Counterp[p] and Phasep[p] are monotically nondecreasing with time.

Lemma 13 Let p and q be two distinct processes. If p receives ALIVE messages
from q infinitely often, then (1) q is alive and (2) for every time t>β, there is a
time after which Counterp[q]≥Countertq[q] and Phasep[q]≥Phasetq[q] forever.

Proof Outline. Point (1) is straightforward because a crashed process stops
sending messages. Point (2) is due to Observation 7 and the fact that q always
stores in Countertq[q] and Phaseq[q] the most up-to-date values of Counterp[q]
and Phasep[q] it receives from p. 2

By Lemmas 12, 13 and Observation 7, follows:

Lemma 14 Let p and q be two alive processes. If q ∈ Activesp holds infinitely
often, then q is alive and, for every time t > β, there is a time after which
Counterp[q] ≥ Countertq[q] and Phasep[q] ≥ Phasetq[q] forever.

As all input and output links of h are fair, we have:

Lemma 15 For every alive process p 6= h, (1) if p sends a message of type
T to h infinitely often, then h receives a message of type T from p infinitely
often, and (2) if h sends a message of type T to p infinitely often, then p
receives a message of type T from h infinitely often.

According to Remark 1 (page 8), we have the two following observations:

Observation 8 A process p sends ALIVE at time t > β only if Leaderp = p
at time t.

Observation 9 A process p switches Leaderp from p to q 6= p at time t > β
only if OldLeaderp = p at time t.

Lemma 16 There exists a time t > β such that, for every process p 6= s and
every k ≥ 0, if s sends (ALIVE,−,k) to p at time t′ > t, then:

1. s sends another (ALIVE,−,k) message to p during the time interval ]t′,t′ +

21



δ + β], or
2. Phases[s] > k holds forever from time t′ + δ + β.

Proof. There is a time t0 > β after which no message initially in the links
is still in transit. Assume that s sends (ALIVE,−,k) to p at time t1 > t0. Then,
Leaders = s (Observation 8) and Phases[s] = k at time t1. There are two
cases:

- s switches Leaders from s to q 6= s at time t2 ∈]t1,t1 + δ[.
OldLeaders = s holds at time t2 (Observation 9) and s increments Phases[s]
before time t2+β. By Observation 7, Phases[s] becomes strictly greater than
k forever before time t2 + β, which proves the lemma in this case.

- s continuously satisfies Leaders = s during the time interval ]t1,t1 + δ[.
First, as Leaders = s during ]t1,t1 + δ[, Phases[s] stays equal to k during
this interval and it remains to prove that s ALIVE during the interval.
After s sends (ALIVE,−,k) to p at time t1, s resets SendT imers to 0 in
the same loop iteration. So, when the program counter points to the first
instruction of the loop at time t2 ∈]t1,t1+β[, SendT imers = 0. From time t2,
s executes a complete loop iteration at least every β times. After executing
σ− 1 iterations, the program counter points to the first instruction at time
t3 ≤ t1 + δ, SendT imers = σ − 1, and Leaders is equal to s. Consider
now the next loop iteration: s increments SendT imers to σ (Line 32) and
satisfies the tests of Lines 33-34 and sends another ALIVE message in Line
35, i.e., at time t4 ∈ [t3,t1 + δ + β], which proves the lemma.

2

Lemma 17 There exists a time t > β such that, for all distinct processes
p and r and every k ≥ 0, if p receives a (CHECK,r,k) message at some time
t′ ≥ t, then r sent an (ALIVE,−,k) message before time t′.

Proof Outline. The lemma is straighforward if p receives only a finite
number of (CHECK,r,−) messages. So, assume that p receives infinitely many
(CHECK,r,−) messages. Then, there is a process q that sends infinitely many
(CHECK,r,−) messages to p. In this case, r ∈ Activesq holds infinitely often.
By Lemma 12, q receives ALIVE messages from r infinitely often. This means
that r sends ALIVE messages to q infinitely often. Now, q keeps in Phaseq[r]
the most recent phase value received from r. So, there is a time after which if
q sends (CHECK,r,k), then r previously sent (ALIVE,−,k). 2

When a message m is delivered to a process p, p receives a message of the
same type of m at most one complete loop iteration after the delivery of m.
Hence, by Observation 5 (page 7) and as s is a timely source:

Lemma 18 If s sends ALIVE to another process p at time t, then p receives
at least one ALIVE message from s during the time interval ]t, t+ δ + 2β].

22



Lemma 19 In any execution, Counters[s] is bounded.

Proof. Assume, by contradiction, that Counters[s] is unbounded. So, there is
a process p 6= s that sends ACCUSE-s messages infinitely often. There is three
possibilities for a process p to send an ACCUSE-s message: either p executes
Line 25, Line 42, or Line 45. Line 25 is used to relay ACCUSE-s messages. So,
without the loss of generality, we can assume that p executes Line 42 or Line
45 infinitely often:

(a) p accuses s infinitely often in Line 42.
p executes at least 5δ+1 loop iterations between each attempt of accusation
in Lines 41-43, i.e., at least 5δ + 1 times. So, p accuses s infinitely often in
Line 42 only if the following scheme arrives infinitely often:

- s is inserted into Collectp after p receives an ALIVE message from s.
- Then, OtherActivesp is set to Collectp and Collectp is set to ∅.
- Finally, during the following period of 5δ+ 1 times, s is not inserted into
Collectp meaning that p does not received any ALIVE messages from s
during the period.

Hence, p must receive ALIVE messages from s infinitely often in such a way
that infinitely often the time between two receptions of ALIVE messages is
greater than 5δ + 1 times. Now, by Lemmas 16 and 18, there is a time
from which when p receives an (ALIVE,−,k) message from s at time t, either
p receives another (ALIVE,−,k) message from s during the time interval
]t,t+2δ+3] or Phases[s] > k holds forever from time t+δ+1. In the former
case, p does not accuse s. In the latter case, p sends an (ACCUSE-s,k) message
to all other processes after time t+5δ+1. Now, even if s eventually received
all these accusations, these accusations do not cause any incrementation
of Counters[s] because Phases[s] > k when s received them. Hence, the
contradiction.

(b) p accuses s infinitely often in Line 45. Using the arguments similarly to
those in Case (a), we can deduce that p must receive (CHECK,s,−) messages
infinitely often and Lemma 17 implies that s sends (ALIVE,−,k) messages
to p infinitely often. As the link (s,p) is timely, p receives (ALIVE,−,k)
messages from s infinitely often. Similar to (a) again, p executes Line 45
infinitely often only if the following situation arrives infinitely often: the
time between the reception of a (CHECK,s,−) message and the next ALIVE

message from s is greater than 5δ + 1 times and similarly to the previous
case, we obtain a contradiction.

2

Definition 1 For each process p, let cp be the largest value of Counterp[p] in
the execution that we consider (cp =∞ if Counterp[p] is unbounded). Let ` be
the process such that (c`,`) = min{(cp,p): p is an alive process}.

23



By Definition, ` is an alive process. Furthermore, cs < ∞ by Lemma 19, so,
c` <∞, i.e., Counter`[`] is bounded.

The following lemma is straightforward by definition of ` and by the way p
computes Leaderp.

Lemma 20 For every alive process p, if there is a time after which ` ∈
Activesp forever, then there is a time after which Leaderp = ` forever.

Corollary 3 There is a time after which Leader` = ` forever.

Lemma 21 There is a time after which Phase`[`] stops changing.

Proof. ` changes Phase`[`] infinitely often only if ` switches Leader` from
` to a process q 6= ` infinitely often, which contradicts Corollary 3. 2

Definition 2 Let `phase be the final value of Phase`[`].

Lemma 22 For every alive process p, there is a time after which if Leaderp =
` infinitely often, then Phasep[`] ≥ `phase.

Proof. Let p be any process. Assume that eventually Leaderp = ` holds
infinitely often. If p = `, then the lemma trivially holds by the definition of
`phase. If p 6= `, then, ` ∈ Activesp holds infinitely often. By Lemma 14, there
is a time from which Phasep[`] ≥ `phase forever, which proves the lemma. 2

Lemma 23 Any process p can send only a finite number of (ACCUSE-`,k)
messages with k < `phase.

Proof. First, as Phase`[`] = `phase eventually holds forever, (1) ` can only
send a finite number of (ALIVE,−,k) messages with k < `phase. We now show,
by contradiction, that (2) only a finite number of (CHECK,`,k) messages are
sent with k < `phase.

Assume that infinitely many (CHECK,`,k) messages are sent with k < `phase.
Then, Leaderq = ` holds infinitely often and by Lemma 22 there is a time after
which Phaseq[`] ≥ `phase forever. From this time q no (CHECK,`,k) message
forever, a contradiction.

We now show, by contradiction, that a process p sends (ACCUSE-`,k) mes-
sages with k < `phase in Lines 42 or 45 only finitely many time. This
claim immediately implies the lemma because eventually a process can re-
lay an ACCUSE-` message in Line 25 only if another process previously sends
this message in Lines 42 or 45. Assume, by contradiction, that p sends in-
finitely many (ACCUSE-`,k) messages with k < `phase in lines 42 or 45.
Then, (a) ` ∈ OtherActivesp or (b) (`,k) ∈ CheckSetp with k < `phase
holds infinitely often. In Case (a), by Lemma 14 that there is a time from

24



which Phasep[`] = `phase holds forever and, from this time, p never more
sends any (ACCUSE-`,k) with k < `phase. In Case (b), it is easy to see that
(`,k) ∈ CheckSetp with k < `phase holds infinitely often only if q receives
(CHECK,`,k) messages infinitely often, a contradiction to Claim (2). 2

Lemma 24 No process sends (ACCUSE-`,`phase) messages infinitely often in
Lines 42 or 45.

Proof Outline. Assume that a process p sends (ACCUSE-`,`phase) mes-
sages infinitely often in Lines 42 or 45. If p = h, then ` receives infinitely
many (ACCUSE-`,`phase) by Lemma 15. Otherwise, h relays infinitely many
(ACCUSE-`,`phase) to ` and, so, ` receives infinitely many (ACCUSE-`,`phase)
by Lemma 15. Hence, in any case, ` receives infinitely many (ACCUSE-`,`phase)
which is a contradiction because eventually each time ` receives such a mes-
sage, ` increments Counter`[`] and so eventually Counter`[`] becomes greater
than c`. 2

Lemma 25 No process p adds and removes ` to and from Activep infinitely
often.

Proof. Assume, by contradiction, that some process p adds and removes ` to
and from Activesp infinitely often. This implies that (a) p receives (ALIVE,−,−)
messages from ` infinitely often, and (b), p sends (ACCUSE-`,−) messages in-
finitely often in Line 42. From (a), the definition of `phase, and the fact
that the link (`,p) initially contains only a finite number of messages, we can
deduce that eventually p only receives ALIVE messages from ` of the form
(ALIVE,−,`phase). So, there is a time after which Phasep[`] = `phase forever.
Thus, from (b), p sends infinitely many (ACCUSE-`,`phase) messages in Line
42 — a contradiction to Lemma 24. 2

Lemma 26 There is a time after which ` ∈ Activesh and Phaseh[`] = lphase
holds forever.

Proof. If h = `, then the result follows by the definition of `phase and the
fact that ` ∈ Actives` always holds. Consider now that h 6= `. By Corollary 3
and the definition of `phase, ` sends an infinite number of (ALIVE,−,`phase)
messages to all processes except itself. Moreover, ` only sends a finite number
of (ALIVE,−,y) messages with y 6= `phase. Since h 6= `, h receives an infinite
number of these (ALIVE,−,`phase) messages from ` by Lemma 15. Therefore,
there is a time after which h satisfies Phaseh[`] = `phase forever. Morever,
` ∈ Activesh holds infinitely often. From Lemma 25, h removes ` from Activeh
only finitely often, and the lemma holds. 2

By Lemmas 20 and 26, we can deduce the following lemma:

25



Lemma 27 There is a time after which Leaderh = ` holds forever.

Lemma 28 There is a time after which only ` sends ALIVE messages.

Proof. Consider any alive process p 6= `. From Lemma 25, there are two
possible cases:

(1) There is a time after which ` ∈ Activesp holds forever. In this case, there
is a time after which Leaderp = ` by Lemma 20. After this time, p does not
send ALIVE messages.

(2) There is a time after which ` /∈ Activesp holds forever. This implies that:

(a) There is a time after which p receives no ALIVE message from ` forever.
(b) p 6= h by Lemma 26.
(c) h 6= ` (because if h = `, then, by Corollary 3, h sends an infinite number

of ALIVE messages to p, and, by Lemma 15, p receives an infinite number
of ALIVE messages from h, which contradicts (a)).

Assume now, by contradiction, that p sends ALIVE messages infinitely often.
By Lemma 15, h receives ALIVE messages from p infinitely often. By Lemmas
26 and 27, there is a time after which Leaderh = ` and Phaseh[`] = `phase
forever. After that time, each time h receives an ALIVE message from p, h
sends a (CHECK,`,`phase) message to p (since p 6= ` and Leaderh = `). Hence,
h sends infinitely many (CHECK,`,`phase) messages to p and there is a time
after which p only receives (CHECK,`,`phase) messages from h. By Lemma
15, p receives such messages infinitely often. Hence, (`,`phase) is inserted
infinitely often in CheckCollectp and, as a consequence, in CheckSetp. Now,
there is a time after which ` /∈ Activesp holds forever and, as a consequence,
` /∈ Collectp forever from this time. Hence, p sends (ACCUSE-`,`phase) mes-
sages in Line 45 infinitely often — a contradiction to Lemma 24.

Hence, in both Cases (1) and (2), there is a time after which p no more sends
any ALIVE message. 2

Lemma 29 There is a time after which every process p satisfies Leaderp = `
forever.

Proof. Let p be any alive process. By Lemma 25, there are two possible
cases:

(1) There is a time after which ` ∈ Activesp holds forever. In this case, by
Lemma 20, there is a time after which Leaderp = ` forever.

(2) There is a time after which ` /∈ Activesp holds forever. Since a process
q 6= p can remain in Activep only if p keeps receiving ALIVE messages from
q, then, by Lemma 28 and the fact that p ∈ Activep (always), there is a time
after which Activesp = {p} holds forever. This implies that Leaderp = p
eventually holds forever and, as a consequence, p repeatedly sends ALIVE

message forever — a contradiction to Lemma 28.

Thus, only Case (1) holds. 2

26



Lemma 30 There is a time after which only ` sends messages.

Proof. There are three types of messages:

(a) By Lemma 28, there is a time after which only ` sends ALIVE messages.
(b) Only a finite number of CHECK messages are sent. By Lemma 29, eventually

every process p satisfies Leaderp = `. By (a), every process p eventually only
receives ALIVE messages from `. Since these two conditions hold, no CHECK

message is sent forever.
(c) For every process q, only a finite number of ACCUSE-q messages are sent.

To see this we now show that any process p can only send finitely many
ACCUSE-q messages in Lines 42 or 45. As Line 25 is only used to relay the
ACCUSE-q messages, this implies the claim. So, assume, by contradiction,
that some process p sends infinitely many ACCUSE-q messages in Lines 42
or 45. First, because of Case (b), p cannot send (ACCUSE-q,−) messages
infinitely often in Line 45. Then, p sends (ACCUSE-q,−) messages infinitely
often in Line 42 and, as a consequence, p receives infinitely many ALIVE

messages from q. By Lemma 28 and owing to the fact that there is only
a finite number of messages initially in the links, any process p can only
send ACCUSE-q messages infinitely often if q = ` by Lemma 28. As the
number of messages initially in the links is finite and eventually ` only sends
(ALIVE,−,`phase) messages, eventually p only receives ALIVE message from
` of the form (ALIVE,−,`phase) and, as a consequence, Phasep[`] = `phase
eventually holds forever. Hence, eventually p only sends ACCUSE-` message
to ` of the form: (ACCUSE-`,`phase) which contradicts Lemma 24.

2

By Lemmas 29 and 30, we obtain the following theorem:

Theorem 7 Algorithm 3 implements a CE-PSSCF leader election in S2.

6 System S1

Contrary to S2, the existence of a fair hub is not required in S1. This dif-
ference may seem to be weak but actually is important. Indeed, contrary to
S2, CE-PSSCF is not possible in S1. To see this: let S1

− as being any system
S0 with an eventual timely source and n ≥ 3 processes. In [14], Aguilera et
al show that there is no communication-efficient faut-tolerant leader election
algorithm in S1

−. Now, any PSSCF leader election algorithm in S1 is also a
PSSCF leader election algorithm in S1

− by Theorem 2 (page 9). Hence:

Theorem 8 There is no CE-PSSCF leader election algorithm in S1 with n ≥ 3
processes.

27



We now show that PSSCF leader election can be non-communication-efficiently
implemented in S1. To that goal, we adapted the fault-tolerant but non-com-
munication-efficient algorithm for S1

− given in [14].

6.1 PSSCF Leader Election in S1

Algorithm 4 implements a PSSCF leader election in S1. It resumes the principle
of accusation’s counter presented in the previous section but in a simpler
version: because we do not implement the communication-efficiency, every
process now periodically sends ALIVE messages to each other. Each process
p still keeps track in Counterp[q] of how many times process q (including p)
was previously suspected of being crashed. Finally, p computes an Activesp
set: this set still corresponds to its own ID plus the IDs of the processes from
which it recently receives ALIVE (i.e., the processes it trusts to be alive).

However, the way p computes its leader is quite different. First, p periodi-
cally evaluates a “local” leader. Then, p periodically chooses a “global” leader
among the local leaders of the processes in its Actives set.

The local leader of p is stored in LLeaderp[p] and corresponds to the process
of Activesp in with the fewest number of suspicions (we use the IDs to break
ties). Then, p has to evaluate the local leaders of all the processes in Activesp.
To that goal, every process q now includes the ID of its current local leader
in its ALIVE messages. Thanks to the ALIVE messages, p can now maintain
in LLeaderp[q] the local leader of each process q in Activesp. It remains then
to periodically select a “global” leader for p in the set {LLeaderp[q] : q ∈
Activesp}.

To select its global leader, any process p maintains another array of accusation
counters: LLCounterp. In LLCounterp[q], p stores the q’estimation of how
many times q’own local leader was previously suspected of having crashed,
i.e., the most up-to-date value of Counterq[LLeaderq[q]]. To that goal, the
value Counterq[LLeaderq[q]] is also included in all the ALIVE messages sent
by q. Hence, p can now periodically select its global leader as the process ` with
the smallest (LLCounterp[`],`) tuple in the set {LLeader[q] : q ∈ Activesp}.

We deal with the fact that the initial configuration is arbitary as in the pre-
vious algorithm.

6.2 Correctness of Algorithm 4 in S1

We recall that we assume that the initial configuration is arbitrary. Also, we
will denote by vartp the value of varp at time t and by s the timely source.

The proof of the next lemma is identical to the one of Lemma 12, page 20.

28



Algorithm 4 PSSCF Leader Election on S1, code for each process p
1: variables:
2: Leaderp ∈ {1,...,n}
3: SendT imerp, ReceiveT imerp: non-negative integers
4: LLeaderp[1...n], LLCounterp[1...n], Counterp[1...n]: arrays of non-negative integers
5: Collectp, OtherActivesp: sets of non-negative integers
6: macros:
7: Activesp = OtherActivesp ∪ {p}
8: MyLLeaderp = r, (Counterp[r],r) = min{(Counterp[q],q) : q ∈ Activesp}
9: MyLeaderp = `, (LLCounterp[`],LLeader[`]) = min{(LLCounterp[q],LLeader[q]) : q ∈ Activesp}
10: repeat forever
11: for all q ∈ V \ {p} do
12: if receive(ACCUSE) from q then
13: Counterp[p]← Counterp[p] + 1
14: end if
15: if receive(ALIVE,r,rcnt,qcnt) from q then
16: Collectp ← Collectp ∪ {q}
17: Counterp[q] ← qcnt
18: LLeaderp[q]← r
19: LLCounterp[q] ← rcnt
20: end if
21: end for
22: SendT imerp ← SendT imerp + 1
23: if SendT imerp ≥ σ then
24: send(ALIVE,LLeaderp[p],Counterp[LLeaderp[p]],Counterp[p]) to every process except p
25: SendT imerp ← 0
26: end if
27: ReceiveT imerp ← ReceiveT imerp + 1
28: if ReceiveT imerp > 5δ then
29: OtherActivesp ← Collectp
30: for all q ∈ V \Activesp do
31: send(ACCUSE) to q
32: end for
33: LLeaderp[p]←MyLLeaderp
34: LLCounterp[p]← Counterp[LLeaderp[p]]
35: Leaderp ←MyLeaderp
36: Collectp ← ∅
37: ReceiveT imerp ← 0
38: end if
39: end repeat

Lemma 31 For every alive process p and every process q 6= p, if q ∈ Activesp
holds infinitely often, then p receives ALIVE messages from q infinitely often.

Observation 10 Counterp[p] is monotically nondecreasing with time from
time β.

The proof of the next lemma is similar to the one of Lemma 13, page 21.

Lemma 32 Let p and q be two distinct processes. If p receives ALIVE messages
from q infinitely often, then q is alive and, for every time t > β, there is a
time after which Counterp[q] ≥ Countertq[q] forever.

The proof of the next lemma is similar to the one of Lemma 14, page 21.

Lemma 33 For every alive process p and every process q, if q ∈ Activesp
holds infinitely often, then q is alive and, for every time t, there is a time
after which Counterp[q] ≥ Countertq[q] forever.

29



Lemma 34 s sends an ALIVE message to p at most every δ + β times.

Proof. Consider any time t. At time t, SendT imers ≥ 0. From time t, the
program counter of s points to the first instruction of the loop at time t′ such
that t < t′ ≤ t + β. From time t′, s increments SendT imers once by loop
iteration, i.e., at most every β times. So, the test SendT imers ≥ σ becomes
true at the latest during the σth loop iteration from time t′ and s sends ALIVE
to p in the same loop iteration. Hence, from time t′, s sends ALIVE to p in at
most σ× β times, i.e., in at most δ times. As t′ ≤ t+ β, the lemma is proven.
2

As all the output links of s are timely, we have the next observation:

Observation 11 If s sends m to a process p 6= s at time t, then m is delivered
to p from s at most at time t+ δ.

Assume that a message m is delivered to a process p. Then, p receives a
message of the same type of m at most one complete loop iteration after the
delivery of m. Hence, by Observations 5 (page 7) and 11, follows:

Lemma 35 If s sends ALIVE to another process p at time t, then p receives
at least one ALIVE message from s during the time interval ]t, t+ δ + 2β].

By Lemmas 34 and 35, follows:

Lemma 36 For every alive process p 6= s, p receives ALIVE from s at least
every 2δ + 3β times.

Lemma 37 For every alive process p, there is a time after which s ∈ Activesp
forever.

Proof. First, the lemma trivially holds for p = s. Consider now the case
where p 6= s. There is a time after which s ∈ Activesp forever if and only
if there is a time after which s ∈ OtherActivesp forever. We know that
OtherActivesp is periodically reset to Collectp and, after that, Collectp is
reset to ∅. After such a reset, p waits 5δ complete loop iterations, i.e. at least
5δ times, before setting OtherActivesp to Collectp again. During this period,
p receives at least one ALIVE message from s by Lemma 36. So, during this
period, p inserts s in Collectp. Hence, when p sets OtherActivesp to Collectp
again, s ∈ Collectp. 2

Lemma 38 In any execution, Counters[s] is bounded.

Proof. Assume, by contradiction, that Counters[s] increases infinitely of-
ten. So, s receives ACCUSE messages infinitely often: there is at least one alive
process p 6= s that accuses s infinitely often. Now, p only sends ACCUSE mes-
sages to processes q such that q /∈ Activesp and s ∈ Activesp eventually holds

30



forever by Lemma 37 — a contradiction. 2

Definition 3 For each process p, let cp be the largest value of Counterp[p] in
the execution that we consider (cp =∞ if Counterp[p] is unbounded). Let ` be
the process such that (c`,`) = min{(cp,p): p is an alive process}.

By Definition, ` is an alive process. Furthermore, by Lemma 38, cs < ∞, so,
c` <∞, i.e., Counter`[`] is bounded.

Lemma 39 Let p and q be two alive processes. The two following propositions
holds:

(a) if q ∈ Activesp infinitely often and cq < ∞, then there is a time after
which Counterp[q] = cq forever.

(b) if q ∈ Activesp infinitely often and cq = ∞, then there is a time after
which Counterp[q] > c` forever.

Proof. First, if p = q, then (a) holds because Counterq[q] is eventually monot-
ically nondecreasing by Observation 10. Then, if p = q, then (b) holds because
Counterq[q] is eventually monotically nondecreasing and c` is bounded.

Consider now the case where p 6= q. In the two cases (a) and (b), p receives
ALIVE from q infinitely often by Lemma 31.

(a) Assume now that cq <∞. In this case, Counterq[q] is bounded and even-
tually monotically nondecreasing (Observation 10). So, there is a time t
after which Counterq[q] = cq forever. Then, as every message in the link
(q,p) is eventually received or lost, there is a time t′ > t after which p only
receives from q ALIVE messages that have been sent by q after time t and all
these messages are of the following form: (ALIVE,−,−,cq). Now, each time p
receives such an (ALIVE,−,−,cq) message, p sets Counterp[q] to cq. Hence,
there is a time after which Counterp[q] = cq forever.

(b) Assume that cq = ∞. In this case, Counterq[q] is unbounded. Then,
we already know that Counter`[`] is bounded. So, there is a time after
which Counterq[q] > Counter`[`] forever (remember that Counterq[q] and
Counter`[`] are eventually monotically nondecreasing by Observation 10).
Thus, by Lemma 33, there is a time after which Counterp[q] ≥ Counterq[q]
> Counter`[`] forever. Now, Counter`[`] is eventually equal to c` forever
because Counter`[`] is monotically nondecreasing. Hence, there is a time
after which Counterp[q] > c` forever.

2

As LLeaderp[p] is regularly set to q such that q ∈ Activesp, we have:

Corollary 4 Let p and q be two alive processes, the two following propositions
holds:

31



(a) if LLeaderp[p] = q infinitely often and cq <∞, then there is a time after
which Counterp[q] = cq forever.

(b) if LLeaderp[p] = q infinitely often and cq =∞, then there is a time after
which Counterp[q] > c` forever.

Lemma 40 Let p be an alive process. Let q be a process. Assume that q ∈
Activesp and LLeaderp[q] = r holds infinitely often. The two following propo-
sitions hold:

(a) There is a time after which the predicate (LLeaderp[q] = r) ⇒ (LLCoun-
terp[q] = cr) holds each time p sets Leaderp to MyLeaderp, if cr <∞.

(b) There is a time after which the predicate (LLeaderp[q] = r) ⇒ (LLCoun-
terp[q] > c`) holds each time p sets Leaderp to MyLeaderp, if cr =∞.

Proof. Assume that q = p. By Corollary 4, there is a time after which:

- Counterp[r] = cr forever, if cr <∞
- Counterp[r] > c` forever, if cr =∞

So, the lemma holds because p periodically updates LLeaderp[p], sets LL-
Counterp[p] to Counterp[LLeaderp[p]], and sets Leaderp to MyLeaderp.

Assume now that q 6= p. Then, by Lemmas 31 and 32, p receives ALIVE

messages from q infinitely often and q is alive. As the number of messages
initially in the link (q,p) is finite, eventually p only receives from q ALIVE

messages sent by q. Each ALIVE message sent by q at time t is of the following
form: (ALIVE,v,vcnt,qcnt) where v is the value of LLeaderq[q] at time t and
vcnt is the value of Counterq[LLeaderq[q]] at time t. When receiving such
a message, p sets LLeaderp[q] to v and LLCounterp[q] to vcnt in sequel.
Moreover, this is the only way to modify LLeaderp[q] and LLCounterp[q].
Thus, LLeaderp[q] = r holds infinitely often implies that LLeaderq[q] = r
holds infinitely often and, by Corollary 4:

- if cr <∞, then Counterq[r] = cr eventually holds forever.
- if cr =∞, then Counterq[r] > c` eventually holds forever.

If cr <∞, then eventually p only receives from q (ALIVE,v,vcnt,qcnt) messages
that satisfy the condition (v = r) ⇒ (vcnt = cr). At each reception of such
messages, p sets LLeaderp[q] to r and LLCounterp[q] to cr in sequel. So,
eventually each time p sets Leaderp to MyLeaderp, we have LLCounterp[q] =
cr, if LLeaderp[q] = r and Part (a) of the lemma is proven.

If cr =∞, then eventually p only receives from q (ALIVE,v,vcnt,qcnt) messages
that satisfy the condition (v = r) ⇒ (vcnt > c`). At each reception of such
messages, p sets LLeaderp[q] to r and LLCounterp[q] to cr in sequel. So,
eventually each time p sets Leaderp to MyLeaderp, we have LLCounterp[q] >
c`, if LLeaderp[q] = r and Part (b) of the lemma is proven. 2

The following lemma is straightforward by definition of ` and by the way p

32



computes LLeaderp[p].

Lemma 41 For every alive process p, if there is a time after which ` ∈
Activesp forever, then there is a time after which LLeaderp[p] = ` forever.

Definition 4 Let LLeaders(p) = {LLeaderp[q] : q ∈ Activesp}.

Lemma 42 For every alive process p, if there is a time after which ` ∈
LLeaders(p) forever, then there is a time after which Leaderp = ` forever.

Proof. Assume that there is a time after which ` ∈ LLeaders(p) for-
ever. Then, as ` ∈ LLeaders(p) holds infinitely often and LLeaders(p) =
{LLeaderp[q] : q ∈ Activesp}, there is a subset of processes S such that:

(1) ∀q ∈ S, q ∈ Activesp and LLeaderp[q] = ` holds infinitely often.

Also, as there is a time t after which ` ∈ LLeaders(p) forever, we have the
following additional property:

(2) ∀t′ ≥ t, ∃qt′ ∈ S such that qt′ ∈ Activesp and LLeaderp[qt′ ] = ` at time t′.

By (1) and Lemma 40, there is a time after which ∀q ∈ S, (LLeaderp[q] = `)
⇒ (LLCounterp[q] = c`)) each time p sets Leaderp to MyLeaderp. Then,
by (2), there is a time t such that if p sets Leaderp to MyLeaderp at time
t′ ≥ t, then there exists a process qt′ ∈ S such that LLeaderp[qt′ ] = ` and
LLCounterp[qt′ ] = c` at time t′.

Assume now, by contradiction, that Leaderp 6= ` infinitely often. Then, as
Leaderp is periodically set to MyLeaderp, the following situation appears
infinitely often: p sets Leaderp to MyLeaderp while there exists two processes
v and r such that v ∈ Activesp, LLeaderp[v] = r, and (LLCounterp[v],LLea-
derp[v]) < (c`,`). Two cases are then possible:

- cr <∞. Then, there is a time after which the condition (LLeaderp[v] = r)
⇒ (LLCounterp[v] = cr) holds each time p sets Leaderp to MyLeaderp, by
Part (a) of Lemma 40. Now, by Definition (cr,r) > (c`,`). So, (LLCoun-
terp[v],LLeaderp[v]) > (c`,`) eventually holds each time p sets Leaderp to
MyLeaderp while v ∈ Activesp and LLeaderp[v] = r — a contradiction.

- cr =∞. Then, there is a time after which the condition (LLeaderp[v] = r)
⇒ (LLCounterp[v] > c`) holds each time p sets Leaderp to MyLeaderp, by
Part (b) of Lemma 40. So, (LLCounterp[v],LLeaderp[v]) > (c`,`) eventually
holds each time p sets Leaderp to MyLeaderp while v ∈ Activesp and
LLeaderp[v] = r — a contradiction.

2

We now show that for every alive process p there is a time after which ` ∈
LLeaders(p).

33



Lemma 43 There is a time after which ` ∈ Activess forever.

Proof. If ` = s, then the lemma trivially holds. Assume now that ` 6= s.
There are three possible cases: (1) there is a time after which ` ∈ Activess
holds forever, (2) ` is added and removed from Activess infinitely often, or (3)
there is a time after which ` /∈ Activess forever. We now show that Cases (2)
and (3) cannot occur.

In Case (2), ` is removed from Activess each time ` was is Activess but not in
Collects and s sets OtherActivess to Collects. In this case, s sends an ACCUSE

message to `. So, s sends ACCUSE messages to ` infinitely often.

In Case (3), as there is a time after which ` /∈ Activess forever and as s
periodically sends ACCUSE messages to every process q such that q /∈ Activess,
s sends ACCUSE messages to ` infinitely often.

So, in both Cases (2) and (3), s sends ACCUSE messages to ` infinitely often.
Now, since the output links of s are timely and ` tries to receives ACCUSE mes-
sages from s infinitely often, ` receives ACCUSE messages from s infinitely often.
Thus, ` increments Counter`[`] infinitely often and, as Counter`[`] is eventu-
ally monotonically nondecreasing (Observation 10), Counter`[`] unbounded
— a contradiction. Hence, only Case (1) is possible. 2

By Lemmas 41 and 43, follows:

Lemma 44 There is a time from which LLeaders[s] = ` forever.

Lemma 45 For every alive process p, LLeaderp[s] = ` eventually holds for-
ever.

Proof. Let p be an alive process. If p = s, then the result is immediate from
Lemma 44. Assume now that p 6= s. In this case, p receives ALIVE messages
from s infinitely often by Lemma 36. By Lemma 44, there is a time t after
which LLeaders[s] = `. So, after time t, all the ALIVE messages that s sends
to p are of the form (ALIVE,`,−,−). Thus, there is a time after which all the
ALIVE messages that p receives from s are of the form (ALIVE,`,−,−). So, there
is a time after which LLeaderp[s] = ` forever. 2

By Lemmas 37, 45, and Definition 4, follows:

Corollary 5 Each alive process p eventually satisfies ` ∈ LLeaders(p) for-
ever.

By Corollary 5 and Lemma 42, follows:

Lemma 46 For every alive process p, there is a time after which Leaderp = `

34



forever.

By Lemma 46 and the fact that ` is alive, follows:

Theorem 9 Algorithm 4 implements a PSSCF leader election in system S1.

7 Conclusion and Future Works

We considered stabilizing leader election in various partial synchronous sys-
tems where any process can crash. Figure 2 summarizes our results. This
work exhibits some assumptions that are required to obtain CE-SSSCF, SSSCF,
CE-PSSCF, and PSSCF leader election algorithms. In particular, it emphasizes
that PSSCF is easier to achieve than SSSCF: PSSCF solutions require weaker
assumptions than SSSCF solutions. Finally, this article show that for silent
tasks [15] such as leader election the gap between fault-tolerance and fault-
tolerant pseudo-stabilization is not really significant: in such problems, adding
a pseudo-stabilizing property to a fault-tolerant algorithm is quite easy.

There are some possible extensions to this work. First, we can study stabilizing
leader election in systems where only a given number of processes may crash.
Then, it could be interesting to extend these algorithms and results to other
communication topologies. Finally, we can study the implementability of sta-
bilizing solutions in systems with crash failures for other classes of problems
such as decision problems.

S4 S3 S2 S1 S0
Communication-Efficient Self-Stabilization (CE-SSSCF) Yes No No No No

Self-Stabilization (SSSCF) Yes Yes No No No

Communication-Efficient Pseudo-Stabilization (CE-PSSCF) Yes Yes Yes No No

Pseudo-Stabilization (PSSCF) Yes Yes Yes Yes No

Fig. 2. Implementability of stabilizing leader election.

References

[1] C. Delporte-Gallet, S. Devismes, H. Fauconnier, Robust stabilizing leader
election, in: SSS, Vol. 4838 of LNCS, Springer, 2007, pp. 219–233.

[2] E. Dijkstra, Self stabilizing systems in spite of distributed control,
Communications of the ACM 17 (1974) 643–644.

[3] J. E. Burns, M. G. Gouda, R. E. Miller, Stabilization and pseudo-stabilization,
Distrib. Comput. 7 (1) (1993) 35–42.

[4] S. Dolev, A. Israeli, S. Moran, Uniform dynamic self-stabilizing leader election,
IEEE Transactions on Parallel and Distributed Systems 8 (4) (1997) 424–440.

35



[5] J. Beauquier, M. Gradinariu, C. Johnen, Memory space requirements for self-
stabilizing leader election protocols, in: PODC, 1999, pp. 199–207.

[6] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, Stable leader
election, in: DISC, 2001, pp. 108–122.

[7] A. Fernández, E. Jiménez, M. Raynal, Eventual leader election with weak
assumptions on initial knowledge, communication reliability, and synchrony,
in: DSN, 2006, pp. 166–178.

[8] A. S. Gopal, K. J. Perry, Unifying self-stabilization and fault-tolerance
(preliminary version), in: PODC, 1993, pp. 195–206.

[9] E. Anagnostou, V. Hadzilacos, Tolerating transient and permanent failures
(extended abstract), in: WDAG, 1993, pp. 174–188.

[10] J. Beauquier, S. Kekkonen-Moneta, On ftss-solvable distributed problems, in:
PODC, 1997, p. 290.

[11] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, Communication-
efficient leader election and consensus with limited link synchrony, in: PODC,
2004, pp. 328–337.

[12] M. Larrea, A. Fernández, S. Arévalo, Optimal implementation of the weakest
failure detector for solving consensus, in: SRDS, 2000, pp. 52–59.

[13] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, Consensus with
byzantine failures and little system synchrony, in: DSN, 2006, pp. 147–155.

[14] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, S. Toueg, On implementing
omega in systems with weak reliability and synchrony assumptions, Distributed
Computing 21 (4) (2008) 285–314.

[15] S. Dolev, M. Gouda, M. Schneider, Memory requirements for silent stabilization,
in: PODC, 1996, pp. 27–34.

36


