
On Efficiency of Unison

Stéphane Devismes
VERIMAG CNRS UMR 5104

Université de Grenoble

Franck Petit
LIP6 CNRS UMR 7606 - INRIA
UPMC Sorbonne Universités

ABSTRACT
In this paper, we address the unison problem. We consider the self-
stabilizing algorithm proposed by Boulinier et al. We exhibit a bound
on the step complexity of its stabilization time. In more details, the
stabilization time of this algorithm is at most 2Dn3 + (α + 1)n2 +
(α−2D)n steps, where n is the number of processes,D is the diameter
of the network, and α is a parameter of the algorithm.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms, Reliability

Keywords
Phase clock synchronization, self-stabilization, stabilization time, step
complexity, unfair daemon

1. INTRODUCTION
Self-stabilization [6] is a versatile property, enabling an algorithm to
withstand transient faults (e.g. topological changes [7]) in a distributed
system. A self-stabilizing algorithm, after transient faults hit the sys-
tem and place it in some arbitrary global state, makes the system re-
cover in finite time without external (e.g., human) intervention.

For many applications or networking protocols, it is mandatory to have
a common view of time, available for all or part of the processes. In
most of asynchronous distributed systems (being dynamic or not), the
lack of a global common clock requires to maintain on processes logi-
cal clocks that should be synchronized. Such a mechanism is referred
to as phase (or barrier, or logical clock) synchronization, or in short,
unison. Unison consists in the design of a protocol ensuring that all
the logical clocks are in phase. The phrase “in phase” has a natural
meaning in synchronous systems. In such systems, a global signal is
assumed to increment simultaneously all clock variables. So, the logi-
cal clocks are in phase if the values of all clock variables are identical.
In an asynchronous system, there is no such global signal. So, the uni-
son requirement must be relaxed: (1) the clocks of every two neighbor-
ing processes should not differ from more than 1, and (2) each process
should increment its clock by 1 infinitely often.

TADDS ’12 December 17 2012, Roma, Italy

A unison protocol can be used to emulate algorithms, designed for
synchronous environments, in asynchronous settings [1]. Another ap-
plication of unison is of particular interest in self-stabilization: any
self-stabilizing unison algorithm being fair in the sense defined in [2],
it can be used to make any self-stabilizing algorithm designed for a
weakly fair scheduler working under an unfair scheduler, the weakest
scheduling assumption [8].

In [3, 4], Boulinier et al propose a unison algorithm, called hereafter
SSAU . This algorithm has two parameters α and K, and is shown to
be self-stabilizing in any anonymous networkG under an unfair sched-
uler if and only if α ≥ TG − 2 and K > CG, where TG and CG are
two constants related to the topology of G. Namely, TG is the length
of a longest hole in G, if G contains a cycle, 2 otherwise. CG is the
length of the maximal cycle of the shortest maximal cycle basis, if G
contains a cycle, 2 otherwise. Actually, taking α ≥ TG − 2 ensures
that SSAU recovers in finite time a configuration where the clocks of
every two neighboring processes differ from at most one tick. Then,
taking K > CG ensures that the system is never deadlocked, i.e., each
process increments its local clock infinitely often. By definition, TG

and CG are bounded by n, the number of processes. Hence, taking
α ≥ n− 2 and K ≥ n+ 1 makes SSAU self-stabilizing in any arbi-
trary network of n processes under any scheduler, even an unfair one.
SSAU is implemented using α + K states per process. Its stabiliza-
tion time, i.e., the maximum time to reach a legitimate configuration
starting from any arbitrary configuration, isO(n+α) rounds.1 Hence,
by choosing α = O(n), α ≥ n − 2, K = O(n), and K ≥ n + 1,
SSAU self-stabilizes in O(n) rounds using O(n) states per process.

Two other unison algorithms for arbitrary anonymous networks and
using a bounded number of states per process have been proposed in
the literature: [5, 7]. However, both need Ω(n2) states per process.
Moreover, the stabilization time of the algorithm [5] is proven in [3]
to be in O(Dn) rounds (D is the diameter of the network), while no
round complexity is available for the one in [7]. Note also that no step
complexity analysis is provided for these two algorithms.2

Therefore, SSAU is currently the most efficient asynchronous uni-
son for anonymous networks existing in the literature. SSAU being
proven assuming an unfair daemon, its stabilization time in steps is fi-
nite. However, the step complexity of its stabilization time was, until
now, left as an open question.

Note that the stabilization time in steps of a self-stabilizing algorithm
is not necessarily bounded, e.g., a self-stabilizing algorithm working
under a weakly fair scheduler has a finite stabilization time in terms of
number of rounds, but some rounds may not be bounded in terms of

1The round complexity captures the execution rate of the slowest pro-
cessor in any execution.
2A step is any transition from a configuration to another in an execu-
tion.

number of steps.

The step complexity of SSAU is of special interest, in particular if
we use it to transform a self-stabilizing algorithm assuming a weakly
fair scheduler into one working under an unfair scheduler. Indeed, the
step complexity (and so the efficiency) of the transformed protocol will
depend, in part, on the stabilization time in steps of SSAU .

In this paper, we answer the open question on the stabilization time of
SSAU by showing that it is less or equal to 2Dn3 +(α+1)n2 +(α−
2D)n steps.

Roadmap. In the next section, we define the computational model
and some basic notions used in the paper. In Section 3, we present
Algorithm SSAU . In Section 4, we analyze its step complexity. We
make concluding remarks and perspectives in Section 5.

2. PRELIMINARIES

Distributed Systems. We consider distributed systems made of n
processes. Each process can directly communicate with a subset of
other processes, called neighbors. Communications are assumed to be
bidirectional, that is, the neighboring relation is symmetric. Hence,
we model a distributed system as a simple undirected connected graph
G = (V,E), where V is the set of processes and E is a set of edges
representing (direct) communication relations. Every processor p can
distinguish all its neighbors using a local labeling, but the network is
otherwise not identified. All labels of p’neighbors are stored into the
set N eigp. By abuse of language, we indifferently use p to designate
the process p itself or its label in the code any other process.

We assume that communications are carried out using locally shared
variables (henceforth called variables). Each process has a finite set
of variables. A process can only write to its own variables, but can
read its variables and that of its neighbors. A distributed algorithm is
a collection of n programs, each one operating on a single process.
The program of a process consists of a finite set of actions 〈label〉 ::
〈guard〉 → 〈statement〉. The label of an action in the program of p
is used to identify the action in the reasoning. The guard of an action in
the program of p is a predicate over the variables of p and its neighbors.
The statement of an action in the program of p is a set of assignments
on the variables of p. An action can be executed only if its guard
evaluates to true. We consider the composite read/write atomicity,
that is, actions are executed asynchronously but the evaluation of a
guard and the execution of the corresponding statement, if executed,
are done in one atomic step.

The state of a process is defined by the values of its variables. The
configuration of a (distributed) system is the product of the states of
all its processes. We denote by C the set of (possible) configurations.
An action is enabled in a configuration γ if its guard evaluates to true
in γ. By extension, a process is said to be enabled in γ if at least one
of its actions is enabled in γ. We denote by Enabled(γ) the subset of
processes that are enabled in γ.

A distributed algorithm P induces a binary relation, noted 7→, on C:
Let γ, γ′ ∈ C, γ 7→ γ′ if and only if there exists S ⊆ Enabled(γ)
such that (1) S 6= ∅ and (2) γ′ is the result of the atomic execution
one enabled action per process of S on γ. An execution of P is a
maximal sequence e = γ0, . . . γi, . . . such that ∀i > 0, γi−1 7→ γi.
By maximal, we mean that either e is infinite or e ends by a termi-
nal configuration, where no process is enabled. Each transition from
a configuration to another is called a step and driven by a daemon (or
scheduler), that is, a daemon is a predicate over executions that de-
fines a subset of admissible executions. We consider the most general

-α -α+1 -α+2
-3

-2
-1

0 1

2

3

K-2

K-1

K-3

Figure 1: Finite incrementing system

daemon: the (distributed) unfair daemon, where every execution is ad-
missible (hence, throughout this paper we will always omit the term
admissible). This implies that if one or more processes are enabled in
some configuration, then at least one enabled process (possibly more)
execute one of its enabled action in the following transition. However,
the unfair daemon can prevent forever a continuously enabled process
from executing an action, unless it is the only enabled process.

Self-Stabilization. Let P be a distributed algorithm. Let SP be a
predicate over executions of P . P is self-stabilizing w.r.t. SP if and
only if there exists a non-empty subset of configurations S such that:
Closure. Every execution of P starting from any configuration of S
(always) satisfies SP .
Convergence. Every execution of P , starting from an arbitrary con-
figuration, contains a configuration of S.
The configurations of S are called the legitimate configurations. Con-
versely, all other configurations are said illegitimate.

Finite Incrementing System and Reset. Let a be an integer.
Denote a the unique element in [0,K − 1] such that a = a mod K.
The distance dK(a, b) = inf(a− b, b− a) on [0,K − 1]. Two inte-
gers a and b are said to be locally comparable if and only if dK(a, b) ≤
1. We then define the local order relation ≤l as follows: a ≤l b

def⇔
0 ≤ b− a ≤ 1. Let us define X = {−α, . . . , 0, . . . , K − 1}, where
α is a non-negative integer and K ≥ 2. Let ϕ be a function from X to
X defined by:

ϕ : x→
{

(x+ 1) if x < 0
(x+ 1) mod K otherwise

Recall that ϕi(x) = x if i = 0, and ϕi(x) = ϕ(ϕi−1(x)) otherwise.
The pair (X , ϕ) is called a finite incrementing system, refer to Figure 1.
The value −α is the initial value of (X , ϕ). A reset on X consists of
an operation replacing any value of X \ {−α} by −α. Let initϕ =
{−α, . . . , 0} and stabϕ = {0, . . . , K−1} be the sets of initial values
and correct values, respectively. The set init?ϕ is equal to initϕ \ {0}.
We denote by ≤init the usual total order on initϕ.

Graph Definitions. Let G = (V,E) be an unoriented graph. A
path of G is a sequence P = p0, . . . , pk of nodes in V such that
∀i ∈ [0..k[, (pi, pi+1) ∈ E. The length of P is k. We denote by
‖p, q‖ the length of the shortest path for p to q in G. The diameter

of G, noted D, is the length of the longest shortest path of G, i.e.,
D = maxp,q∈V ‖p, q‖. P is elementary if only if ∀i, j ∈ [0..k], pi =
pj ⇒ i = j. Recall that an elementary cycle is a path C = c0, . . . , ck
with k > 2 such that c0 = ck and c0, . . . , ck−1 is an elementary path.
A chord in C is a pair (ci, cj) such that 0 ≤ i < j − 1 < k or
0 ≤ j < i− 1 < k and (ci, cj) ∈ E. Any chordless elementary cycle
is called a hole. Below, we recall a graph property:

PROPERTY 1. If p0, p1, . . . , pk is an elementary cycle of G, then
there exists a pair i, j ∈ [0..k] such that i < j − 1 and pi, pi+1, . . . ,
pj , pi is a hole of G.

3. ALGORITHM SSAU
The formal code of Algorithm SSAU is given in Algorithm 1. SSAU
consists of a single incrementing variable p.r and three mutually ex-
clusive actions for each process p. Actually, p.r is the logical clock
local at p. In a legitimate configuration (where AllCorrect is true at
every process), a process increments its clock modulusK using action
NA, when ∀q ∈ N eigp : p.r ≤l q.r.

Algorithm 1 Algorithm SSAU(α,K) for any process p ∈ V
Input: Neigp
Variable: p.r ∈ X
Predicates:
Cp(x, y) ≡ x.r ∈ stabϕ ∧ y.r ∈ stabϕ
Correctp(q) ≡ Cp(p, q) ∧ dK(p.r, q.r) ≤ 1
AllCorrectp ≡ ∀q ∈ Neigp : Correctp(q)
NormalStepp ≡ AllCorrectp ∧ (∀q ∈ Neigp : p.r ≤l q.r)
ConvergeStepp ≡ p.r ∈ init?ϕ∧

(∀q ∈ Neigp : q.r ∈ initϕ ∧ p.r ≤init q.r)
ResetInitp ≡ ¬AllCorrect ∧ p.r /∈ initϕ

Actions:
NA NormalStepp :: p.r ← ϕ(p.r)
CA ConvergeStepp :: p.r ← ϕ(p.r)
RA ResetInitp :: p.r ← −α

When the configuration is illegitimate, the goal is to propagate a reset
using Action RA so that the system re-synchronizes and eventually
recovers a legitimate configuration as follows. IfAllCorrectp is false
but the value p.r /∈ initϕ, then p.r is reset to −α by Action RA. If
either Action RA is enabled or p.r ∈ init?ϕ, then p is said to be in the
reset phase. The aim of the reset phase is to re-synchronizes p with its
neighbors from any value in init?ϕ to 0. This is the purpose of the third
action, CA.

4. STABILIZATION TIME IN STEPS
In the next subsection, we define some notions used in the proofs here-
after, and prove some of their properties. In Subsection 4.2, we focus
on the number of resets a process can execute. Indeed, the resets are
central in the step complexity. Finally, we conclude in Subsection 4.3
by proving a bound on the stabilization time in steps.

4.1 Resets and Reset Generations
Let e = γ0γ1 . . . γk . . . be an execution of SSAU . A reset is a pair
(p, t), where p is a process and t is a positive integer such that p exe-
cutes ActionRA in γt−1 7→ γt. For every reset pair (p, t), we say that
p resets at time t. If p resets at time t, then p.r /∈ initϕ (in particular,
p.r 6= −α) in γt−1 and p.r = −α in γt.

We now give some definitions to characterize the relations between
resets. Let (p0, t0) and (p1, t1) be two resets. We say that (p0, t0)

generates (p1, t1) — denoted by (p0, t0)
r
 (p1, t1) — if and only if

the following three conditions hold: (1) t0 < t1 and p1 ∈ N eigp0 ,
(2) ∀t ∈ [t0..t1 − 1]: p1.r /∈ initϕ in γt, and (3) p1.r = −α in γt1 ,
i.e., p1 is reset at time t1.

Since (p0, t0)
r
 (p1, t1) implies t0 < t1, the relation r

 defines
a Directed Acyclic Graph (DAG), called reset DAG. If (p0, t0) is

(p0,t0)
(p1,t1)

(p2,t2)

(p3,t3)

(p0,t4)

r

r

r

r

r

Figure 2: An helix and a stutter

p3 p1

p0

p2

Figure 3: A hole

not generated by any other reset, (p0, t0) is said to be an initial reset.
Below, we borrow some results from [4] (Lemmas 1 and 2).

LEMMA 1. In any execution of SSAU , for every process p, there
exists at most one positive integer t such that (p, γt) is an initial reset.

A stutter is a path of a reset DAG of the following form: (p0, t0),
(p1, t1), (p0, t2). Figure 2 gives an example of stutter: (p0, t0), (p3, t3),
(p0, t4).

LEMMA 2. A reset DAG is without any stutter.

A Reset Helix is a path (p0, t0), (p1, t1), . . . , (pk, tk) on a reset DAG
such that its projection p0, p1, . . . , pk on G is an elementary cycle. An
example of reset helix is given in Figure 2: (p0, t0), (p1, t1), (p2, t2),
(p3, t3), (p0, t4). A reset DAG is hole-transitive if and only if:
(p0, t0)

r
 (p1, t1)

r
 . . . r

 (pk, tk) and p0, p1, . . . , pk, p0 is a hole
of G implies (p0, t0)

r
 (pk, tk). In Figure 2, we apply the notion of

hole-transitivity on the hole given in Figure 3.

THEOREM 1. A hole-transitive reset DAG contains no reset he-
lix.

PROOF. Similar to the proof of Theorem 5.7 in [4]. The whole
proof is given in Appendix A.

We call v-graph of the reset DAGD, any subgraph D′ of D consist-
ing of a pair of reset paths [(p0, t0), . . . , (px, tx); (q0, t

′
0), . . . , (qy, t

′
y)]

such that (p0, t0) = (q0, t
′
0), p0 6= px, px = qy , and tx 6= t′y . The size

of the v-graph D′ is equal to x + y. Note that, by definition, the size
of any v-graph is at least 2. We call small-v-graph any v-graph of size
2, i.e. a v-graph of the form [(p, t), (q, t′);(p, t), (q, t′′)]. An example
of v-graph of size 5 is given in Figure 4a: [(p0, t0), (p1, t1), (p2, t2);
(p0, t0), (p3, t3), (p4, t4), (p2, t5)]. An example of small-v-graph is
given in Figure 4b: [(p0, t0), (p1, t1); (p0, t0), (p1, t2)].

(p0,t0)
(p1,t1)

(p2,t2)

(p3,t3)
(p4,t4)

r
r

r

r

(p2,t5)r

(a) A v-graph of size 5

(p0,t0)

(p1,t1)

(p1,t2)

r

r

(b) A small v-graph

Figure 4: V-graphs

LEMMA 3. A reset DAG is without small-v-graph.

PROOF. Consider the execution γ0, . . . , γi, . . . , γk of SSAU and
its associated reset DAGD. Assume thatD contains a small-v-graph
[(p, t0), (q, t1);(p, t0), (q, t2)]. Without loss of generality, assume that
t2 < t1. As (p, t0)

r
 (q, t1), ∀t ∈ [t0..t1 − 1], q.r /∈ initϕ in γt.

Now, (p, t0)
r
 (q, t2) implies that q.r = −α ∈ initϕ in γt2 . So, as

t2 ∈ [t0..t1 − 1], we have a contradiction.

4.2 Bound on the Number of Resets
We now show that if α ≥ TG − 2, any process resets at most n times
during any execution (Corollary 3). The main idea is to show that if
α ≥ TG − 2, any process resets at most as many time as there are
initial resets (Corollary 2), the number of these latter being bounded
by n (Lemma 1). To see this, we study the structure of the reset DAG.
We already know that it contains no stutter (Lemma 2) and no small
v-graph (Lemma 3). Then, we show that if α ≥ TG − 2, it contains
no reset helix, thank to a previous theorem (Theorem 1) and Theorem
2. Finally, we show in Lemma 7, that if α ≥ TG − 2, the reset DAG
contains no v-graph.

The following technical lemma is proven in [3]. However, we will
mainly used its corollary given hereafter.

LEMMA 4. Let (p0, t0), (p1, t1), . . . , (pk, tk) be a path in the reset
DAG of execution γ0, . . . γi, . . . of SSAU , where k is a positive in-
teger. Then, ∀t ∈]tk−1..tk]: p0.r ∈ {ϕj(−α), j ∈ [0..k − 1]} in
configuration γt.

COROLLARY 1. Let (p0, t0), (p1, t1), . . . , (pk, tk) be a path in the
reset DAG of execution γ0, . . . γi, . . . of SSAU , where k is a posi-
tive integer. Then, ∀t ∈ [t0..tk]: p0.r ∈ {ϕj(−α), j ∈ [0..k − 1]} in
configuration γt.

PROOF. First, as p0 resets at time t0, we have p0.r = −α =
ϕ0(−α) in γt0 . Then, the corollary follows by applying Lemma 4
on every reset path (p0, t0), (p1, t1), . . . , (pi, ti) with i ∈ [1..k].

THEOREM 2. If α ≥ TG−2, every reset DAG is hole-transitive.

PROOF. Similar to the proof of Theorem 5.10 in [4]. The whole
proof is given in Appendix B.

LEMMA 5. Let γ0, . . . , γi, . . . , γk be an execution of SSAU and
D be its associated reset DAG. If (p0, t0)

r
 (p2, t2) and (p1, t1)

exists in D with p1 ∈ N eigp2 and t1 ∈ [t0..t2 − 1], then (p1, t1)
r

(p2, t2) in D.

PROOF. First, by hypothesis: (1) t1 < t2 and p1 ∈ N eigp2 . Then,
(p0, t0)

r
 (p2, t2) implies that ∀t ∈ [t0..t2 − 1], p2.r /∈ initϕ in γt.

So, as t1 ∈ [t0..t2 − 1], we have: (2) ∀t ∈ [t1..t2 − 1], p2.r /∈ initϕ
in γt. Finally, p2 resets in γt2 . So: (3) p2.r = −α in γt2 . Hence,
(p1, t1)

r
 (p2, t2) in D.

LEMMA 6. Let (p0, t0), (p1, t1), . . . , (pk, tk) be a path in the reset
DAG of execution γ0, . . . γi, . . . of SSAU , where k is an integer.
Let tz ≥ tk. Assume that ∀t ∈ [t0..tz], βt <init 0, where βt
is the value of p0.r in γt. Then, ∀t ∈ [tk..tz], if ϕk(βt) ≤init 0,
pk.r ≤init ϕ

k(βt) in γt.

PROOF. We prove this lemma by induction on the length of the
path. If i = 0, the lemma holds by definition. Assume that the lemma
is true for every path of length less or equal to i.

Consider a path (p0, t0), (p1, t1), . . . , (pi, ti), (pi+1, ti+1). Assume
that tz ≥ ti+1 and ∀t ∈ [t0..tz], βt <init 0.

By definition, pi.r = −α in γti and ∀t ∈ [ti..ti+1 − 1], pi+1.r /∈
initϕ. Consequently, ∀t ∈ [ti..ti+1], pi.r = −α (pi cannot exe-
cute CA because of the value of pi+1.r). Hence, pi.r = pi+1.r =
−α in γti+1 , and from that point, (*) while pi.r ∈ init?ϕ, we have
pi+1.r ≤init ϕ(pi.r) (see the guard of action CA). So, ∀t ∈ [ti..tz],
if ϕi+1(βt) ≤init 0, then ϕi(βt) <init 0 and, by induction hypothe-
sis, pi.r ≤init ϕ

i(βt) in γt and by (*) pi+1.r ≤init ϕ(ϕi(βt)), i.e.,
pi+1.r ≤init ϕ

i+1(βt) ≤init 0, and we are done.

LEMMA 7. If α≥TG−2, every reset DAG contains no v-graph.

PROOF. Assume that α ≥ TG − 2 and consider the execution
γ0, . . . , γi, . . . , γk of SSAU and its associated reset DAG D. As-
sume, by contradiction, that D contains a v-graph. Consider a v-graph
of D, V = [(p0, t0), . . . , (px, tx); (q0, t

′
0), . . . , (qy, t

′
y)] of minimum

size. Without loss of generality, let tx > t′y .

First, ∀i ∈ [0..x − 1], ∀j ∈ [i + 1..x], pi 6= pj because otherwise
D would contain a reset helix or a stutter, a contradiction (by Theo-
rem 1 and 2, D contains no helix and by Lemma 2, D contains no
stutter). Similarly, ∀i ∈ [0..y − 1], ∀j ∈ [i + 1..y], qi 6= qj . Fi-
nally, ∀i ∈ [1..x − 1],∀j ∈ [1..y − 1], pi 6= qj because otherwise
D would contain a v-graph of size strictly smaller than V , a contra-
diction. Hence, p0, . . . , px, qy−1, . . . , q0 is an elementary cycle of G,
and consider the two following cases:
(1) p0, . . . , px, qy−1, . . . q0 is a hole. Then, x + y ≤ TG and, by
definition, x > 0 and y > 0. Consider now, the two following cases:

(a) t′y−1 ≥ tx−1. So, as t′y < tx, t′y−1 ∈ [tx−1..tx−1]. Now, qy =

px. So, qy−1 ∈ N eigpx and, by Lemma 5, (px−1, tx−1)
r

(px, tx) implies that (qy−1, t
′
y−1)

r
 (px, tx), i.e., (qy−1, t

′
y−1)

r
 (qy, tx). Now, tx 6= t′y . So, [(qy−1, t

′
y−1), (qy, tx); (qy−1,

t′y−1), (qy, t
′
y)] is a small-v-graph, a contradiction to Lemma 3.

(b) t′y−1 < tx−1.

If t′y > tx−1, then tx−1 ∈]t′y−1..t
′
y − 1]. Now, qy = px. So,

px−1 ∈ N eigqy and, by Lemma 5, (qy−1, t
′
y−1)

r
 (qy, t

′
y)

implies that (px−1, tx−1)
r
 (qy, t

′
y), i.e., (px−1, tx−1)

r

(px, t
′
y). Now tx 6= t′y . So, [(px−1, tx−1), (px, tx); (px−1,

tx−1), (px, t
′
y)] is a small-v-graph in D. This contradicts Lem-

ma 3.

So, t′y ≤ tx−1. If x = 1, then tx−1 = t0 = t′0 and t′y ≤ t′0, a
contradiction (by definition of the reset generation, t′y > t′0). So,
x ≥ 2. Then, by applying Corollary 1 on (p0, t0), (p1, t1), . . . ,
(px−1, tx−1), we obtain ∀t ∈ [t0..tx−1], p0.r ∈ {ϕj(−α), j ∈
[0..x−2]} in γt. Now x−2 < TG−2 ≤ α. So, ∀t ∈ [t0..tx−1],
p0.r <init 0 in γt. Moreover, x + y − 2 ≤ TG − 2 ≤ α and
t′y ∈ [t0..tx−1]. So, by Lemma 6, qy.r ≤init 0 in γtx−1 . As
qy = px, px.r ≤init 0 in γtx−1 , i.e., px.r ∈ initϕ in γtx−1 .
Now, this contradicts the fact that (px−1, tx−1)

r
 (px, tx).

(2) p0, . . . , px, qy−1, . . . q0 is not a hole. There are three cases by
Property 1:

(a) ∃i ∈ [0..x−1], ∃j ∈ [i..x] such that pi, . . . , pj , pi is a hole. As
D is hole-transitive (Theorem 2), (pi, ti)

r
 (pj , tj), and con-

sequently, [(p0, t0), . . . , (pi, ti), (pj , tj) . . . , (px, tx); (q0, t
′
0),

. . . , (qy, t
′
y)] is a v-graph of size strictly smaller than V , a con-

tradiction.

(b) ∃i ∈ [0..y − 1], ∃j ∈ [i..y] such that qi, . . . , qj , qi is a hole.
Similarly to the previous case, we obtain a contradiction.

(c) ∃i ∈ [1..x− 1], ∃j ∈ [1..y − 1] such that pi, . . . , px, qy−1, . . . ,
qj , pi is a hole. Let consider the following three cases:

(i) ti < t′j . Then, t′j ∈ [ti + 1..tx]. From the hypothesis,
we know that qj and pi are neighbors. Now, (x − i) +
(y − j) + 1 ≤ TG and, as y − j ≥ 1, x − i ≤ TG − 2.
So, by applying Corollary 1 on (pi, ti), . . . , (px, tx), we
obtain ∀t ∈ [ti..tx], pi.r ∈ {ϕz(−α), z ∈ [0..x − i −
1]} ⊆ init?ϕ in γt. Let β be the value of qj .r in γt′j−1. By
definition, β /∈ initϕ. Moreover, qj cannot execute action
NA during [ti..t

′
j − 1] so that qj .r takes value β because

of pi, so ∀t ∈ [ti..t
′
j−1], qj .r = β /∈ initϕ in γt. Finally,

qj .r = −α in t′j . So, (pi, ti)
r
 (qj , t

′
j), and consequently

[(pi, ti) . . . , (px, tx);(pi, ti)(qj , t′j), . . . , (qy, t
′
y)] is a v-

graph of size strictly smaller than V , a contradiction.

(ii) t′j < ti. Similarly to the previous case, we obtain a con-
tradiction.

(iii) ti = t′j . Then, pi.r = qj .r = −α in γti , and from that
point, we have:

(*) while pi.r ∈ init?ϕ, qj .r ≤init ϕ(pi.r) because pi
and qj are neighbors (see the guard of action CA).

Moreover, we have:

(**) (x − i) + (y − j) + 1 ≤ TG with (x − i) ≥ 1 and
(y − j) ≥ 1.

Then, as (px−1, tx−1)
r
 (px, tx) and px = qy , we have

∀t ∈ [tx−1..tx−1] : qy.r /∈ initϕ in γt, which in particu-
lar means that qy.r 6= −α in γt. Now, qy resets at time t′y
with t′y < tx (by hypothesis). So, qy.r = −α in γt′y with
t′y < tx, and consequently:

(***) t′y < tx−1.

Then, by applying Corollary 1 on (pi, ti) . . . , (px−1, tx−1),
we obtain ∀t ∈ [ti..tx−1] : pi.r ∈ {ϕz(−α), z ∈ [0..x−
2 − i] in configuration γt. By (**), x − 2 − i < TG − 2
and, consequently ∀t ∈ [ti..tx−1] : pi.r ∈ init?ϕ in con-
figuration γt. Then, by (*) ∀t ∈ [ti..tx−1] : qj .r ∈
{ϕz(−α), z ∈ [0..x − 1 − i]} in configuration γt. By

(**) again, x − 1 − i < TG − 2 and, consequently ∀t ∈
[ti..tx−1] : qj .r ∈ init?ϕ in configuration γt. By (**)
again, x − 1 − i + (y − j) ≤ TG − 2 and, as ti = t′j
(by hypothesis) and t′y < tx−1 (by (***)), we can ap-
ply Lemma 6, ∀t ∈ [t′y..tx−1] : qy.r ∈ {ϕz(−α), z ∈
[0..x − 1 − i + (y − j)] in configuration γt, i.e., ∀t ∈
[t′y..tx−1] : qy.r ∈ initϕ. In particular, qy.r ∈ initϕ in
γtx−1 . Now, as (px−1, tx−1)

r
 (px, tx) and px = qy ,

we should have, in particular, qy.r /∈ initϕ in γtx−1 , a
contradiction.

COROLLARY 2. If α ≥ TG−2, then for every reset DAGD, for
every initial reset (p, t) in D, and for every process q, there exists at
most one non-negative integer t′ such that there is a reset path from
(p, t) to (q, t′) in D.

PROOF. This a consequence of the fact that D contains no helix
(by Theorem 2, D is hole-transitive, and so contains no reset helix by
Theorem 1), no stutter (Lemma 2), and no v-graph (Lemma 7).

COROLLARY 3. If α ≥ TG−2, every process executes ActionRA
at most n times.

PROOF. By Corollary 2, a process executes Action RA at most as
many times as there are initial resets. Now, there are at most n initial
resets by Lemma 1.

4.3 Stabilization Time in Steps
We now bound the number of Actions CA and NA each process ex-
ecutes before the system reaches a legitimate configuration. These
bounds are related to the number of resets the process executes, as
shown below.

COROLLARY 4. If α ≥ TG−2, every process executes ActionCA
at most (n+ 1)α times.

PROOF. Consider any process p. If p.r <init 0 initially, then p
executes CA at most α times so that p.r becomes equal to 0. Then,
p executes CA α times after each reset. Hence, the corollary follows
from Corollary 3.

Let γ0, . . . , γk be an execution of Algorithm SSAU . We said that
a process p recovers at time t if and only if p.r ∈ init?ϕ in γt−1 and
p.r ∈ stabϕ in γt. Clearly, any process that recovers at time t executed
CA during γt−1 → γt to switches p.r from −1 to 0.

LEMMA 8. Let γ0, . . . , γk be an execution of Algorithm SSAU .
∀i, j ∈ [0..k], with j > i, if γj is illegitimate and all processes neither
reset nor recover during γi, . . . , γj , then at most (n − 1)2D Actions
NA are executed during γi, . . . , γj .

PROOF. First, ∀t ∈ [i..j], γt is illegitimate. Then, let Correct
be the set of processes p, such that AllCorrectp = true in γi. Let
Incorrect = V \ Correct. Clearly, these two sets are invariant dur-
ing γi, . . . , γj and only processes in Correct can execute Action NA
during γi, . . . , γj . Note that |Correct| ≤ n− 1. Let p be a process in
Correct. LetDistIncorrect(p) be the distance between p and to the

nearest element of Incorrect. To prove the lemma, we show by in-
duction on DistIncorrect(p) that p can execute Action NA at most
2×DistIncorrect(p) times during γi, . . . , γj .

Let p be a process of Correct such that DistIncorrect(p) = 1.
Then, a neighbor q of p is in Incorrect and either q.r is always
(strictly) negative during γi, . . . , γj or q.r is set to some fixed value
β ∈ stabϕ (and Action RA is enabled at q) during γi, . . . , γj . In
the former case, p cannot execute NA during γi, . . . , γj . In the latter
case, p satisfies AllCorrectp, dK(p.r, q.r) ≤ 1 and consequently, p
can execute NA at most 2 times during γi, . . . , γj .

Assume now that any process p such that DistIncorrect(p) = k can
execute NA at most 2k times during γi, . . . , γj .

Let q be a process such that DistIncorrect(p) = k + 1. Then, there
is a neighbor q′ of q such that DistIncorrect(q) = k and, by induc-
tion hypothesis, q′ can executeNA at most 2k times during γi, . . . , γj .
Now, through out γi, . . . , γj , p always satisfiesAllCorrectp and con-
sequently dK(q.r, q′.r) ≤ 1 always. So, q can execute only 2 times
more than q′, i.e., 2k + 2 = 2(k + 1), and the induction holds.

A process p can recover only once per reset and one more time if p.r ∈
init?ϕ initially. Hence, following Corollary 3 and Lemma 8, we have
the next corollary:

COROLLARY 5. If α ≥ TG − 2, at most (n3 − n)2D Actions
NA are executed before the system reaches a legitimate configuration,
where every process p satisfies AllCorrectp.

The next theorem follows from Corollaries 3-5:

THEOREM 3. If α ≥ TG−2, Algorithm SSAU reaches in at most
2Dn3+(α+1)n2+(α−2D)n steps a legitimate configuration, where
every process p satisfies AllCorrectp.

COROLLARY 6. If α ≥ TG − 2 and K > CG, Algorithm SSAU
is a self-stabilizing unison algorithm under an unfair daemon and its
stabilization time is at most 2Dn3 + (α+ 1)n2 + (α− 2D)n steps.

5. CONCLUSION
SSAU is both simple (one variable and three actions per process) and
efficient. The analysis of its stabilization time in steps allows a better
understanding of its internal mechanics. More precisely, we showed
that the stabilization time of SSAU is at most 2Dn3 + (α + 1)n2 +
(α− 2D)n steps, provided that α ≥ TG− 2 and K > CG. Hence, by
choosing α = O(n), α ≥ n−2, K = O(n), andK ≥ n+ 1, SSAU
self-stabilizes in O(Dn3) steps in any arbitrary network. An immedi-
ate perspective of this work would be to see if the bounds can be re-
fined, or otherwise exhibiting a worst case that matches these bounds.
Finally, it is worth investigating if it is possible to implement a self-
stabilizing unison in our settings (i.e., asynchronous and anonymous
environment, bounded memory per process, and arbitrary topology),
whose stabilization time is in O(D) rounds.

Acknowledgement. We are grateful to Antoine Gerbaud and anony-
mous reviewers for their useful comments and advice.

6. REFERENCES
[1] B. Awerbuch. Complexity of network synchronization. J. ACM,

32(4):804–823, 1985.

[2] J. Beauquier, M. Gradinariu, and C. Johnen. Cross-over
composition - enforcement of fairness under unfair adversary. In
WSS, pages 19–34, 2001.

[3] C. Boulinier. L’Unisson. PhD thesis, Université de Picardie Jules
Verne, Amiens, October 2007. Dissertation in french.

[4] C. Boulinier, F. Petit, and V. Villain. When graph theory helps
self-stabilization. In PODC, pages 150–159, 2004.

[5] J.-M. Couvreur, N. Francez, and M. G. Gouda. Asynchronous
unison (extended abstract). In ICDCS, pages 486–493, 1992.

[6] E. W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Commun. ACM, 17:643–644, 1974.

[7] S. Dolev. Self-stabilization. MIT Press, 2000.
[8] A. Kosowski and L. Kuszner. Energy optimisation in resilient

self-stabilizing processes. In symposium on Parallel Computing
in Electrical Engineering, pages 105–110, 2006.

APPENDIX
A. PROOF OF THEOREM 1
Assume, by contradiction, the existence of a reset helix on a hole-
transitive reset DAG.

Consider a reset helix (p0, t0), (p1, t1), . . . , (pk, tk) of minimum length.
By definition, p0, p1, . . . , pk is cycle of G (in particular, p0 = pk).
Consider the two following cases:

1. p0, p1, . . . , pk is not a hole. Then, there exists i, j ∈ [0..k], such
that i < j − 1 and pi, pi+1, . . . , pj , pi is a hole of G by Prop-
erty 1. By hole-transitivity, (pi, ti)

r
 (pj , tj). Consequently,

(p0, t0), (p1, t1), . . . , (pi, ti)(pj , tj), . . . , (pk, tk) is a reset he-
lix of length strictly smaller than (p0, t0), (p1, t1), . . . , (pk, tk),
a contradiction.

2. p0, p1, . . . , pk is a hole. By hole-transitivity, (p0, t0)
r
 (pk−1,

tk−1). Now, by definition of the reset helix, (pk−1, tk−1)
r

(pk, tk) and pk = p0. Hence, there exists a stutter: (p0, t0),
(pk−1, tk−1), (p0, tk), which contradicts Lemma 2.

So, every hole-transitive reset DAG contains no reset helix. 2

B. PROOF OF THEOREM 2
If G is a tree, then by definition, any reset DAG is hole-transitive.

So, assume that G is not a tree. Let (p0, t0), (p1, t1), . . . , (pk, tk) be
a path in the reset DAG of execution γ0, . . . γi, . . . of SSAU such
that p0, p1, . . . , pk, p0 is a hole of G. First, by definition, we have:

(1) t0 < tk and pk ∈ N eigp0 .

Then, let β be the value of pk.r in configuration γtk−1 . Since, (pk−1,

tk−1)
r
 (pk, tk), ∀t ∈ [tk−1..tk − 1], pk.r /∈ initϕ in γt, and so

β > 0.

Now, since k < TG and k ≥ 2, we have: 0 ≤ k − 2 < TG − 2.
Then, by applying Corollary 1 on (p0, t0), (p1, t1), . . . , (pk−1, tk−1),
we obtain ∀t ∈ [t0..tk−1], p0.r ∈ {ϕj(−α), j ∈ [0..k − 2]} ⊆ init?ϕ
in γt and consequently pk, which is neighbor of p0, cannot execute
NA during that period to take value β. So, ∀t ∈ [t0..tk−1], pk.r =
β /∈ initϕ in γt. So,

(2) ∀t ∈ [t0..tk − 1], pk.r /∈ initϕ in γt.

Finally, by hypothesis:

(3) pk resets at time tk, so pk.r = −α in γtk .

Hence, (p0, t0)
r
 (pk, tk), which implies that G is hole-transitive.

2

