
Concurrency in Snap-Stabilizing Local Resource Allocation*

Karine Altisen Stéphane Devismes Anaïs Durand

January 24, 2021

Abstract
In distributed systems, resource allocation consists in managing fair access of a large number of processes to a

typically small number of reusable resources. As soon as the number of available resources is greater than one, the
efficiency in concurrent accesses becomes an important issue, as a crucial goal is to maximize the utilization rate
of resources. In this paper, we tackle the concurrency issue in resource allocation problems. We first characterize
the maximal level of concurrency we can obtain in such problems by proposing the notion of maximal concurrency.
Then, we focus on Local Resource Allocation problems (LRA). Our results are both negative and positive. On the
negative side, we show that there is a wide class of instances of LRA for which it is impossible to obtain maximal
concurrency without compromising the fairness. On the positive side, we propose a snap-stabilizing LRA algorithm
which achieves a high (but not maximal) level of concurrency, called here strong concurrency.

Keywords: Distributed algorithms, snap-stabilization, self-stabilization, local resource allocation.

1 Introduction
Mutual exclusion [1, 2] is a fundamental resource allocation problem, which consists in managing fair access of all
(requesting) processes to a unique non-shareable reusable resource. This problem is inherently sequential, as no two
processes should access this resource concurrently. There are many other resource allocation problems which, in
contrast, allow several resources to be accessed simultaneously. In those problems, parallelism on access to resources
may be restricted by some of the following conditions:

1. The maximum number of resources that can be used concurrently, e.g., the `-exclusion problem [3] is a gen-
eralization of the mutual exclusion problem which allows use of ` identical copies of a non-shareable reusable
resource among all processes, instead of only one, as standard mutual exclusion.

2. The maximum number of resources a process can use simultaneously, e.g., the k-out-of-`-exclusion problem [4]
is a generalization of `-exclusion where a process can request for up to k resources simultaneously.

3. Some topological constraints, e.g., in the dining philosophers problem [5], two neighbors cannot use their com-
mon resource simultaneously.

For efficiency purposes, algorithms solving such problems must be as parallel as possible. As a consequence, these
algorithms should be, in particular, evaluated at the light of the level of concurrency they permit, and this level of
concurrency should be captured by a dedicated property. However, most of the resource allocation problems are
specified in terms of safety and liveness properties only, i.e., most of them include no property addressing concurrency
performances, e.g., [6, 7, 8, 9, 10].

Now, as quoted by Fischer et al. [3], specifying resource allocation problems without including a property of
concurrency may lead to degenerated solutions, e.g., any mutual exclusion algorithm realizes safety and fairness
of `-exclusion. To address this issue, Fischer et al. [3] proposed an ad hoc property to capture concurrency in `-
exclusion. This property is called avoiding `-deadlock and is informally defined as follows: “if fewer than ` processes
are executing their critical section,1 then it is possible for another process to enter its critical section, even though

*This work has been partially supported by the ANR projects DESCARTES (ANR-16-CE40-0023) and ESTATE (ANR-16-CE25-0009).
1The critical section is the code that manages the access of a process to its allocated resources.

1

no process leaves its critical section in the meantime.” Some other properties, inspired from the avoiding `-deadlock
property, have been proposed to capture the level of concurrency in other resource allocation problems, e.g., k-out-
of-`-exclusion [11] and committee coordination [12]. However, until now, all existing properties of concurrency are
specific to a particular problem, e.g., the avoiding `-deadlock property cannot be applied to committee coordination.

In this paper, we first propose to generalize the definition of avoiding `-deadlock to any resource allocation prob-
lems. We call this new property the maximal concurrency. Then, we consider the maximal concurrency in the context
of the Local Resource Allocation (LRA) problem, defined by Cantarell et al. [7]. LRA is a generalization of resource
allocation problems in which resources are shared among neighboring processes. Dining philosophers, local readers-
writers, local mutual exclusion, and local group mutual exclusion are particular instances of LRA. In contrast, local
`-exclusion and local k-out-of-`-exclusion cannot be expressed with LRA although they also deal with neighboring
resource sharing.

We show that maximal concurrency cannot be achieved in a wide class of instances of the LRA problem. This
impossibility result is mainly due to the fact that fairness of LRA and maximal concurrency are incompatible prop-
erties: it is impossible to implement an algorithm achieving both properties together. As unfair resource allocation
algorithms are clearly unpractical, we propose to weaken the property of maximal concurrency. We call partial con-
currency this weaker version of maximal concurrency. The goal of partial concurrency is to capture the maximal level
of concurrency that can be obtained in any instance of the LRA problem without compromising fairness.

We propose an LRA algorithm achieving a strong form of partial concurrency in bidirectional identified networks
of arbitrary topology. As additional feature, this algorithm is snap-stabilizing [13]. Snap-stabilization is a versa-
tile property which enables a distributed system to efficiently withstand transient faults. Informally, after transient
faults cease, a snap-stabilizing algorithm immediately resumes correct behavior, without external intervention. More
precisely, a snap-stabilizing algorithm guarantees that any computation started after the faults cease will operate cor-
rectly. However, we have no guarantees for those executed all or a part during faults. By definition, snap-stabilization
is a strengthened form of self-stabilization [14]: after transient faults cease, a self-stabilizing algorithm eventually
resume correct behavior, without external intervention.

There exist many algorithms for particular instances of the LRA problem. Many of these solutions have been
proven to be self-stabilizing, e.g., [6, 7, 8, 9, 10]. In [6], Boulinier et al. propose a self-stabilizing unison algo-
rithm which allows to solve local mutual exclusion, local group mutual exclusion, and local readers-writers problem.
In [10], Nesterenko and Arora propose self-stabilizing algorithms for the solving the local mutual exclusion, dining
philosophers, and drinking philosophers problems. There are also many self-stabilizing algorithms for local mutual
exclusion [8, 9]. In [7], Cantarell et al. generalize the above problems by introducing the LRA problem. They also
propose a self-stabilizing algorithm for that problem. To the best of our knowledge, no other paper deals with the gen-
eral instance of LRA and no paper proposes snap-stabilizing solution for any particular instance of LRA. Moreover,
none of the aforementioned papers (especially [7]) consider the maximal concurrency issue. Finally, note that there
exist weaker versions of the LRA problem, such as the (local) conflict managers proposed in [15] where the fairness
is replaced by a progress property.

Roadmap In the next section, we define the computation model and the specification of the LRA problem. In
Section 3, we define the property of maximal concurrency, show the impossibility result, and then circumvent this
impossibility by introducing the partial concurrency. Our algorithm is presented in Section 6. We prove its correctness
in Section 7 and its partial concurrency in Section 8. We conclude in Section 9.

2 Computational Model and Specifications

2.1 Distributed Systems
We consider distributed systems made of n processes. A process p can (directly) communicate with a subset Np
of other processes, called its neighbors. These communications are assumed to be bidirectional, i.e., for any two
processes p and q, q ∈ Np if and only if p ∈ Nq . Hence, the topology of the network can be modeled by a simple
undirected connected graphG = (V,E), where V is the set of processes and E is the set of edges representing (direct)

2

communication relations. Moreover, we assume that each process has a unique ID encoded as a natural integer. By
abuse of notation, we identify the process with its own ID, whenever convenient.

2.2 Locally Shared Memory Model
We assume the locally shared memory model [14] in which processes communicate using a finite number of locally
shared registers, called variables. Each process can read its own variables and those of its neighbors, but can only
write to its own variables. The state of a process is the vector of values of all its variables. A configuration γ of the
system is the vector consisting in one state of each process. We denote by C the set of possible configurations and γ(p)
the state of process p in configuration γ.

A distributed algorithm consists of one program per process. The program of a process p is composed of a finite
number of actions, where each action has the following form:

(〈priority〉) 〈label〉 : 〈guard〉 → 〈statement〉

The labels are used to identify actions. The guard of an action in the program of process p is a Boolean expression
involving the variables of p and its neighbors. Priorities are used to simplify the guards of the actions. The actual
guard of an action “(j) L : G → S” at p is the conjunction of G and the negation of the disjunction of all guards
of actions at p with priority i < j. An action of priority i is said to be of higher priority than any action of priority
j > i. If the actual guard of some action evaluates to true, then the action is said to be enabled at p. By definition, a
process p is not enabled to execute any (lower priority) action if it is enabled to execute an action of higher priority. If
at least one action is enabled at p, p is also said to be enabled. We denote by Enabled(γ) the set of processes enabled
in configuration γ. The statement of an action is a sequence of assignments on the variables of p. An action can be
executed only if it is enabled. In this case, the execution of the action consists in executing its statement.

The asynchronism of the system is materialized by an adversary, called the daemon. In a configuration γ, if there is
at least one enabled process (i.e., Enabled(γ) 6= ∅), then the daemon selects a non empty subset S of Enabled(γ) to
perform an (atomic) step: Each process of S atomically executes one of its enabled action in γ, leading the system to
a new configuration γ′. We denote by 7→ the relation between configurations such that γ 7→ γ′ if and only if γ′ can be
reached from γ in one (atomic) step. An execution is a maximal sequence of configurations γ0γ1 . . . such that ∀i > 0,
γi−1 7→ γi. The term “maximal” means that the execution is either infinite, or ends at a terminal configuration γ in
which Enabled(γ) is empty.

In this paper, we assume a distributed weakly fair daemon. “Distributed” means that while the configuration is not
terminal, the daemon should select at least one enabled process, maybe more. “Weakly fair” means that there is no
infinite suffix of execution in which a process p is continuously enabled without ever being selected by the daemon.

To measure the time complexity of an algorithm, we use the notion of round [16]. This latter allows to highlight
the execution time according to the speed of the slowest process. The first round of an execution e = (γi)i≥0 is the
minimal prefix e′ of e such that every enabled process in γ0 either executes an action or is neutralized (see below). Let
γj be the last configuration of e′, the second round of e is the first round of e′′ = (γi)i≥j , and so forth.

Neutralized means that a process p is enabled in a configuration γi and is not enabled in γi+1 but does not execute
any action during the step γi 7→ γi+1.

2.3 Snap-Stabilizing Local Resource Allocation
In resource allocation problems, e.g., mutual exclusion, `-exclusion, k-out-of-`-exclusion, a typically small amount
of reusable resources is shared among a large number of processes. A process may spontaneously request for one
or several resources, depending on the considered problem. When granted, the access to the requested resource(s)
is done using a special section of code, called critical section. The process can only hold resources for a finite
time: eventually, it should release these resources to the system, in order to make them available for other requesting
processes. In particular, this means that the critical section is always assumed to be finite. In the following, we denote
byRp the set of resources that can be accessed by a process p.

Note that the term "resource" is a used here in a broad sense. It actually encompasses various realities, depending
on the context. In some applications, like in [15], the resource can be “virtual”, while in some other the resource is

3

a physical device. Furthermore, in some case, a resource actually represents a pool of resources of the same type. In
this latter case, the pool of resources consists of multiple anonymous resources.

2.3.1 Local Resource Allocation

In the Local Resource Allocation (LRA) problem [7] each process requests at most one resource at a time. The
problem is based on the notion of compatibility: two resources X and Y are said to be compatible if two neighbors
can concurrently access them. Otherwise, X and Y are said to be conflicting. In the following, we denote by X
 Y
(resp. X 6
 Y) the fact that X and Y are compatible (resp. conflicting). Notice that
 is a symmetric relation.

Using the compatibility relation, the local resource allocation problem consists in ensuring that every process
which requires a resource r eventually accesses r while no other conflicting resource is currently used by a neighbor.
In contrast, there is no restriction for concurrently allocating the same resource to any number of processes that are
not neighbors.

Notice that the case where there are no conflicting resources is trivial: a process can always use a resource whatever
the state of its neighbors. So, from now on, we will always assume that there exists at least one conflict, i.e., there are
(at least) two neighbors p, q and two resources X , Y such that X ∈ Rp, Y ∈ Rq and X 6
 Y . This also means that
any network considered from now on contains at least two processes.

Specifying the relation
, it is possible to define some classic resource allocation problems in which the resources
are shared among neighboring processes.

Example 1: Local Mutual Exclusion In the local mutual exclusion problem, no two neighbors can concurrently
access the unique resource. So there is only one resource X common to all processes and X 6
 X .

Example 2: Local Readers-Writers In the local readers-writers problem, the processes can access a file in two
different modes: a read access (the process is said to be a reader) or a write access (the process is said to be a writer).
A writer must access the file in local mutual exclusion, while several reading neighbors can concurrently access the
file. We represent these two access modes by two resources at every process: R for a “read access” and W for a “write
access.” Then, R
 R, but W 6
 R and W 6
W .

Example 3: Local Group Mutual Exclusion In the local group mutual exclusion problem, there are several re-
sources r0, r1, . . . , rk shared between the processes. Two neighbors can access concurrently the same resource but
cannot access different resources at the same time. Then:

∀i ∈ {0, . . . , k},∀j ∈ {0, . . . , k},

{
ri
 rj if i = j

ri 6
 rj otherwise

2.3.2 Snap-Stabilization

LetA be a distributed algorithm. A specification SP is a predicate over all executions ofA. In [13], snap-stabilization
has been defined as follows: A is snap-stabilizing w.r.t. SP if starting from any arbitrary configuration, all its execu-
tions satisfy SP .

Of course, not all specifications — in particular their safety part — can be satisfied when considering a system
which can start from an arbitrary configuration. Actually, snap-stabilization’s notion of safety is user-centric: when the
user initiates a computation, then the computed result should be correct. So, we express a problem using a guaranteed
service specification [17]. Such a specification consists in specifying three properties related to the computation start,
computation end, and correctness of the delivered result. (In the context of LRA, this latter property will be referred
to as “resource conflict freedom.”)

To formally define the guaranteed service specification of the local resource allocation problem, we need to intro-
duce the following four predicates, where p is a process, r is a resource, and e = (γi)i≥0 is an execution:

• Request(γi, p, r) means that an application at p requests for r in configuration γi. We assume that ifRequest(γi, p, r)
holds, it continuously holds until (at least) p accesses r.

4

• Start(γi, γi+1, p, r) means that p starts a computation to access r in γi 7→ γi+1.

• Result(γi . . . γj , p, r) means that p obtains access to r in γi−1 7→ γi and p ends the computation in γj 7→ γj+1.
Notably, p released r between γi and γj .

• NoConflict(γi, p) means that, in γi, if a resource is allocated to p, then none of its neighbors is using a
conflicting resource.

These predicates will be instantiated with the variables of the local resource allocation algorithm. Below, we define
the guaranteed service specification of LRA.

Specification 1 (Local Resource Allocation). Let A be an algorithm. An execution e = (γi)i≥0 of A satisfies the
guaranteed service specification of LRA, noted SPLRA, if the three following properties hold:

Resource Conflict Freedom: If a process p starts a computation to access a resource, then there is no conflict involv-
ing p during the computation:

∀k ≥ 0,∀k′ > k, ∀p ∈ V,∀r ∈ Rp,
[
Result(γk . . . γk′ , p, r) ∧

(
∃l < k, Start(γl, γl+1, p, r)

)]
⇒
[
∀i ∈ {k, . . . , k′}, NoConflict(γi, p)

]
Computation Start: If an application at process p requests resource r, then p eventually starts a computation to obtain

r:

∀k ≥ 0,∀p ∈ V,∀r ∈ Rp,
[
∃l > k,Request(γl, p, r)⇒ Start(γl, γl+1, p, r)

]
Computation End: If process p starts a computation to obtain resource r, the computation eventually ends (in par-

ticular, p obtained r during the computation):

∀k ≥ 0,∀p ∈ V,∀r ∈ Rp, Start(γk, γk+1, p, r)⇒
[
∃l > k,∃l′ > l,Result(γl . . . γl′ , p, r)

]
Thus, an algorithmA is snap-stabilizing w.r.t. SPLRA (i.e., snap-stabilizing for LRA) if starting from any arbitrary

configuration, all its executions satisfy SPLRA.2

3 Maximal Concurrency
In [3], authors propose a concurrency property ad hoc to `-exclusion. We now define the maximal concurrency, which
generalizes the definition of [3] to any resource allocation problem.

3.1 Definition
Informally, maximal concurrency can be defined as follows: if there are processes that can access resources they are
requesting without violating the safety of the considered resource allocation problem, then at least one of them should
eventually satisfies its request, even if no process releases the resource(s) it holds meanwhile.

Let PCS(γ) be the set of processes that are executing their critical section in γ, i.e., the set of processes holding
resources in γ. Let PReq(γ) be the set of requesting processes that are not in critical section in γ. Let PFree(γ) ⊆
PReq(γ) be the set of requesting processes that can access their requested resource(s) in γ without violating the safety
of the considered resource allocation problem. Let

continuousCS(γi . . . γj) ≡ ∀k ∈ {i+ 1, . . . , j}, PCS(γk−1) ⊆ PCS(γk)

noReq(γi . . . γj) ≡ ∀k ∈ {i+ 1, . . . , j}, PReq(γk) ⊆ PReq(γk−1)

2By contrast, a non-stabilizing algorithm achieves LRA if all its executions starting from predefined initial configurations satisfy SPLRA.

5

The first (resp. second) predicate means that no resource is released (resp. no new request occurs) between γi and γj .
Notice that for any i ≥ 0, continuousCS(γi) and noReq(γi) trivially hold.

Let e = (γi)i≥0, k ≥ 0 and T ≥ 0. The function R(e, k, T) is defined if and only if the execution (γi)i≥k contains
at least T rounds. In the case it is defined, the function returns x ≥ k such that the execution factor γk . . . γx contains
exactly T rounds.

Definition 1 (Maximal Concurrency). A resource allocation algorithm A is maximal concurrent in a network G =
(V,E) if and only if

No Deadlock: For every configuration γ such that PFree(γ) 6= ∅, there exists a configuration γ′ and a step γ 7→ γ′

such that continuousCS(γγ′) ∧ noReq(γγ′);

No Livelock: There exists a number of roundsN such that for every execution e = (γi)i≥0 and for every index i ≥ 0,
if R(e, i,N) exists, then(

noReq(γi . . . γR(e,i,N)) ∧ continuousCS(γi . . . γR(e,i,N)) ∧ PFree(γi) 6= ∅
)

⇒ (∃k ∈ {i, . . . , R(e, i,N)− 1},∃p ∈ V, p ∈ PFree(γk) ∩ PCS(γk+1))

No Deadlock ensures that whenever a request can be satisfied, the algorithm has no deadlock and can still execute
some step, even if no resource is released and no new request happens. No Livelock assumes that there exists a number
of round N (which depends on the complexity of the algorithm, and henceforth on the network dimensions) such that:
if during an execution, there exists some requests that can be satisfied, then at least one of them should be satisfied
within N rounds, even if no resource is released and no new request happens meanwhile. Notice that the mention “no
new request happens meanwhile” ensures that N uniquely depends on the algorithm and the network; if not, N would
also depend on the scheduling of the requests.

3.2 Alternative Definition
We now provide an alternative definition of maximal concurrency: instead of constraining PFree to decrease every N
rounds during which there is neither new request, nor critical section exit, it expresses that PFree becomes empty after
enough rounds in such a situation.

We introduce first some notations: let e = (γi)i≥0 be an execution and i ≥ 0 be the index of configuration γi. We
note endCS(e, i) (resp. M(e, i)) the last configuration index such that no resource is released (resp. no new request
occurs and no resource is released) during the execution factor γi . . . γendCS(e,i) (resp. γi . . . γM(e,i)). Formally,

endCS(e, i) = max{j ≥ i : continuousCS(γi . . . γj)}
M(e, i) = max{j ≥ i : noReq(γi . . . γj) ∧ j ≤ endCS(e, i)}

Note that endCS(e, i) is always defined (for any e and any i) since continuousCS(γi) holds and any critical section
is assume to be finite. Consequently, M(e, i) is always defined, since the set {j ≥ i : noReq(γi . . . γj) ∧ j ≤
endCS(e, i)} is not empty and bounded by endCS(e, i).

Definition 2 (Maximal Concurrency). A resource allocation algorithm is maximal concurrent in a networkG = (V,E)
if and only if

No Deadlock: For every configuration γ such that PFree(γ) 6= ∅, there exists a configuration γ′ and a step γ 7→ γ′

such that continuousCS(γγ′) ∧ noReq(γγ′);

No Livelock: There exists a number of rounds TMC such that for every execution e = (γi)i≥0 and for every index
i ≥ 0, if R(e, i, TMC) exists, then

R(e, i, TMC) ≤M(e, i)⇒ PFree(γR(e,i,TMC)) = ∅

6

PFree = ∅

i M(e, i) endCS(e, i)R(e, i, TMC)

noReq(γi, γM(e,i))

continuousCS(γi, γendCS(e,i))

TMC rounds

request exit of CS

Figure 1: Illustration of Definition 2

No Deadlock is identical in Definitions 1 and 2. However, No Livelock assumes now that there exists a (greater)
number of rounds TMC such that if no resource is released and no new request happens during TMC rounds, then the
set PFree becomes empty. As in the former definition, TMC depends on the complexity of the algorithm. Definition 2
is illustrated by Figure 1.

Lemma 1. Definition 1 and Definition 2 are equivalent.

Proof. Note first that the No Deadlock part is identical in both definitions. Consider now the No Livelock part: If
Definition 1 holds, then Definition 2 holds by letting TMC = n×N ; if Definition 2 holds, then Definition 1 holds by
letting N = TMC .

Using Definition 2, remark that an algorithm is not maximal concurrent in a network G = (V,E) if and only if

• either No Deadlock is violated, namely, there exists a configuration γ such that PFree(γ) 6= ∅ and for every
configuration γ′ such that continuousCS(γγ′) ∧ noReq(γγ′), there is no possible step of the algorithm from
γ to γ′ (γ 67→ γ′);

• or No Livelock is violated: for every T > 0, there exists an execution e = (γi)i≥0 and an index i ≥ 0 such that
R(e, i, T) is defined, R(e, i, T) ≤M(e, i), and PFree(γR(e,i,T)) 6= ∅.

3.3 Instantiations
The examples below show the versatility of our property: we instantiate the set PFree according to the considered
problem. Note that the first problem is local, whereas others are not.

Example 1: Local Resource Allocation In the local resource allocation problem, a requesting process is allowed
to enter its critical section if all its neighbors in critical section are using resources which are compatible with its
requested resource. Below, we denote by γ(p).req the resource requested/used by process p in configuration γ. If p
neither requests nor uses any resource, then γ(p).req =⊥, where ⊥ is compatible with every resource. Hence,

PFree(γ) = {p ∈ PReq(γ) | ∀q ∈ Np, (q ∈ PCS(γ)⇒ γ(q).req
 γ(p).req)}

Example 2: `-Exclusion The `-exclusion problem [3] is a generalization of mutual exclusion, where up to ` ≥ 1
critical sections can be executed concurrently. Solving this problem allows management of a pool of ` identical units
of a non-sharable reusable resource. Hence,

PFree(γ) = ∅ if |PCS(γ)| = `; PFree(γ) = PReq(γ) otherwise

Using this latter instantiation, we obtain a definition of maximal concurrency which is equivalent to the “avoiding
`-deadlock” property of Fischer et al. [3].

7

Example 3: k-out-of-` Exclusion The k-out-of-` exclusion problem [18] is a generalization of the `-exclusion
problem where each process can hold up to k ≤ ` identical units of a non-sharable reusable resource. In this context,
rather than being the resource(s) requested by process p, γ(p).req is assumed to be the number of requested units, i.e.,
γ(p).req ∈ {0, . . . , k}. Let Available(γ) = `−

∑
p∈PCS(γ) γ(p).req be the number of available units. Hence,

PFree(γ) = {p ∈ PReq(γ) : γ(p).req ≤ Available(γ)}

Using this latter instantiation, we obtain a definition of maximal concurrency which is equivalent to the “strict
(k, `)-liveness” property of Datta et al. [18], which basically means that if at least one request can be satisfied using
the available resources, then eventually one of them is satisfied, even if no process releases resources in the meantime.

In [18], the authors show the impossibility of designing a k-out-of-` exclusion algorithm satisfying the strict (k, `)-
liveness. To circumvent this impossibility, they then propose a weaker property called “(k, `)-liveness”, which means
that if any request can be satisfied using the available resources, then eventually one of them is satisfied, even if no
process releases resources in the meantime. Despite this property is weaker than maximal concurrency, it can be
expressed using our formalism as follows:

PFree(γ) = ∅ if ∃p ∈ PReq(γ), γ(p).req > Available(γ); PFree(γ) = PReq(γ) otherwise

This might seem surprising, but observe that in the above formula, the set PFree is distorted from its original
meaning.

3.4 Strict (k, `)-liveness versus Maximal Concurrency
As an illustrative example, we now show that the original definition of strict (k, `)-liveness [18] is equivalent to the
instantiation of maximal concurrency we propose in Example 3 of the previous subsection.

In [18], to introduce strict (k, `)-liveness, the authors assume that a process can stay in critical section forever.
Notice that this assumption is only used to define strict (k, `)-liveness, critical sections are otherwise always assumed
to be finite. Using this artifact, they express that a k-out-of-` exclusion algorithm satisfies the strict (k, `)-liveness
in a network G = (V,E) as follows: Let I ⊆ V be the set of processes executing the critical section forever. Let
nbFree = ` −

∑
p∈I p.req. If there exists p ∈ V such that p is requesting for p.req ≤ nbFree resources, then,

eventually at least one requesting process (maybe p) enters the critical section.
Let A be a k-out-of-` exclusion algorithm which is maximal concurrent in a network G = (V,E). Assume an

execution starting in configuration γ such that there is a set I of processes executing the critical section forever from
γ. Assume also, for the purpose of contradiction, that from γ, no requesting process ever enters the critical section
although there exists a requesting process p such that p.req ≤ nbFree. Then, as the number of processes is finite, the
system eventually reaches a configuration γ′ from which no new request ever occur. By No Deadlock, the execution
from γ′ is infinite. Moreover, the daemon being weakly fair, every round from γ′ is finite. Now, by No Livelock, after a
finite number of rounds, one process enters the critical section (n.b., PFree is not empty because of p), a contradiction.
Hence, A satisfies the strict (k, `)-liveness in G.

Let B be a k-out-of-` exclusion algorithm which is not maximal concurrent in a networkG = (V,E). Assume first
B does not satisfy No Deadlock: there exists a configuration γ such that PFree(γ) 6= ∅ and for every configuration
γ′ such that continuousCS(γγ′) ∧ noReq(γγ′), there is no possible step of the algorithm from γ to γ′. Assume
an execution from γ where all critical sections are infinite and there is no new request. Then, the system is deadlock
and, consequently, no process of PFree can enter the critical section. Now, PFree is not empty. So, there exists a
requesting process p such that p.req ≤ nbFree. Moreover, only processes of PFree can enter critical section without
violating safety. Consequently, no process ever enter the critical section during this execution: B does not satisfy the
strict (k, `)-liveness in G.

Finally, assume B violates No Livelock: for every T > 0, there exists an execution e = (γi)i≥0 and an index i ≥ 0
such that R(e, i, T) is defined, R(e, i, T) ≤ M(e, i), and PFree(γR(e,i,T)) 6= ∅. So, it is possible to build an infinite
execution e, where all critical sections are infinite, no new request happens, and PFree is never empty. As there is no
new request, PFree is never empty, and the number of processes is finite, there is an infinite suffix s of e where no
process leaves PFree (i.e., no process of PFree enters critical section) although PFree is not empty. In s, there exists
a requesting process p such that p.req ≤ nbFree because PFree is not empty, but no process ever enter the critical

8

section because only processes of PFree can enter critical section without violating safety. Hence, B does not satisfy
the strict (k, `)-liveness in G.

Hence, the original definition of strict (k, `)-liveness [18] is equivalent to the instantiation of maximal concurrency
proposed in Example 3 of the previous subsection.

4 Maximal Concurrency versus Fairness

4.1 Necessary Condition on Concurrency in LRA
Maximal concurrency has been shown to be achievable in `-exclusion [3]. However, there exist problems where it is not
possible to ensure the maximal degree of concurrency, e.g., Datta et al. showed in [18] that it is impossible to design a
k-out-of-` exclusion algorithm that satisfies the strict (k, `)-liveness, which is equivalent to the maximal concurrency.
Precisely, the impossibility proof shows that in this problem, fairness and maximal concurrency are incompatible
properties. We now study the maximum degree of concurrency that can be achieved by a LRA algorithm.

Definition 3 below gives a definition of fairness classically used in resource allocation problems. Notably, Compu-
tation Start and End properties of Specification 1 trivially implies this fairness property. Next, Lemma 2 is a technical
result which will be used to show that there are (important) instances of the LRA problem for which it is impossible
to design a maximal concurrent algorithm working in arbitrary networks (Theorem 1).

Definition 3 (Fairness). Each time a process is (continuously) requesting a resource r, it eventually accesses r.

We recall that γ(p).req denotes the resource requested/used by process p in configuration γ. If p neither requests
nor uses any resource, then γ(p).req =⊥, where ⊥ is compatible with every resource. We define the conflicting
neighborhood of p in γ, denoted by CN p(γ), as follows: CN p(γ) = {q ∈ Np : γ(p).req 6
 γ(q).req}. Note that if p
is not requesting, then CN p(γ) = ∅.

Below we consider any instance I of the LRA problem, where every process can request the same set of resources
R (i.e., ∀p ∈ V,Rp = R) and ∃x ∈ R such that x 6
 x. Notice that the local mutual exclusion and the local
readers-writers problem belong to this class of LRA problems.

Lemma 2. For any algorithm solving I in a network G = (V,E), if |V | > 1, then for any process p, there exists an
execution e = (γi)i≥0, with configuration γT , T ≥ 0, and a process q ∈ CN p(γT) such that

Np\({q} ∪ Nq) = CN p(γT)\
(
{q} ∪ CN q(γT)

)
= PFree(γT) (1)

and for every execution e′ = (γ′i)i≥0 which shares the same prefix as e between γ0 and γT (i.e., ∀i ∈ {0, ...T}, γi =
γ′i),

∀T ′ ∈ {T, ...,M(e′, T)}, PFree(γT) = PFree(γ
′
T ′) (2)

Proof. Consider any algorithm solving I in a network G = (V,E) with |V | > 1. Let p ∈ V .
Then, consider the case when p has a unique neighbor q. Assertion 1 trivially holds for any configuration γT since

Np\({q} ∪ Nq) = CN p(γT)\
(
{q} ∪ CN q(γT)

)
= ∅: Let T = 0 and γ0 be a configuration such that p is requesting

a resource, q holds a resource conflicting with the resource requested by p, and no other process is either requesting
or executing its critical section. In this case, PFree(γ0) = ∅ and PReq(γ0) = {p}. Then, for every possible execution
from γ0, as long as q holds its resource and no new request occurs, PFree remains empty, which proves Assertion 2.

Finally, we assume that p has at least two neighbors. We note Np as {q0, ..., qk} with k ≥ 1. We fix γ0 such that

• q0 holds some resource x such that x is conflicting with x,

• p requests resource x,

• for all j ∈ {1, ..., k}, qj requests resource x,

• no other process is either requesting or executing critical section,

9

γ0

p

q0

q1

q2
. . .

qj

. .
.

qk
. . .

x x

x

x

x

x

γi+1

p

q0

q1

q2
. . .

qj

. .
.

qk
. . .

x x

x

x

x

x

Figure 2: Outline of the execution (γi)i≥0 of the proof of Lemma 2 on the neighborhood of p. Black nodes are in
critical section, gray nodes are requesting.

γ′
i+2

p

q0

q1

q2
. . .

qj

. .
.

qk
. . .

x x

x

x

x

x

Figure 3: Neighborhood of p in configuration γ′i+2 in the proof of Lemma 2.

namely, PFree(γ0) = CN p(γ0)\
(
{q0} ∪ CN q0(γ0)

)
= Np\({q0} ∪Nq0) and PReq(γ0) = {p} ∪ {q1, ..., qk}. See γ0

in Figure 2.
Again, if PFree(γ0) = ∅, then we let T = 0 and Assertion 1 holds. Moreover, in this case, every qj , with

j ∈ {1, ..., k} is a neighbor of q0. Hence, for any possible execution from γ0, as long as q0 holds x and no new request
occurs, PFree remains empty: Assertion 2 holds.

Assume now that PFree(γ0) 6= ∅. We build an execution by letting the algorithm execute, while maintaining no
request and q0 in critical section (this is possible by the No Deadlock property). If no neighbor of p ever exits from
PFree, we are done Assertions 1 and 2 are both satisfied. Otherwise, let i > 0 and j ∈ {1, ..., k} such that qj is the
first neighbor of p to exit from PFree and γi 7→ γi+1 is the first step where qj exits from PFree. We replace step
γi 7→ γi+1 by two steps γi 7→ γ′i+1 7→ γ′i+2:

• qj leaves PFree(γi) and has access to x (by assumption) in γi 7→ γ′i+1,

• q0 releases its critical section in γi 7→ γ′i+1 and requests again x in γ′i+1 7→ γ′i+2.

Configuration γ′i+2 is shown in Figure 3. Hence, PReq(γ′i+2) = {p} ∪ {ql, l 6= j ∧ l ∈ {0, ..., k}} and PFree(γ′i+2) =
CN p(γ

′
i+2)\

(
{qj} ∪ CN qj (γ′i+2)

)
= Np\({qj} ∪ Nqj). So, in γ′i+2 the system is in a situation similar to γ0. If this

scenario is repeated indefinitely, the algorithm never satisfies the request of p, contradicting the fairness of the LRA
specification. Hence, there exists a configuration γT , T ≥ 0 after which PFree remains equal to CN p(γT)\

(
{ql} ∪

CN ql(γT)
)

= Np\({ql} ∪Nql) (this proves Assertion 1) and constant for some ql ∈ Np, until ql releases its resource
or some new request occurs (this proves Assertion 2).

4.2 Impossibility Result
Theorem 1. It is impossible to design a maximal concurrent algorithm solving I in every network.

Proof. Assume, by the contradiction, that there is a maximal concurrent algorithm solving I in every network. Con-
sider a network (of at least two processes) which contains a process p, such that ∀q ∈ Np,Np\({q} ∪Nq) 6= ∅. (Take
for instance a star network where p is at the center.)

10

From Lemma 2, there exists e = (γi)i≥0 with a configuration γT , T ≥ 0, and q ∈ CN p(γT) ⊆ Np such that
PFree(γT) = Np\({q} ∪ Nq). Furthermore, for every execution e′ = (γ′i)i≥0 which shares the same prefix as e
between γ0 and γT , ∀T ′ ∈ {T, ...,M(e′, T)}, PFree(γT) = PFree(γ

′
T ′).

Using the No Livelock property of maximal concurrency, there also exists TMC > 0 such that for every execution
e′ = (γ′i)i≥0, if R(e′, T, TMC) exists and R(e′, T, TMC) ≤M(e′, T) then PFree(γ′R(e,T,TMC)) = ∅.

We build an execution e′ with prefix γ0...γT . From γT , we are able to a add step of the algorithm such that no
request occurs and no resource is released. This is possible due to No Deadlock from maximal concurrency and
since PFree(γT) 6= ∅. By applying the second part of Lemma 2, we have PFree(γ′T+1) = PFree(γT) 6= ∅. We
repeat this operation until TMC rounds have elapsed (this is possible since we assumed a weakly fair daemon), so that:
R(e′, T, TMC) ≤M(e′, T). Hence, PFree(γ′R(e′,T,TMC)) = PFree(γT) 6= ∅, contradicting the No Livelock property
of the maximal concurrency.

5 Partial Concurrency
We now generalize the maximal concurrency to be able to define weaker degree of concurrency that will be achievable
for all instances of LRA. This generalization is called partial concurrency.

5.1 Definition
Maximal concurrency requires that a requesting process should not be prevented from accessing its critical section
unless to avoid safety violations. The idea of partial concurrency is to slightly relax this property by (momentarily)
blocking some requesting processes that nevertheless could enter their critical section without violating safety. We
define P as a predicate which represents the sets of requesting processes that can be (momentarily) blocked, while
they could access their requesting resources without violating safety.

Definition 4 (Partial Concurrency w.r.t. P). A resource allocation algorithm A is partially concurrent w.r.t. P in a
network G = (V,E) if and only if

No Deadlock: For every subset of processes X ⊆ V , for every configuration γ, if P(X, γ) holds and PFree(γ) 6⊆ X ,
there exists a configuration γ′ and a step γ 7→ γ′ such that continuousCS(γγ′) ∧ noReq(γγ′);

No Livelock: There exists a number of rounds TPC such that for every execution e = (γi)i≥0 and for every index
i ≥ 0, if R(e, i, TPC) exists then

R(e, i, TPC) ≤M(e, i)⇒ ∃X,P(X, γR(e,i,TPC)) ∧ PFree(γR(e,i,TPC)) ⊆ X

Notice that maximal concurrency is equivalent to partial concurrency w.r.t. Pmax, where ∀X ⊆ V,∀γ ∈ C,Pmax(X, γ) ≡
X = ∅.

5.2 Strong Concurrency
The proof of Lemma 2 exhibits a possible scenario for some instances of LRA which shows the incompatibility of
fairness and maximal concurrency: enforce maximal concurrency can lead to unfair behaviors where some neighbors
of a process alternatively use resources which are conflicting with its own request. So, to achieve fairness, we must
then relax the expected level of concurrency in such a way that this situation cannot occur indefinitely. The key idea
is that sometimes the algorithm should prioritize one process p against its neighbors, although it cannot immediately
enter the critical section because some of its conflicting neighbors are in critical section. In this case, the algorithm
should momentarily block all conflicting requesting neighbors of p that can enter critical section without violating
safety, so that p enters critical section first. In the worst case, p has only one conflicting neighbor q in critical section
and so the set of processes that p has to block contains up to all conflicting (requesting) neighbors of p that are neither
q, nor conflicting neighbors of q (by definition, any conflicting neighbor common to p and q cannot access critical

11

section without violating safety because of q). We derive the following refinement of partial concurrency based on this
latter observation. This property seems to be very close to the maximum degree of concurrency which can be ensured
by an algorithm solving all instances of LRA.

Definition 5 (Strong Concurrency). A resource allocation algorithm A is strongly concurrent in G = (V,E) if and
only if A is partially concurrent w.r.t. Pstrong in a network G = (V,E), where ∀X ⊆ V , ∀γ ∈ C,

Pstrong(X, γ) ≡ ∃p ∈ V,∃q ∈ CN p(γ), X = CN p(γ)\
(
{q} ∪ CN q(γ)

)
In the next section, we propose a strongly concurrent LRA algorithm.

6 Local Resource Allocation Algorithm
We now propose a snap-stabilizing LRA algorithm which achieves strong concurrency.

6.1 Overview of the solution
The overall idea of our algorithm is the following. To maximize concurrency, our algorithm should follow, as much
as possible, a greedy approach: if there are requesting processes having no conflicting neighbor in the critical section,
then those which have locally the highest identifier are allowed to enter critical section.

Now, the algorithm should not be completely greedy, otherwise livelock can occur at processes with low identifiers,
violating the fairness of the specification.

So, the idea is to make circulating a token whose aim is to cancel the greedy approach, but only in the neighborhood
of the tokenholder (the rest of the network continue to follow the greedy approach): the tokenholder, if requesting, has
the priority to satisfy its request; all its conflicting neighbors are blocked until it accesses its critical section. To ensure
fairness, these blockings take place even if the tokenholder cannot currently access its critical section (because maybe
one of its conflicting neighbor is in critical section). Such blockings slightly degrade the concurrency, this is why our
algorithm is strong, but not maximal, concurrent.

6.2 Composition
Composition techniques are important in the self-stabilizing area because they allow to simplify the design, analysis,
and proofs of algorithms. Consider an arbitrary composition operator ⊕, and two algorithms A1 and A2. Let e be an
execution of A1 ⊕A2. Let i ∈ {1, 2}. We say that e is weakly fair w.r.t. Ai if there is no infinite suffix of e in which
a process does not execute any action of Ai while being continuously enabled w.r.t. Ai.

Our algorithm consists of the composition of two modules: Algorithm LRA, which manages local resource
allocation, and Algorithm T C which provides a self-stabilizing token circulation service to LRA, whose goal is
to ensure fairness. These two modules are composed using a fair composition [19], denoted by LRA ◦ T C. In such
a composition, each process executes a step of each algorithm alternately. Recall that the purpose of this composition
is, in particular, to simplify the design of the algorithm: a composite algorithm written in the locally shared memory
model can be translated into an equivalent non-composite algorithm. Consider the fair composition of two algorithms
X and Y . The equivalent non-composite algorithm Z can be obtained by applying the following rewriting rule: In Z ,
a process has its variables in X , those in Y , and an additional variable b ∈ {1, 2}. Assume now that X is composed of
x actions denoted by

lblXi : grdXi → stmtXi ,∀i ∈ {1, . . . , x}

and Y is composed of y actions denoted by

lblYj : grdYj → stmtYj ,∀j ∈ {1, . . . , y}

Then, Z is composed of the following x+ y + 2 actions:

12

∀i ∈ {1, . . . , x}, lblXi : (b = 1) ∧ grdXi → stmtXi ; b← 2

∀j ∈ {1, . . . , y}, lblYj : (b = 2) ∧ grdYj → stmtYj ; b← 1

lbl1 : (b = 1) ∧
∧

i=1,...,x

¬grdXi ∧
∨

i=1,...,y

grdYi → b← 2

lbl2 : (b = 2) ∧
∧

i=1,...,y

¬grdYi ∧
∨

i=1,...,x

grdXi → b← 1

Notice that, by definition of the composition, under the weak fair daemon assumption, no algorithm in the com-
position can prevent the other from executing, if this latter is continuously enabled. Rather, it can only slow down the
execution by a factor 2.

Remark 1. Under the weakly fair daemon, in A1 ◦ A2 we have: ∀i ∈ {1, 2}, ∀p ∈ V , if p is continuously enabled
w.r.t. Ai until (at least) executing an enabled action of Ai, then p executes an enabled action of Ai within at most 2
rounds.

Remark 2. Under the weakly fair daemon, ∀i ∈ {1, 2}, every execution of A1 ◦ A2 is weakly fair w.r.t. Ai.

6.3 Token Circulation Module
We assume that T C is a self-stabilizing black box which allows LRA to emulate a self-stabilizing token circu-
lation. T C provides two outputs to each process p in LRA: the predicate TokenReady(p) and the statement
PassToken(p)3. The predicate TokenReady(p) expresses the fact that the process p holds a token and can re-
lease it. Note that this interface of T C allows some process to hold the token without being allowed to release it yet:
this may occur, for example, when, before releasing the token, the process has to wait for the network to clean some
faults. The statement PassToken(p) can be used to pass the token from p to one of its neighbor. Of course, it should
be executed (by LRA) only if TokenReady(p) holds. Precisely, we assume that T C satisfies the following properties.

Property 1 (Stabilization). Consider an arbitrary composition of T C and some other algorithm. Let e be any execu-
tion of this composition which is weakly fair w.r.t. T C.

If for any process p, PassToken(p) is executed in e only when TokenReady(p) holds, then T C stabilizes in e,
i.e., reaches and remains in configurations where there is a unique token in the network, independently of any call to
PassToken(p) at any process p.

Property 2. Consider an arbitrary composition of T C and some other algorithm. Let e be any execution of this
composition which is weakly fair w.r.t. T C and where T C is stabilized.

Then, ∀p ∈ V , each time TokenReady(p) holds in e, TokenReady(p) is continuously true in e untilPassToken(p)
is invoked.

Property 3 (Fairness). Consider an arbitrary composition of T C and some other algorithm. Let e be any execution
of this composition which is weakly fair w.r.t. T C and where T C is stabilized.

If ∀p ∈ V ,

• PassToken(p) is invoked in e only when TokenReady(p) holds, and

• PassToken(p) is invoked within finite time in e each time TokenReady(p) holds,

then ∀p ∈ V , TokenReady(p) holds infinitely often in e.

3Since T C is a black box with only two outputs: TokenReady(p) and PassToken(p), these outputs are the only part of T C that LRA can
use.

13

To design T C, we proceed as follows. There exist several self-stabilizing token circulations for arbitrary rooted
networks [20, 21, 22] that contain a particular action, T : TokenReady(p) → PassToken(p), to pass the token,
and that stabilizes independently of the activations of action T . Now, the networks we consider are not rooted, but
identified. So, to obtain a self-stabilizing token circulation for arbitrary identified networks, we can fairly compose any
of them with a self-stabilizing leader election algorithm [23, 24, 25, 26] using the following additional rule: if a process
considers itself as leader it executes the token circulation program for a root; otherwise it executes the program for a
non-root. Finally, we obtain T C by removing action T from the resulting algorithm, while keeping TokenReady(p)
and PassToken(p) as outputs, for every process p.

Remark 3. Following Properties 2 and 3, the algorithm, noted T C*, made of Algorithm T C where action T :
TokenReady(p)→ PassToken(p) has been added, is a self-stabilizing token circulation.

The algorithm presented in next section for local resource allocation emulates action T using predicate TokenReady(p)
and statement PassToken(p) given as inputs.

Algorithm 1 Algorithm LRA for every process p
Variables
p.status ∈ {Out,Wait,Blocked, In}
p.token ∈ B

Inputs
p.req ∈ Rp ∪ {⊥}: Variable from the application
TokenReady(p): Predicate from T C, indicates that p holds the token
PassToken(p): Statement from T C, passes the token to a neighbor

Macros
Candidates(p) ≡ {q ∈ Np ∪ {p} : q.status = Wait}
TokenCand(p) ≡ {q ∈ Candidates(p) : q.token}

Winner(p) ≡
{

max{q ∈ TokenCand(p)} if TokenCand(p) 6= ∅,
max{q ∈ Candidates(p)} otherwise

Predicates
ResourceFree(p) ≡ ∀q ∈ Np,

(
q.status = In⇒ p.req
 q.req

)
IsBlocked(p) ≡ ¬ResourceFree(p) ∨

(
∃q ∈ Np, q.status = Blocked

∧q.token ∧ p.req 6
 q.req
)

Guards
Requested(p) ≡ p.status = Out ∧ p.req 6= ⊥
Block(p) ≡ p.status = Wait ∧ IsBlocked(p)
Unblock(p) ≡ p.status = Blocked ∧ ¬IsBlocked(p)
Enter(p) ≡ p.status = Wait ∧ ¬IsBlocked(p) ∧ p = Winner(p)
Exit(p) ≡ p.status 6= Out ∧ p.req = ⊥
ResetToken(p) ≡ TokenReady(p) 6= p.token
ReleaseToken(p) ≡ TokenReady(p) ∧ p.status ∈ {Out, In} ∧ ¬Requested(p)

Actions
(1) RsT -action :: ResetToken(p) → p.token← TokenReady(p);
(2) Ex-action :: Exit(p) → p.status← Out;
(3) RlT -action :: ReleaseToken(p) → PassToken(p);
(3) R-action :: Requested(p) → p.status←Wait;
(3) B-action :: Block(p) → p.status← Blocked;
(3) UB-action :: Unblock(p) → p.status←Wait;
(3) E-action :: Enter(p) → p.status← In;

if TokenReady(p) then PassToken(p);

14

6.4 Resource Allocation Module
The code of LRA is given in Algorithm 1. Priorities and guards ensure that actions of Algorithm 1 are mutually
exclusive. We now informally describe Algorithm 1, and explain how Specification 1 (page 5) is instantiated with its
variables.

First, a process p interacts with its application through two variables: p.req ∈ Rp ∪ {⊥} and p.status ∈
{Out,Wait, In,Blocked}. p.req can be read and written by the application, but can only be read by p in LRA.
Conversely, p.status can be read and written by p in LRA, but the application can only read it. Variable p.status can
take the following values:

• Wait, which means that p requests a resource but does not hold it yet;

• Blocked, which means that p requests a resource, but cannot hold it now;

• In, which means that p holds a resource;

• Out, which means that p is currently not involved into an allocation process.

When p.req = ⊥, this means that no resource is requested. Conversely, when p.req ∈ Rp, the value of p.req
informs p about the resource the application requests. We assume two properties on p.req. Property 4 ensures that the
application (1) does not request for resource r′ while a computation to access resource r is running, and (2) does not
cancel or modify a request before the request is satisfied. Property 5 ensures that any critical section is finite.

Property 4. ∀p ∈ V , the updates on p.req (by the application) satisfy the following constraints:

• The value of p.req can be switched from ⊥ to r ∈ Rp if and only if p.status = Out,

• The value of p.req can be switched from r ∈ Rp to ⊥ (meaning that the application leaves the critical section)
if and only if p.status = In.

• The value of p.req cannot be directly switched from r ∈ Rp to r′ ∈ Rp with r′ 6= r.

Property 5. ∀p ∈ V , if p.status = In and p.req 6= ⊥, then eventually p.req becomes ⊥.

Consequently, the predicate Request(γi, p, r) in Specification 1 is given by Request(γi, p, r) ≡ γi(p).req = r.
The predicateNoConflict(γi, p) is expressed byNoConflict(γi, p) ≡ γi(p).status = In⇒

(
∀q ∈ Np, γi(q).status =

In⇒ (γi(q).req
 γi(p).req)
)
. (Remind that ⊥ compatible with every resource.)

The predicate Start(γi, γi+1, p, r) becomes true when process p takes the request for resource r into account in
γi 7→ γi+1, i.e., when the status of p switches from Out to Wait in γi 7→ γi+1 because p.req = r 6= ⊥ in γi:
Start(γi, γi+1, p, r) ≡ γi(p).status = Out ∧ γi+1(p).status = Wait ∧ γi(p).req = γi+1(p).req = r.

A computation γi . . . γj where Result(γi . . . γj , p, r) holds means that p accesses resource r, i.e., p switches its
status from Wait to In in γi−1 7→ γi while p.req = r, and later switches its status from In to Out in γj 7→ γj+1.
So, Result(γi . . . γj , p, r) ≡ γi(p).status = Wait ∧ γi(p).req = γi+1(p).req = r ∧ ∀k ∈ {i + 1 . . . j −
1}, γk(p).status = In ∧ γj(p).status = Out ∧ γj(p).req =⊥.

We now illustrate the principles of LRA with the example given in Figure 4. In this example, we consider the
local readers-writers problem. In the figure, the numbers inside the nodes represent their IDs. The color of a node
represents its status: white for Out, gray for Wait, black for In, and hatched for Blocked. A double circled node holds
a token. The bubble next to a node represents its request. Recall that we have two resources: R for a reading access
and W for a writing access, with R
R, R 6
W and W 6
W.

When the process is idle (p.status = Out), its application can request a resource. In this case, p.req 6= ⊥
and p sets p.status to Wait by R-action: p starts the computation to obtain the resource. For example, 5 starts a
computation to obtain R in (a)7→(b). If one of its neighbors is using a conflicting resource, p cannot satisfy its request
yet. So, p switches p.status from Wait to Blocked by B-action (see 6 in (a)7→(b)). If there is no more neighbor using
conflicting resources, p gets back to status Wait by UB-action.

When several neighbors request for conflicting resources, we break ties using a token-based priority: Each process
p has an additional Boolean variable p.token which is used to inform neighbors about whether p holds a token or not.

15

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(a) Initial configuration.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(b) 6 executed B-action, 1 executed
E-action, and 5 executed R-action.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(c) 3 executed B-action and 7 executed
E-action.

8

6

2

7

1

5

3

W

W

R

R

R

R

W

(d) 2 executed E-action and 5 executed
B-action.

8

6

2

7

1

5

3

⊥

W

R

R

R

R

W

(e) The application of 8 does not need
the write access anymore.

8

6

2

7

1

5

3

⊥

W

R

R

R

R

W

(f) 8 executed Ex-action.

Figure 4: Example of execution of LRA ◦ T C.

A process p takes priority over any neighbor q if and only if
(
p.token∧¬q.token

)
∨
(
p.token = q.token∧ p > q

)
4.

More precisely, if there is no waiting tokenholder in the neighborhood of p, the highest priority process is the waiting
process with highest ID. This highest priority process is Winner(p). Otherwise, the tokenholders (there may be
several tokens during the stabilization phase of T C) block all their requesting neighbors, except the ones requesting
for non-conflicting resources until they obtain their requested resources. This mechanism allows to ensure fairness
by slightly decreasing the level of concurrency. (The token circulates to eventually give priority to blocked processes,
e.g., processes with small IDs.)

The highest priority waiting process in the neighborhood gets status In and can use its requested resource by
E-action, e.g., 7 in step (b) 7→(c) or 1 in (a)7→(b). Moreover, if it holds a token, a tokenholder releases it when
accessing its requested resource. Notice that, as a process is not blocked when one of its neighbors is requesting/using
a compatible resource, several neighbors requesting/using compatible resources can concurrently enter/execute their
critical section (see 1, 2, and 7 in Configuration (d)). When the application at process p does not need the resource
anymore, i.e., when it sets the value of p.req to ⊥. Then, p executes Ex-action and switches its status to Out, e.g., 8
during step (e) 7→(f).

RlT -action is used to straight away pass the token to a neighbor when the process does not need it, i.e., when
either its status is Out and no resource requested or when its status is In. (Hence, the token can eventually reach a
requesting process and help it to satisfy its request.)

The last action, RsT -action, ensures the consistency of variable token so that the neighbors realize whether or
not a process holds a token.

Hence, any request is satisfied in a finite time. As an illustrative example, consider the local mutual exclusion
problem and the execution given in Figure 5. In this example, we try to delay as much as possible the critical section
of process 2. First, process 2 has two neighbors (7 and 8) that also request the resource and have greater IDs. So,
they will execute their critical section before 2 (in steps (a)7→(b) and (e)7→(f)). But, the token circulates and eventually
reaches 2 (see Configuration (g)). Then, 2 has priority over its neighbors (even though it has a lower ID) and eventually
starts executing its critical section in (j)7→(k).

4Notice that when two neighbors simultaneously hold the token (only during the stabilization phase of T C), the one with the highest identifier
has priority.

16

4

6

1

9

3

7

5

2

8
(a)

4

6

1

9

3

7

5

2

8
(b)

4

6

1

9

3

7

5

2

8
(c)

4

6

1

9

3

7

5

2

8
(d)

4

6

1

9

3

7

5

2

8
(e)

4

6

1

9

3

7

5

2

8
(f)

4

6

1

9

3

7

5

2

8
(g)

4

6

1

9

3

7

5

2

8
(h)

4

6

1

9

3

7

5

2

8
(i)

4

6

1

9

3

7

5

2

8
(j)

4

6

1

9

3

7

5

2

8
(k)

Figure 5: Example of execution of LRA◦T C on the local mutual exclusion problem. The bubbles mark the requesting
processes.

7 Correctness and Complexity Analysis of LRA ◦ T C
7.1 Correctness
In this subsection, we prove that LRA ◦ T C is snap-stabilizing w.r.t. SPLRA (see Specification 1, page 5), assuming
a distributed weakly fair daemon. First, we show the safety part, namely, the Resource Conflict Freedom property is
always satisfied. Then, we assume a distributed weakly fair daemon to prove the liveness part, i.e., the Computation
Start and Computation End properties.

Remark 4. IfE-action is enabled at a process p in a configuration γ, then ∀q ∈ Np,
(
γ(q).status = In⇒ γ(p).req

γ(q).req
)
.

Lemma 3. E-action cannot be simultaneously enabled at two neighbors.

Proof. Let γ be a configuration. Let p ∈ V and q ∈ Np. Assume by contradiction that E-action is enabled at p and q
in γ. Then, γ(p).status = γ(q).status = Wait and both p = Winner(p) and q = Winner(q) hold in γ. Since by
definition, p, q ∈ Candidates(p) and p, q ∈ Candidates(q), we obtain a contradiction.

Lemma 4. Let γ 7→ γ′ be a step. Let p ∈ V . If NoConflict(γ, p) holds, then NoConflict(γ′, p) holds.

Proof. Let γ 7→ γ′ be a step. Let p ∈ V . Assume by contradiction thatNoConflict(γ, p) holds but¬NoConflict(γ′, p).
Then, γ′(p).status = In and ∃q ∈ Np such that γ′(q).status = In and γ′(q).req 6
 γ′(p).req. As a consequence,
γ′(p).req ∈ Rp and γ′(p).req ∈ Rq .

Using Property 4,

• The value of p.req can be switched from⊥ in γ to r ∈ Rp in γ′ only if γ(p).status = Out. But γ′(p).status =
In and it is impossible to switch p.status from Out to In in one step.

• The value of p.req cannot be switched from r′ ∈ Rp in γ to r ∈ Rp with r 6= r′.

Hence, γ(p).req = γ′(p).req ∈ Rp. We can make the same reasoning on q so γ(q).req = γ′(q).req ∈ Rq , and
γ(q).req 6
 γ(p).req. Now, there are two cases:

1. If γ(p).status = In, as NoConflict(γ, p) holds, ∀x ∈ Np, (γ(x).status = In ⇒ γ(p).req
 γ(x).req). In
particular, γ(q).status 6= In, since γ(q).req 6
 γ(p).req. So q executes E-action γ 7→ γ′ to obtain status In.
This contradicts Remark 4, since q has a conflicting neighbor (p) with status In in γ.

17

2. If γ(p).status 6= In, then p executes E-action in step γ 7→ γ′ to get status In. Now, there are two cases:

(a) If γ(q).status 6= In, then q executes E-action in γ 7→ γ′. So E-action is enabled at p and q in γ, a
contradiction to Lemma 3.

(b) If γ(q).status = In, then E-action is enabled at p in γ although a neighbor of p has status In and a
conflicting request (p is in a similar situation to the one of q in case 1), a contradiction to Remark 4.

Theorem 2 (Resource Conflict Freedom). Any execution ofLRA◦T C satisfies the resource conflict freedom property.

Proof. Let e = (γi)i≥0 be an execution LRA ◦ T C. Let k ≥ 0 and k′ > k. Let p ∈ V . Let r ∈ Rp. Assume
Result(γk . . . γk′ , p, r). Assume ∃l < k such that Start(γl, γl+1, p, r). In particular, γl(p).status 6= In. Hence,
NoConflict(γl, p) trivially holds. Using Lemma 4, ∀i ≥ l,NoConflict(γi, p) holds. In particular, ∀i ∈ {k, . . . , k′},
NoConflict(γi, p).

In the following, we assume a weakly fair daemon.

Lemma 5. The stabilization of T C is preserved by fair composition.

Proof. By definition of the algorithm, for any process p, PassToken(p) is executed only inLRAwhen TokenReady(p)
holds (see RlT-action and E-action). Moreover, by Remark 2, every execution of LRA ◦ T C is weakly fair w.r.t. T C.
So, T C self-stabilizes to a unique tokenholder in every execution of LRA ◦ T C, by Property 1.

Lemma 6. A process cannot keep a token forever in LRA ◦ T C.

Proof. Let e be an execution. By Lemma 5, the token circulation eventually stabilizes, i.e., there is a unique token in
every configuration after stabilization of T C. Assume by contradiction that, after such a configuration γ, a process p
keeps the token forever: TokenReady(p) holds forever and ∀q ∈ V with q 6= p, ¬TokenReady(q) holds forever.

First, the values of token variables are eventually updated to the corresponding value of the predicate TokenReady.
Indeed, the values of predicate TokenReady do not change anymore. So, if there is x ∈ V such that x.token 6=
TokenReady(x), RsT -action (the highest priority action of LRA) is continuously enabled at x, until x executes
it. Now, by Remark 1, in finite time, x executes RsT -action to update its token variable. Therefore, in finite
time, the system reaches and remains in configurations where p.token = true forever and ∀q ∈ V with q 6= p,
q.token = false forever. Let γ′ be such a configuration. Notice that RsT -action is continuously disabled from γ′.
Then, we can distinguish six cases:

1. If γ′(p).status = Wait and γ′(p).req 6= ⊥, then TokenCand(p) = {p} and so Winner(p) = p holds forever,
and ∀q ∈ Np, TokenCand(q) = {p} and Winner(q) = p 6= q holds forever. E-action is disabled forever at q
from γ′. Now, if ∃q ∈ Np such that γ′(q).status = In ∧ γ′(q).req 6
 γ′(p).req, then, as ⊥ is compatible with
any resource, γ′(q).req 6= ⊥. Using Property 5, in finite time the request of q becomes ⊥ and remains ⊥ until
q obtains status Out (Property 4). So Ex-action is continuously enabled at q, until q executes it. Hence, by
Remark 1, in finite time, those processes leave critical section and cannot enter again since E-action is disabled
forever, and so ∀q ∈ Np, q.status 6= In forever. So IsBlocked(p) does not hold anymore. Notice that, if
p gets status Blocked in the meantime, UB-action is continuously enabled at p until p executes it, so p gets
back status Wait in finite time by Remark 1. Then, Winner(p) = p still holds so E-action is continuously
enabled at p, until p executes it. Hence, by Remark 1, in finite time, p executes E-action and releases its token,
a contradiction.

2. If γ′(p).status = Out and γ′(p).req 6= ⊥, the application cannot modify p.req until p enters its critical section
(Property 4). Hence, RlT -action is disabled until p gets status In. So, R-action is continuously enabled at p
until p executes it, and p eventually gets status Wait by Remark 1. We then reach case 1 and we are done.

3. If γ′(p).status = Out and γ′(p).req = ⊥. If eventually p.req 6= ⊥, then we retrieve case 2, a contradiction.
Otherwise, RlT -action is continuously enabled at p until p executes it. So, by Remark 1, in finite time, p
executes RlT -action and releases its token by a call to PassToken(p), a contradiction.

18

4. If γ′(p).status = Blocked and γ′(p).req 6= ⊥, then p.status = Blocked forever from γ′, otherwise we
eventually retrieve case 1. So, ∀q ∈ Np such that γ′(p).req 6
 γ′(q).req, IsBlocked(q) holds forever so
E-action is disabled at q forever. Now, as in case 1, ∀q ∈ Np such that γ′(p).req 6
 γ′(q).req, we have
q.status 6= In forever after a finite time. So, eventually UB-action is continuously enabled at p until p executes
it. Hence, by Remark 1, in finite time, p gets statusWait and we retrieve case 1, a contradiction.

5. If γ′(p).status ∈ {Wait,Blocked} and γ′(p).req = ⊥. If eventually p.req 6= ⊥, then we retrieve cases 1 or
4, a contradiction. Otherwise, Ex-action is continuously enabled at p until p executes it. So, by Remark 1, in
finite time, p executes Ex-action and we retrieve case 3, a contradiction.

6. If γ′(p).status = In, either γ′(p).req = ⊥ or in finite time p.req becomes ⊥ (Property 5) and remains ⊥ until
p obtains status Out (Property 4). Once p.req = ⊥, Ex-action is continuously enabled at p until p executes
it. So, by Remark 1 p eventually gets status Out, and we retrieve case 3, a contradiction.

Lemma 6 implies that the hypothesis of Property 3 is satisfied. Hence, we can deduce Corollary 1.

Corollary 1. After stabilization of the token circulation module, TokenReady(p) holds infinitely often at any process
p in LRA ◦ T C.

Lemma 7. If Exit(p) continuously holds at some process p until it executes Ex-action, then p executes Ex-action
in finite time.

Proof. Assume, by the contradiction, that from some configuration Exit(p) continuously holds, but p never executes
Ex-action. Then, remind that RlT -action and E-action are the only actions allowing p to release a token. Now,
Exit(p) is the guard of action Ex-action whose priority is higher than those of RlT -action and E-action. So, p
never more releases a token, a contradiction to Lemma 5 and Corollary 1.

Lemma 8. IfRequested(p) continuously holds at some process p until it executesR-action, then p executesR-action
in finite time.

Proof. Assume, by the contradiction, that from some configuration Requested(p) continuously holds, but p never
executes R-action. Then, remind that RlT -action and E-action are the only actions allowing p to release a token.
Now, Requested(p) implies ¬ReleaseToken(p), so RlT -action is disabled at p forever. Moreover, Requested(p)
is the guard of action R-action whose priority is higher than the one of E-action. So, p never more releases a token,
a contradiction to Lemma 5 and Corollary 1.

Lemma 9. Any process p such that p.status ∈ {Wait,Blocked} and p.req 6= ⊥ executes E-action in finite time.

Proof. Let e be an execution, γ ∈ e be a configuration, and p ∈ V such that γ(p).status ∈ {Wait,Blocked} and
γ(p).req 6= ⊥. Then, p.req 6= ⊥ holds while p.status 6= In (Property 4). So, while p does not execute E-action,
p.status ∈ {Wait,Blocked} and p.req 6= ⊥. Now, by Lemma 5, the token circulation eventually stabilizes. By
Corollary 1, in finite time p holds the unique token. From this configuration, p cannot keep forever the token (Lemma 6)
and p can only release it by executing E-action (by Property 2).

Lemma 10. Any process of status different from Out sets its variable status to Out within finite time.

Proof. Let p ∈ V . Let γ be a configuration. Assume first γ(p).status = In. If γ(p).req 6= ⊥, in finite time p.req
is set to ⊥ (Property 5) and then cannot be modified until p gets status Out (Property 4). So, Exit(p) continuously
holds until p executes Ex-action. Then, Ex-action is executed by p in finite time, by Lemma 7: p gets status Out.

Assume now that γ(p).status ∈ {Wait,Blocked}. If eventually p.req 6= ⊥, then p executes E-action in a finite
time (Lemma 9). So, p eventually gets status In and we retrieve the previous case. Otherwise, Exit(p) continuously
holds until p executes Ex-action. Then, Ex-action is executed by p in finite time, by Lemma 7: p gets status
Out.

19

Notice that if a process that had status Wait or Blocked obtains status Out, this means that its computation
ended.

Theorem 3 (Computation Start). Any execution of LRA ◦ T C satisfies the Computation Start property.

Proof. Let e = (γi)i≥0 be an execution. Let k ≥ 0. Let p ∈ V . Let r ∈ Rp. First, p eventually has status Out, by
Lemma 10, let say in γj−1 7→ γj (j ≥ k). Now, if γj(p).req 6= ⊥ holds, it holds continuously while p.status = Out
(Property 4). So, Requested(p) continuously holds until p executes R-action. By Lemma 8, p eventually executes
R-action, let say in γl 7→ γl+1, l ≥ j ≥ k. Then, γl+1(p).status = Wait. Notice that the application of p cannot
modify its request (Property 4), so γl(p).req = γl+1.req = r. Hence, Request(γl, p, r) and Start(γl, γl+1, p, r)
hold.

Theorem 4 (Computation End). Any execution of LRA ◦ T C satisfies the Computation End property.

Proof. Let e = (γi)i≥0 be an execution. Let k ≥ 0. Let p ∈ V . Let r ∈ Rp. If Start(γk, γk+1, p, r) holds, then
γk+1(p).status = Wait and γk+1(p).req = r. Using Lemma 9, in finite time, p executes E-action and gets status
In (let say in γl−1 7→ γl, l > k). Notice that the application cannot modify the value of req until p obtains status In
(Property 4) so γl−1(p).req = γl(p).req = γk+1(p).req = r. By Property 5 and from the algorithm, p.status = In
while p.req 6= ⊥ and the application sets within finite time p.req to ⊥ (this is the only modification that can be made
on p.req). Then, p.req = ⊥ until p.status = Out, still by Property 5, and from the algorithm, p can only switch
p.status from In to Out. So, p.req = ⊥ continuously and Exit(p) continuously holds until p executes Ex-action.
Then, by Lemma 7: there is a step γl′ 7→ γl′+1 (with l′ ≥ l), where p executes Ex-action to switch p.status from In
to Out. So, γl′(p).status = In and γl′+1(p).status = Out. Consequently, Result(γl . . . γl′ , p, r) holds.

Using Theorems 2, 3, and 4, we can conclude:

Theorem 5 (Correctness). Algorithm LRA◦T C is snap-stabilizing w.r.t. SPLRA assuming a distributed weakly fair
daemon.

7.2 Complexity Analysis
In this subsection, we analyze the waiting time, i.e., the number of rounds required to obtain critical section after a
request. Here, we assume that the execution of critical section lasts at most C rounds.

Lemma 11. In LRA ◦ T C, after stabilization of T C, there are at most 2C + 14 rounds between a step where
TokenReady(p) becomes true and the execution of PassToken(p).

Proof. As PassToken is only executed in the LRA part of LRA ◦ T C, we focus on counting rounds from LRA,
first. Then, the result has to be multiply by 2 due to the composition with T C (Remark 1).

Let p be a process. After stabilization of the token circulation algorithm, a process can only release its token by
executing either RlT -action or E-action (Property 2).

Assume TokenReady(p) holds. In one round, the variables token are correctly evaluated thanks to RsT -action
executions (remind that RsT -action is the highest priority action). Then, there are three cases:

1. Assume p is requesting but does not get the critical section yet. In the worst case, p.status = Out and p.req 6=
⊥. In one round, p executes R-action and gets statusWait. Then, if there are some neighbors of p in critical
section that are using a conflicting resource, they end their critical section (i.e., their variable req becomes ⊥)
within the C next rounds and p executes B-action during the first of these C rounds. Notice that, as p holds the
unique token and the token variables are correctly evaluated, no other neighbor of p can enter the critical section
meanwhile. In the worst case, every neighbor is out of the critical section (i.e., their variable req becomes ⊥,
which is compatible with any other resource) after these C rounds. Finally, p is no more blocked and executes
UB-action in one round before executing E-action within another round. Executing E-action, p releases its
token. Hence, overall p releases its token within C + 4 rounds in this case.

20

2. Assume p.req = ⊥. If p.req becomes different from ⊥ within one round, then this means that p.status = Out
(Property 4) and we retrieve the previous case and overall p releases its token within C+5 rounds. Otherwise, p
satisfies p.status = Out in one round, by Ex-action if necessary. Again, either p.req becomes different from
⊥ within the next round, we retrieve the previous case, and overall p releases its token within C + 6 rounds, or
p executes RlT -action during the round. So, in this latter case, p releases its token within 3 rounds.

3. Assume p.status = In and p.req 6= ⊥. If p.req becomes ⊥ within one round, we retrieve the case 2. So overall
p releases its token within C + 7 rounds. Otherwise, RlT -action is continuously enabled and executed by p
within the round. So, p releases its token within two rounds in this latter case.

Let TS be the stabilization time in rounds of T C. Let Ttok be a bound on the number of rounds required to obtain
the unique token in T C* (the algorithm obtained when adding action T : TokenReady(p)→ PassToken(p) to T C,
see Remark 3, page 14) after its stabilization. Let Ntok be a bound on the number of PassToken realized between
two consecutive executions of PassToken at the same process.

Theorem 6 (Waiting Time). A requesting process obtains access to critical section in at most 2(Ts + Ttok) + (2C +
14)× (Ntok + 1) rounds.

Proof. Let p ∈ V such that p.req 6= ⊥ and p.status 6= In. In the worst case, p must wait to hold a token and be the
unique tokenholder to get its critical section. T C stabilizes in 2TS rounds (the factor 2 comes from the composition,
see Remark 1). Then, in at most 2Ttok + (2C + 14) × Ntok, p gets the token, since it has to wait 2Ttok rounds due
to Algorithm T C (again, the factor 2 comes from the composition, see Remark 1) and (2C + 14) ×Ntok rounds due
to Algorithm LRA. Indeed, while executing action T : TokenReady → PassToken is atomic in T C*, a process
keeps the token at most 2C + 14 rounds in LRA ◦ T C (Lemma 11). Finally, to obtain critical section, it is required
that p executes E-action which also releases the token: by Lemma 11 again, this may require 2C + 14 additional
rounds. Hence, in at most 2(Ts + Ttok) + (2C + 14)× (Ntok + 1) rounds, p obtains its critical section.

For example, if we choose to build T C from the leader election algorithm given in [26] and the token circulation
algorithm for arbitrary rooted networks introduced by Cournier et al. in [20], then Ts and Ttok are in O(n) rounds,
while Ntok is in O(n) executions of PassToken. Applying these results to Theorem 6 shows that the waiting time is
achievable in O(C × n) rounds. Notice also that this implementation of T C has a memory requirement of Θ(log n)
bits per process. Hence, LRA ◦ T C can be implemented using Θ(log n+ log |Rp|) per process p.

8 Strong Concurrency of LRA ◦ T C
We first prove No Deadlock.

Lemma 12. Algorithm LRA ◦ T C meets the No Deadlock property of strong concurrency: for every subset of
processes X ⊆ V , for every configuration γ, if Pstrong(X, γ) holds and PFree(γ) 6⊆ X , there exists a configuration
γ′ and a step γ 7→ γ′ such that continuousCS(γ . . . γ′) ∧ noReq(γ . . . γ′).

Proof. (By the contrapositive.) Assume a configuration γ where no action of the algorithm is enabled. First, if
PFree(γ) = ∅, we are done. So from now on, assume PFree(γ) 6= ∅. In γ, T C has stabilized, by Lemma 5. So,

Claim 1. There is a unique tokenholder, t, in γ.
Moreover, as RsT -action is disabled at every process, Claim 1 implies:

Claim 2. For every process p, γ(p).token if and only if p = t.

Claim 3. γ(t).status 6= Wait.
Proof of the claim: If γ(t).status = Wait, then since t = Winner(γ(t)) (by Claim 2), either ¬IsBlocked(γ(t))
holds and E-action is enabled at t, or B-action is enabled at t, a contradiction.

21

Claim 4. ∀p ∈ PFree(γ), γ(p).status = Blocked.
Proof of the claim: First, by definition, γ(p).status ∈ {Wait,Blocked,Out} and γ(p).req 6= ⊥. If γ(p).status =
Out, R-action is enabled at p, a contradiction. If γ(p).status = Wait, then, ¬IsBlocked(γ(p)) since otherwise
B-action is enabled at p in γ. Consequently, p 6= Winner(γ(p)) holds, otherwise E-action is enabled at p. So, we
can build a sequence of processes r0, r1, . . . , rk where r0 = p and such that ∀i ∈ {1, . . . , k}, ri = Winner(ri−1).
(Notice that none of the ri are the tokenholder, since the tokenholder does not have status Wait, by Claims 1 and 3.)
This sequence is finite because r0 < r1 < · · · < rk (so a process cannot be involved several times in this sequence)
and the number of processes is finite. Hence, we can take this sequence maximal, in which case, rk = Winner(rk)
and rk is then enabled to execute E-action, a contradiction. Hence, γ(p).status = Blocked.

Claim 5. ∀p ∈ PFree(γ), p ∈ CN t(γ) and γ(t).status = Blocked.
Proof of the claim: By Claim 4 and the fact that UB-action is disabled at every process, we have IsBlocked(γ(p))
for every process p ∈ PFree(γ). Then, p ∈ PFree(γ) implies ResourceFree(p) in γ, so by Claims 1 and 2, we can
conclude.

Claim 6. There exists a neighbor q of t whose status is In in γ.
Proof of the claim: By Claim 5, γ(t).status = Blocked, so IsBlocked(γ(t)) since UB-action is disabled at t. Now,
by Claim 2, IsBlocked(γ(t)) implies that ¬ResourceFree(t) holds in γ, which proves the claim.

By definition, a consequence of Claim 6 is that q and every process p ∈ CN q(γ) do not belong to PFree(γ).
Hence, Claims 5 and 6 imply that ∀p ∈ PFree(γ), p ∈ CN t(γ) \ ({q} ∪ CN q(γ)). So, by letting X = CN t(γ) \
({q} ∪ CN q(γ)), we have Pstrong(X, γ) and PFree(γ) ⊆ X , and we are done.

We now prove No Livelock.

Lemma 13. Let e = (γj)j≥0 be an execution of LRA ◦ T C, i ≥ 0 such that T C is stabilized in γi (i is defined
by Lemma 5), and t ∈ V the unique tokenholder in γi. If R(e, i, 6) exists, R(e, i, 6) ≤ M(e, i), and ∀j ∈ {i +
1, . . . , R(e, i, 6)}, PassToken(t) is not executed in step γj−1 7→ γj , then for every k ∈ {R(e, i, 4), . . . ,M(e, i)}:

• γk(t).req 6= ⊥, γk(t).status = Blocked, and

• ∃q ∈ CN t(γk) such that γk(q).status = In and ∀p ∈ PFree(γk) ∩ CN t(γk), p /∈ {q} ∪ CN q(γk).

Proof. Let e = (γj)j≥0 be an execution of LRA ◦ T C and let i ≥ 0 such that T C has stabilized in γi. Let t ∈ V be
the unique tokenholder in γi. Assume that R(e, i, 6) exists, R(e, i, 6) ≤ M(e, i), and ∀j ∈ {i + 1, . . . , R(e, i, 6)},
PassToken(t) is not executed in step γj−1 7→ γj .

Claim 1. ∀j ∈ {R(e, i, 2), . . . , R(e, i, 6)}, ∀p ∈ V , γj(p).token = true if and only if p = t.
Proof of the claim: By hypothesis, TokenReady(p) is constant between γi and γR(e,i,6). So, if p.token = TokenReady(p)
in some configuration γ between γi and γR(e,i,2), then p.token = TokenReady(p) holds in all configurations between
γ and γR(e,i,6), sinceRsT -action is disabled at p in all these configurations. Since by hypothesis, TokenReady(p) ≡
(p = t) in all configurations between γi and γR(e,i,6), we are done. Assume, otherwise, that p.token 6= TokenReady(p)
in all configurations between γi and γR(e,i,2), then RsT -action (the highest priority action) is continuously enabled at
p until p executes it. Now, in this case, p executes it within at most 2 rounds (Remark 1), hence, there is a configuration
between γi and γR(e,i,2), where p.token = TokenReady(p), a contradiction.

Claim 2. γR(e,i,4)(t).status = Blocked.
Proof of the claim: Assume, by the contradiction, that γR(e,i,4)(t).status 6= Blocked.

(a) Assume γR(e,i,2)(t).status = In. If t.req = ⊥, then t.req = ⊥ holds in all configurations between γi and
γR(e,i,6), by hypothesis. Moreover, RsT -action is disabled at t in all configurations between γR(e,i,2) and
γR(e,i,6), by Claim 1. Hence, by Remark 1, t executes Ex-action within two rounds from γR(e,i,2), and then
RlT -action within at most two more rounds. By this latter action, t releases the token by PassToken(t), a
contradiction.

Assume now that t.req 6= ⊥ in γR(e,i,2). Then, by hypothesis, t.req 6= ⊥ holds in all configurations between
γR(e,i,2) and γR(e,i,6). Similarly to the previous case, t releases the token by executing RlT -action within two
rounds from γR(e,i,2), a contradiction.

22

(b) Assume γR(e,i,2)(t).status = Out. If t.req = ⊥, then t.req = ⊥ holds in all configurations between γi and
γR(e,i,6), by hypothesis. Similarly to the previous case, t releases the token by executing RlT -action within
two rounds from γR(e,i,2), a contradiction.

Assume now that t.req 6= ⊥ in γR(e,i,2). Then, by hypothesis, t.req 6= ⊥ holds in all configurations be-
tween γR(e,i,2) and γR(e,i,6). Moreover, RsT -action is disabled at t in all configurations between γR(e,i,2) and
γR(e,i,6), by Claim 1. Hence, t sets t.status to Wait by R-action within two rounds from γR(e,i,2) (Remark 1).
Then, by Claim 1, t = Winner(t) in all subsequent configurations until γR(e,i,6). After executing R-action,
if IsBlocked(t), then by Claim 1, there exists q ∈ CN p(γ) such that q.status = In and q.req 6
 t.req. By
hypothesis, q.status = In and q.req 6
 t.req until at least γM(e,i). So, within at most two more rounds (Re-
mark 1), t.status is set to Blocked and t.status does not change until at least γM(e,i) (withR(e, i, 6) ≤M(e, i))
due to q, hence γR(e,i,4)(t).status = Blocked, a contradiction. Assume otherwise that IsBlocked(t) does not
hold after t executes R-action. E-action is continuously enabled at t until t executes it, since by Claim 1
t = Winner(t) in all configurations until γR(e,i,6). So, t executes E-action within two rounds (Remark 1),
and by this latter action, t releases the token by PassToken(t), a contradiction.

(c) Assume γR(e,i,2)(t).status = Wait. We obtain a contradiction similarly to the second part of the previous case.

(d) Assume γR(e,i,2)(t).status = Blocked. We obtain a contradiction similarly to the second part of Case (b).

Claim 3. IsBlocked(t) in all configurations between γR(e,i,4) and γM(e,i).
Proof of the claim: Assume first there a configuration γb between γR(e,i,2)(t) and γR(e,i,4)(t) such that IsBlocked(γb(t)).
Then, IsBlocked(γb(t)) implies ¬ResourceFree(γb(t)), by Claim 1. Now, by hypothesis, no process ends its crit-
ical section until at least γM(e,i). So, IsBlocked(t) holds in all configurations between γb and γM(e,i), and we are
done.

Assume otherwise that ¬IsBlocked(t) in every configuration between γR(e,i,2)(t) and γR(e,i,4)(t). t cannot ex-
ecutes B-action during γR(e,i,2)(t) . . . γR(e,i,4)(t). So, if γR(e,i,2)(t).status 6= Blocked, then γR(e,i,4)(t).status 6=
Blocked, contradicting Claim 2. Otherwise,Unblock(t) holds in every configuration between γR(e,i,2)(t) and γR(e,i,4)(t)
until t.status = Wait. Then, asRsT -action is disabled at t in all configurations between γR(e,i,2) and γR(e,i,6) (Claim
1), t switches t.status to Wait by UB-action before γR(e,i,4) (Remark 1) and again t.status remains equal to Wait
until at least γR(e,i,4), contradicting Claim 2.

By Claims 2 and 3, t.status = Blocked in all configurations between γR(e,i,4) and γM(e,i). By Claims 1 and
3, and the hypotheses of the lemma, there is a neighbor q of p such that q.req 6
 t.req and q.status = In in all
configurations γk between γR(e,i,4) and γM(e,i). By definition, q ∈ CN t(γk), γk(t).req 6= ⊥, and γk(q).req 6= ⊥.
Finally, by definition of PFree, ∀p ∈ PFree(γk) ∩ CN t(γk), p /∈ {q} ∪ CN q(γk), indeed no process in PFree can be
neighbor of a requesting process with status In (hence in critical section) using a conflicting resource.

Lemma 14. Let e = (γj)j≥0 be an execution of LRA ◦ T C, i ≥ 0 such that T C is stabilized in γi (i is defined
by Lemma 5), and t ∈ V the unique tokenholder in γi. If R(e, i, 4n + 2) exists and R(e, i, 4n + 2) ≤ M(e, i) and
∀j ∈ {i + 1, . . . , R(e, i, 4n + 2)}, PassToken(t) is not executed in step γj−1 7→ γj , then for all k ∈ {R(e, i, 4n +
2), . . . ,M(e, i)},

PFree(γk) \ CN t(γk) = ∅

Proof. Let e = (γj)j≥0 be an execution of LRA◦T C. Let i ≥ 0 such that T C is stabilized in γi. Let t ∈ V the unique
tokenholder in γi. Assume thatR(e, i, 4n+2) exists,R(e, i, 4n+2) ≤M(e, i), and ∀j ∈ {i+1, . . . , R(e, i, 4n+2)},
PassToken(t) is not executed in step γj−1 7→ γj .

Claim 1. ∀j ∈ {R(e, i, 2), . . . , R(e, i, 4n+ 2)}, ∀p ∈ V , γj(t).token = true if and only if p = t, and RsT -action
is disabled at p in γj .
Proof of the claim: Identical to the proof of Claim 1 in Lemma 13.

23

Then, PFree contains only requesting processes p (p.req 6= ⊥) with no neighbor q using a resource conflicting
with the requested one (namely, such that q.status = In and q.req 6
 p.req). So, no process can enter PFree during
γi . . .M(e, i) since no new request occurs and no critical section is released.

Let j ∈ {R(e, i, 2), . . . , R(e, i, 4(n − 1) + 2)}. If PFree(γj) \ CN t(γj) is empty, then it remains so until
γR(e,i,4n+2). Otherwise, let q = max{x ∈ PFree(γj) \ CN p(γj)}. In the worst case, q has status Out, it reaches
status Wait in at most 2 rounds (by Claim 1 and Remark 1). Either q exited PFree in the meantime, i.e., a process
with status Wait entered its critical section meanwhile and is using a conflicting resource, or q reaches status In (using
E-action) in at most 2 additional rounds (by Claim 1 and Remark 1). Indeed, in the latter case, IsBlocked(q) does
not hold since q ∈ PFree ensures that ResourceFree(q) and since it has no conflicting neighbor holding the token
by assumption; furthermore, q = Winner(q) by definition. Hence, at most 4 rounds later, q has exited PFree.

Repeating the reasoning n times ensures that in configuration γR(e,i,4n+2) the setPFree(γR(e,i,4n+2))\CN t(γR(e,i,4n+2))
is empty. Then, as long as no critical section is released and no new request occurs, PFree remains empty.

Lemma 15. Let e = (γj)j≥0 be an execution of LRA ◦ T C and i ≥ 0 such that T C is stabilized in γi (i is defined by
Lemma 5). If R(e, i, 6n(Ntok + 1)) exists and R(e, i, 6n(Ntok + 1)) ≤M(e, i), then

• either for every k ∈ {R(e, i, 6n(Ntok + 1)), . . . ,M(e, i)}, PFree(γk) = ∅, or

• for every k ∈ {R(e, i, 6n(Ntok + 1)− 6), . . . ,M(e, i)− 1}, PassToken is not executed in step γk 7→ γk+1.

Proof. Let e = (γj)j≥0 be an execution of LRA ◦ T C. Let i ≥ 0 such that T C has stabilized at γi. Assume that
R(e, i, 6n(Ntok + 1)) exists and R(e, i, 6n(Ntok + 1)) ≤M(e, i).

Similarly to the proof of Lemma 14, PFree cannot increase, hence if it is empty at some configuration γk with
k ∈ {R(e, i, 6n(Ntok + 1)), . . . ,M(e, i)}, we are done.

Let k ∈ {R(e, i, 6n(Ntok + 1)), . . . ,M(e, i)}. Assume PFree(γk) 6= ∅ and let p ∈ PFree(γk). We deduce from
Lemma 13, that if PassToken has not been executed by the tokenholder, during 6 consecutive rounds, then the token
will stay at this process until M(e, i). Furthermore, properties of T C ensures that after at most Ntok executions of
PassToken the token will reach p. Then, at the latest, at configuration γR(e,k,6Ntok) (6Ntok rounds later), the token
is either blocked until M(e, i) at some process (but not p) or has passed through p. Let consider the second case: if
when the token is at p, PFree still contains p, then, after at most 6 additional rounds (still by Lemma 13), p has access
to critical section and exits PFree.

Repeating this reasoning n times, we have that in at most 6n(Ntok + 1) rounds, either PFree is empty or the token
is blocked until M(e, i).

Lemma 16. Algorithm LRA ◦ T C meets the No Livelock property of strong concurrency: there exists a number of
rounds TPC > 0 such that for every execution e = (γi)i≥0 and for every index i ≥ 0, if R(e, i, TPC) exists, then

R(e, i, TPC) ≤M(e, i)⇒ ∃X,Pstrong(X, γR(e,i,TPC)) ∧ PFree(γR(e,i,TPC)) ⊆ X

Proof. We pose TPC = Ttok + 6n(Ntok + 1) + 4n− 4. Let e = (γi)i≥0 be an execution of LRA◦ T C and let i ≥ 0.
Assume thatR(e, i, TPC) exists andR(e, i, TPC) ≤M(e, i). After Ttok rounds, T C has stabilized. Using Lemma 15,
we have two cases:

1. After Ttok + 6n(Ntok + 1), PFree is empty and remains so until M(e, i). In this case, we are done.

2. For every k ∈ {R(e, i, 6n(Ntok + 1)− 6), . . . ,M(e, i)− 1}, PassToken is not executed in step γk 7→ γk+1.
Note that this implies that PassToken is not executed during the last 6 rounds by the tokenholder t: this
allows to apply Lemma 13: there exists a conflicting neighbor of t, q, such that ∀p ∈ PFree ∩ CN t(γk),
p /∈ {q} ∪ CN q(γk).

As t holds the token from configurationR(e, i, 6n(Ntok+1)−6) to configurationM(e, i), and asR(e, i, Ttok+
6n(Ntok + 1) + 4n− 4) ≤M(e, i), we can apply Lemma 14 between configuration R(e, i, Ttok + 6n(Ntok +
1) − 6) and R(e, i, Ttok + 6n(Ntok + 1) + 4n − 4): this proves that PFree(γR(e,i,Ttok+6n(Ntok+1)+4n−4)) \
CN t(γR(e,i,Ttok+6n(Ntok+1)+4n−4)) is empty.

24

By Lemmas 12 and 16, follows.

Theorem 7. Algorithm LRA ◦ T C is strongly concurrent.

9 Conclusion
We characterized the maximal level of concurrency we can obtain in resource allocation problems by proposing the
notion of maximal concurrency. This notion is versatile, e.g., it generalizes the avoiding `-deadlock [3] and (strict)
(k,`)-liveness [11] defined for the `-exclusion and k-out-of-`-exclusion, respectively. From [3], we already know
that maximal concurrency can be achieved in some important global resource allocation problems.5 Now, perhaps
surprisingly, our results show that maximal concurrency cannot be achieved in problems that can be expressed with
the LRA paradigm. However, we showed that strong concurrency (an high, but not maximal, level of concurrency) can
be achieved by a snap-stabilizing LRA algorithm. We have to underline that the level of concurrency we achieve here is
similar to the one obtained in the committee coordination problem [12]. Defining the exact class of resource allocation
problems where maximal concurrency (resp. strong concurrency) can be achieved is a challenging perspective.

References
[1] E. W. Dijkstra, Solution of a Problem in Concurrent Programming Control, Commun. ACM 8 (9) (1965) 569.

[2] L. Lamport, A New Solution of Dijkstra’s Concurrent Programming Problem, Commun. ACM 17 (8) (1974)
453–455.

[3] M. J. Fischer, N. A. Lynch, J. E. Burns, A. Borodin, Resource Allocation with Immunity to Limited Process
Failure (Preliminary Report), in: 20th Annual Symposium on Foundations of Computer Science, San Juan,
Puerto Rico, 29-31 October 1979, 1979, pp. 234–254.

[4] M. Raynal, A Distributed Solution to the k-out of-M Resources Allocation Problem, in: Advances in Computing
and Information - ICCI’91, International Conference on Computing and Information, Ottawa, Canada, May
27-29, 1991, Proceedings, 1991, pp. 599–609.

[5] E. W. Dijkstra, Two Starvation-Free Solutions of a General Exclusion Problem, Tech. Rep. EWD 625,
Plataanstraat 5, 5671, AL Nuenen, The Netherlands (1978).

[6] C. Boulinier, F. Petit, V. Villain, When Graph Theory Helps Self-Stabilization, in: Proceedings of the Twenty-
Third Annual ACM Symposium on Principles of Distributed Computing, PODC 2004, St. John’s, Newfoundland,
Canada, July 25-28, 2004, 2004, pp. 150–159.

[7] S. Cantarell, A. K. Datta, F. Petit, Self-Stabilizing Atomicity Refinement Allowing Neighborhood Concurrency,
in: Self-Stabilizing Systems, 6th International Symposium, SSS 2003, San Francisco, CA, USA, June 24-25,
2003, Proceedings, 2003, pp. 102–112.

[8] M. G. Gouda, F. F. Haddix, The Alternator, Distributed Computing 20 (1) (2007) 21–28.

[9] S. Huang, The Fuzzy Philosophers, in: Parallel and Distributed Processing, 15 IPDPS 2000 Workshops, Cancun,
Mexico, May 1-5, 2000, Proceedings, 2000, pp. 130–136.

[10] M. Nesterenko, A. Arora, Stabilization-Preserving Atomicity Refinement, J. Parallel Distrib. Comput. 62 (5)
(2002) 766–791.

[11] A. K. Datta, R. Hadid, V. Villain, A Self-Stabilizing Token-Based k-out-of-l-Exclusion Algorithm, Concurrency
and Computation: Practice and Experience 15 (11-12) (2003) 1069–1091.

5By “global” we mean resource allocation problems where a resource can be accessed by any process.

25

[12] B. Bonakdarpour, S. Devismes, F. Petit, Snap-Stabilizing Comittee Coordination, in: 25th IEEE International
Symposium on Parallel and Distributed Processing IPDPS 2011, Anchorage, Alaska, USA, 16-20 May, 2011 -
Conference Proceedings, 2011, pp. 231–242.

[13] A. Bui, A. K. Datta, F. Petit, V. Villain, Snap-Stabilization and PIF in Tree Networks, Distributed Computing
20 (1) (2007) 3–19.

[14] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, Commun. ACM 17 (11) (1974) 643–644.
doi:10.1145/361179.361202.
URL http://doi.acm.org/10.1145/361179.361202

[15] M. Gradinariu, S. Tixeuil, Conflict managers for self-stabilization without fairness assumption, in: 27th IEEE
International Conference on Distributed Computing Systems (ICDCS 2007), June 25-29, 2007, Toronto, Ontario,
Canada, 2007, p. 46.

[16] S. Dolev, A. Israeli, S. Moran, Uniform Dynamic Self-Stabilizing Leader Election, IEEE Trans. Parallel Distrib.
Syst. 8 (4) (1997) 424–440.

[17] K. Altisen, S. Devismes, On Probabilistic Snap-Stabilization, in: ICDCN’2014, 15th International Conference
on Distributed Computing and Networking, LNCS, Coimbatore, India, 2014, pp. 272–286.

[18] A. K. Datta, R. Hadid, V. Villain, A new self-stabilizing k-out-of-l exclusion algorithm on rings, in: Self-
Stabilizing Systems, 6th International Symposium, SSS 2003, San Francisco, CA, USA, June 24-25, 2003,
Proceedings, 2003, pp. 113–128.

[19] S. Dolev, Self-stabilization, MIT Press, 2000.

[20] A. Cournier, S. Devismes, V. Villain, Light Enabling Snap-Stabilization of Fundamental Protocols, TAAS 4 (1).

[21] A. K. Datta, C. Johnen, F. Petit, V. Villain, Self-Stabilizing Depth-First Token Circulation in Arbitrary Rooted
Networks, Distributed Computing 13 (4) (2000) 207–218.

[22] S. Huang, N. Chen, Self-Stabilizing Depth-First Token Circulation on Networks, Distributed Computing 7 (1)
(1993) 61–66.

[23] A. Arora, M. G. Gouda, Distributed Reset, IEEE Trans. Computers 43 (9) (1994) 1026–1038.

[24] S. Dolev, T. Herman, Superstabilizing Protocols for Dynamic Distributed Systems, Chicago J. Theor. Comput.
Sci. 1997.

[25] A. K. Datta, L. L. Larmore, P. Vemula, Self-stabilizing Leader Election in Optimal Space under an Arbitrary
Scheduler, Theor. Comput. Sci. 412 (40) (2011) 5541–5561.

[26] K. Altisen, A. Cournier, S. Devismes, A. Durand, F. Petit, Self-stabilizing Leader Election in Polynomial Steps,
in: Stabilization, Safety, and Security of Distributed Systems - 16th International Symposium, SSS 2014, Pader-
born, Germany, September 28 - October 1, 2014. Proceedings, 2014, pp. 106–119.

26

