Self-Stabilizing Labeling and Ranking in Ordered

Trees™

Ajoy K. Datta®, Stéphane Devismes®, Lawrence L. Larmore?®, Yvan Rivierre®

%School of Computer Science, University of Nevada Las Vegas
YVERIMAG UMR 5104, Université Joseph Fourier, Grenoble

Abstract

We give two self-stabilizing algorithms for tree networks. The first computes
an index, called guide pair, for each process P in O(h) rounds using O(d» logn)
space per process, where h is the height of the tree, d,, the degree of P, and n the
number of processes in the network. Guide pairs have numerous applications,
including ordered traversal or navigation in the tree. Our second algorithm,
which uses the guide pairs computed by the first algorithm, solves in O(n)
rounds the ranking problem for an ordered tree, where each process has an
input value. This second algorithm has space complexity O(b+ d logn) in each
process P, where b is the number of bits needed to store an input value. The first
algorithm orders the tree processes according to their topological positions. The
second algorithm orders (ranks) the processes according to their input values.

Keywords: Self-stabilization, tree networks, tree labeling, guide pair, ranking.

1. Introduction

Self-stabilization [1, 2] is a useful property, enabling a distributed algorithm
to withstand transient faults. A distributed algorithm is self-stabilizing if, after
transient faults hit the system and place it in some arbitrary global state, the
system recovers without external intervention in finite time.

An ordered tree T is a rooted tree, together with a left-to-right order on
the children of each node. In this paper, we give two self-stabilizing distributed
algorithms for ordered trees. Neither of the algorithms assumes knowledge of
the size, n, of the tree, nor requires a known upper bound of n; although, as is
customary in the literature, we assume that each process can store an integer
in the range 1..n, using O(logn) space.

*This work has been partially supported by the ANR project ARESA2.

Preprint submitted to Theoretical Computer Science

(12,8)

(6,14)

Figure 1: An ordered tree, labeled with guide pairs.

Our first algorithm, GUIDE, computes a guide pair for each process P, which
we write as P.guide = (P.pre_ind, P.post_ind), where P.pre_ind and P.post_ind
are the rank of P in the preorder and reverse postorder traversal, respectively, of
the ordered tree. Figure 1 shows an example of ordered tree labeled with guide
pairs. The guide pairs provide a labeling scheme that can be used for various
applications [3]. In this paper, we use these labels to navigate in the tree T.

Our second algorithm, RANK, makes use of the guide pairs computed by
GUIDE. The input of our second algorithm consists of a weight P.weight, of
some ordered type, for each process P. RANK computes the rank of each
process, i.e., the node of smallest weight is given rank 1, the second smallest
rank 2, and so forth.

1.1. Contributions

GUIDE has round complexity O(h), where h is the height of 7. The round
complexity of RANK is O(n). The space complexity of GUIDE in each process
P is O(0plogn), where ¢, is the degree of P. RANK, which uses GUIDE as a
subroutine, has space complexity O(b+J, logn) in each process P, where b is the
number of bits needed to store a weight. GUIDE and RANK are self-stabilizing.
GUIDE is silent, that is, it eventually reaches a final configuration, where all
actions are disabled. RANK correctly computes the rank of every process within
O(n) rounds, but is not silent. The ranks do not change once the system sta-
bilizes. However, the algorithm repeatedly computes those ranks. If the weight
do not change, the repeated computation of RANK will be transparent to any
application that uses the output of RANK.

1.2. Related Work
The notion of guide pairs appeared first in [3], but the computation given
in that paper is not self-stabilizing. To the best of our knowledge, there is

no previously published self-stabilizing algorithm for computing guide pairs;
however, there exist several self-stabilizing algorithms for other kinds of labeling,
e.g., [4, 5]. Notice that our guide pair algorithm is a simple instantiation of the
general approach given in [5], however we show the correctness of our algorithm
assuming a distributed scheduler, while [5] assumes a central one.

The only previous self-stabilizing algorithm for the ranking problem is given
in [6]. This algorithm works in rooted trees. Like ours, that algorithm is not
silent. Unlike ours, it also assumes that each process has a unique identifier in
the range 1..n. The algorithm stabilizes in O(nh) rounds using O(logn) space
per process, where h is the height of the tree.

The ranking problem is related to the sorting problem. There are numerous
self-stabilizing solutions for sorting in a tree, e.g., [7, 8, 9].

1.3. Roadmap

In the next section, we describe the model we use throughout this paper. In
Section 3, we give our self-stabilizing silent algorithm, GUIDE, for computing
guide pairs. In Section 4, we give our self-stabilizing algorithm, RANK, for the
ranking problem.

2. Preliminaries

Let G = (V, E) be an undirected graph, where V is a set of nodes and F
is a set of undirected edges linking nodes. Two nodes P,Q € V are said to be
neighbors if {P,Q} € E. The set of neighbors of P is denoted N(P). The degree
of P i.e., IN(P)|, is denoted by dp. G = (V, E) is a tree if it is connected and
acyclic. A tree T can be rooted at some node, meaning that one of its nodes,
Root, is distinguished to be the root. In a rooted tree 7, we denote by P.par
the parent of node P in T; if P = Root, then P.par = P; otherwise P.par = Q,
where () is the neighbor of P that is on the shortest path from P to Root. Let
Chldrn(P) = {Q € N(P) : Q.par = P}, the children of P in the tree 7. An
ordered tree is a rooted tree T, together with a local order, <p, (which we call
“left-to-right”) on the children of every node. Let Py, P, ... P,, be the children
of the root of 7 in the left-to-right order. We denote by 7; the subtree of T
rooted at P;.

In this paper, we assume the network is an ordered tree 7. We denote
by h(P) the height of process P in T, i.e., its distance to the root, and let
h = maxpey h(P), the height of T.

2.1. Computational Model

We consider the locally shared memory model, introduced by Dijkstra [1].
In this model, each process holds a finite set of shared wvariables. A process
P can read its own variables and that of its neighbors, but can write only to
its own variables. We also assume that, for any Q € N(P), P can determine
whether Q.par = P. A distributed algorithm A is a collection of n programs,
each one operating on a single process. The program of each process P in A,

noted A(P), is a finite set of actions (label) :: (guard) — (statement). Labels
are only used to identify actions in the discussion. The guard of an action in the
program of a process P is a Boolean expression involving the variables of P and
its neighbors. The statement of an action of P updates one or more variables
of P. An action can be executed only if it is enabled, i.e., its guard evaluates
to TRUE. A process is said to be enabled if at least one of its actions is enabled.

Let A be a distributed algorithm operating of a network G. The values of
A’s variables at some process P define the (local) state of P. A configuration
of A in G is defined to be a vector consisting a local state of P for every P in
G.

Let — be the binary relation over configurations of A in G such that v — +/
if and only if it is possible for the configuration 7 to change to configuration '
in one step of A. An ezxecution of A is a maximal sequence of configurations
0= "YY1---%-..such that v,_, — ~, for all i > 0. The term “maximal” means
that the execution is either infinite, or ends at a final configuration in which
no action of any process is enabled. Each step v, — 7,,; consists of one or more
enabled processes executing an enabled action. The evaluations of all guards
and executions of all statements of those actions are presumed to take place in
one atomic step. This model is called composite atomicity [2].

We say that a process P is neutralized in the step v, — ~,,, if P is enabled
in 7, and not enabled in 7,,,, but does not execute any action at that step.

We assume that each step from a configuration to another is driven by a
scheduler, also called a daemon. If one or more processes are enabled, the
scheduler selects at least one of these enabled processes to execute an action.
We assume that the scheduler is weakly fair, meaning that, every continuously
enabled process is eventually selected by the scheduler. We say that an execution
YoY1 -+ ... is weakly fair if every process that is enabled at any -+, either
executes an action or is neutralized at Step j for some j > i. Assuming the
weakly fair scheduler is equivalent to the assumption that the scheduler never
chooses an infinite execution that is not weakly fair.

To describe the time complexity of a distributed algorithm, we use the notion
of round. The first round of an execution ¢ is defined to be the minimal prefix
Yo+ +; of o in which every process that is enabled in the initial configuration
either executes an action or becomes neutralized. The second round is the first
round of the suffix of p starting in ~;, and so forth.

2.2. Self-stabilization and Silence
Suppose P is a predicate defined on all configurations of A on a network G.
A distributed algorithm A is self-stabilizing with respect to IP on a network G if

1. (Closure) If v is a configuration of A on G and v — 4’ is a step, then
P(y) = P(v).

2. (Convergence) Every weakly fair execution of A4 on G eventually satisfies
P.

Each algorithm given in this paper is associated with a specified legitimacy
predicate, and we simply say that a configuration of that algorithm is legitimate
if it is legitimate with respect to that predicate.

We say that an algorithm is silent [10] under the weakly fair daemon if every
weakly fair execution of that algorithm is finite. In other words, starting from
an arbitrary configuration, the network will eventually reach a configuration
where no process is enabled.

2.8. Composition

We make use of hierarchical collateral composition [11], a variant of collateral
composition [12]. When we collaterally compose two algorithms A and B, they
run concurrently and B uses some of the outputs of A as inputs. In the variant
we use, we modify the code of B(P) (for every process P) so that P executes
an action of B(P) only when it has no enabled action in A(P).

Let A and B be two (distributed) algorithms such that no variable written
by B appears in A. In the hierarchical collateral composition of A and B, noted
Bo A, the (local) program of every process P, B(P)o A(P), is defined as follows:

e B(P) o A(P) contains all variables of A(P) and B(P).
e B(P) o A(P) contains all actions of A(P).

e For every action G; — S; of B(P), B(P)o.A(P) contains the action ~Dp A
G; — S, where Dp is the disjunction of all guards of actions in A(P).

The following sufficient condition is given in [11]:

Theorem 1. The composite algorithm Bo A is self-stabilizing w.r.t. a predicate
P on a network G assuming a weakly fair daemon if the following conditions

hold:

(a) Algorithm A is silent and self-stabilizing with respect to a predicate A on
G under the weakly fair daemon.

(b) Algorithm B is self-stabilizing with respect to P under the weakly fair
daemon, provided predicate A holds and A is in a final configuration.

Part (b) of Theorem 1 means that, if p is a weakly fair execution of B such that
the variables of A satisfy A and never change, then P eventually holds.

3. Computing Guide Pairs

8.1. Guide Pairs

Recall that we denote by Pi, Ps,... P, the children of the root of T in the
left-to-right order, and we denote by 7; be the subtree rooted at any P;. The
preorder traversal of T is defined, recursively, as follows:

1. Visit the root of 7.

2. For each i from 1 to m in increasing order, visit the nodes of 7; in preorder.

The reverse postorder traversal is defined similarly:
1. Visit the root of 7.
2. For i from m to 1 in decreasing order, visit the nodes of 7; in reverse
postorder.

If a node P is the i*" node of T visited in a preorder traversal of T, we say
that the preorder rank of P is i. If a node P is the j*" node of T visited in a
reverse postorder traversal of 7, we say that the reverse postorder rank of P is
j. Write pre_ind(P) and post_ind(P) for the preorder rank and reverse postorder
rank of P, respectively. We define the guide pair of P to be the ordered pair
guide(P) = (pre_ind(P), post_ind(P)). Figure 1 (page 2) shows an ordered tree
where each process is labeled with its guide pair.

We define a partial order on guide pairs: (i,7) < (k,¢) iff i < k and j < £.

Remark 2. [Property 1in [3]] If P and Q are nodes of an ordered tree T,
then guide(P) < guide(Q) if and only if P is an ancestor of Q.

3.2. Algorithm GUIDE

Algorithm GUIDE is a hierarchical collateral composition of two algorithms:
GUIDE = CGP o COUNT, where both COUNT and CGP (for Compute Guide
Pairs) use P.par as input in the program of every process P.

8.2.1. Algorithm COUNT

COUNT is implemented as a bottom-up wave that computes the number of
processes in each subtree. Each process P has only one variable: P.subcount,
and one function: Subcount(P) =1+ ZQeChldrn(P) Q.subcount, and COUNT
has only one action:

SetCnt :: P.subcount # Subcount(P) +— P.subcount + Subcount(P)

The legitimacy predicate of COUNT is simply that P.subcount = || 7Tp|| for all
P, where || 7p|| is the number of nodes in Tp.

Lemma 3. COUNT is self-stabilizing and silent, and converges within h + 1
rounds from an arbitrary initial configuration to a legitimate configuration.

Proof: By induction on the height of 7p. Within one round, P.subcount = 1 if
P is aleaf of T. Otherwise, If Tp has height ¢, then, by the inductive hypothesis,
for every child @ of P, Q.subcount = ||Tg|| if at least ¢ rounds have elapsed, and
thus Subcount(P) = || Tp||. Within one more round, P.subcount = ||Tp||. O

8.2.2. Algorithm CGP

Using the values of subcount computed by COUNT, each process P eval-
uates in CGP for each of its children @) the number of processes before @ in
the preorder and reverse postorder traversal of the tree T, respectively (using
Actions SetChldPrePred and SetChldPostPred, respectively). Then, reading
these values from its parent, each process, except the root, can compute its
guide pair (using Actions SetPreInd and SetPostInd). The guide pair of the
root is (1,1) (see Actions SetPreInd and SetPostInd for the root).

Variables of CGP. The following array variable enables each non-root process
to know its index in the local left-to-right order of its parent:

1. P.child[k] € N(P), for all 1 <k <4, — 1.
This array is maintained by Action SetChld. For all 1 < k < §, — 1,
P.child[k] is set to the k*® child in P’s local ordering of Chldrn(P).

CGP uses the following additional variables:

2. P.pre_ind, P.post_ind, integers, which converge to the preorder and re-
verse postorder ranks of P, respectively. Thus, we will write P.guide =
(P.pre_ind, P.post_ind), the guide pair of P.

3. P.chld_pre_pred[k]|, P.chld_post_pred[k], integers, defined for all 1 < k <

0p — 1:
For all 1 < k < §, — 1, P.chld_pre_pred[k] is set to the number of prede-
cessors of the k'™ child of P (that is, P.child[k]) in the preorder traversal
of T; and P.chld_post_pred[k] is set to the number of predecessors of the
k™ child of P in the reverse postorder traversal of 7.

Hence, each process P computes its guide pair to be
(P.par.chld_pre_pred[k] + 1, P.par.chld_post_pred[k] + 1)
where k is the index of P in left-to-right order of its parent.

Functions of CGP. Using its variables and those of its neighbors, each process
P can compute the following functions:

e my_order(P). (Only defined for non-root processes.)

If there exists k, 1 < k < dp.par — 1, such that P.par.child[k] = P, then
my-order(P) returns k. Otherwise, the values in P.par.child have not
stabilized yet and my_order(P) returns 1.

Once the system has stabilized, my_order(P) returns the index of the
non-root process P in the local left-to-right order of its parent.

o Chld_index(Q) = {Q' € Chldrn(P) : Q' <p Q} + 1. Chld-index(Q)
returns the index of the child @ of process P in the local left-to-right
order of P.

e Eval_child(k) returns the local name of the k' child of P. That is,
Eval_child(k) returns @ € Chldrn(P) such that Chld_index(Q) = k.

o Fwal_child_pre_pred (k). If k = 1, then Ewal_child_pre_pred (k) returns
P.pre_ind, else Fuval_child_pre_pred(k) returns P.chld_pre_pred[k — 1] +
P.child[k — 1].subcount.

Once the system has stabilized, Eval_child_pre_pred(k) returns the number
of predecessors of the k' child of P in the preorder traversal of T.

o FEuval_child_post_pred(k). If k = 6, —1, then Eval_child_post_pred (k) returns
P.post_ind, else Eval_child_post_pred(k) returns P.chld_post_pred[k + 1] +
P.child[k + 1].subcount.

Once the system has stabilized, Eval_child_post_pred(k) returns the num-
ber of predecessors of the k™ child of P in the reverse postorder traversal

of T.

Actions of CGP. Actions of CGP are given below. To simplify the presentation,
we assume priorities on actions, and list them below in the order from the highest
to the lowest priority. If several actions are enabled simultaneously at a process,
only the one of the highest priority can be executed. In other words, the actual
guard of any action “L :: G +— 57 of process P is =D A G, where D is the
disjunction of the guards of all actions at P that appear earlier in the list.

For every process P:
SetChld i 3k € [1..6p — 1], P.child[k] # Eval_child(k)
— Vk € [1..6p — 1], P.child[k] < Ewval_child(k)

SetChldPrePred i Jk € [1..6p — 1], P.chld_pre_pred[k] # Ewval_child_pre_pred(k)
— Vk € [1..6p — 1], P.chld_pre_pred|k] < Eval_child_pre_pred(k)

SetChldPostPred :: 3k € [1..6p — 1], P.chld_post_pred[k] # Eval_child_post_pred (k)
— Vi € [1..6p — 1], P.chld_post_pred[k] < Ewval_child_post_pred (k)

For the root process Root only:
SetPrelInd i Root.pre_ind # 1 — Root.pre_ind < 1

SetPostInd :: Root.post_ind # 1 — Root.post_ind <— 1

For every non-root process P only:
SetPrelnd it P.pre_ind # 1 + P.par.chld_pre_pred[my_order(P)]
— P.pre_ind < 1 + P.par.chld_pre_pred[my-order(P)]

SetPostInd :: P.post_ind # 1+ P.par.chld_post_pred[my_order(P)]
— P.post_ind < 1 + P.par.chld_post_pred[my_order(P)]

Overview of CGP. We now give an intuitive explanation of how CGP com-
putes the values of P.pre_ind for all P. The values of P.post_ind are computed
similarly.

Suppose that P is the i*® process visited in a preorder traversal of T i is the
correct value of P.pre_ind. CGP works by computing Num_Preorder_Preds(P),
the number of predecessors of P in the preorder traversal, which is the correct
value of P.pre_ind — 1.

First, by definition, Num_Preorder_Preds(Root) = 0. Then, for every non-
root process P, Num_Preorder_Preds(P) is computed by P.par and stored in the
variable P.par.chld_pre_pred|[k], where P is the k'™ child of P.par in left-to-right
order. In order to compute these values for all its children, P.par must have
computed its own value of pre_ind as well as the sizes of all of its subtrees.
If & = 1, then Num_Preorder_Preds(P) = P.par.pre_ind, since P.par is the
immediate predecessor of its leftmost child in the preorder visitation. Thus,
P.par.chld_pre_pred[1] < P.par.pre_ind. P.par.chld_pre_pred[2] is obtained by
adding the subtree size of the leftmost child of P.par to P.par.chld_pre_pred[1],
since all members of that subtree are predecessors of the second child of P.par.

In general, the number of predecessors of P is equal to P.par.pre_ind plus
the sum of the sizes of the leftmost k£ — 1 subtrees of P.par. Similarly, the
values of the array P.par.chld_post_pred are computed from right to left. P then
executes:

P.pre_ind <« P.par.chld_pre_pred[k] + 1
P.post_ind <+ P.par.chld_post_pred[k] + 1

Theorem 4. GUIDE is self-stabilizing and silent, computes the guide pairs of
all processes in O(h) rounds from an arbitrary initial configuration, and works
under the weakly fair scheduler.

Proof: According to Theorem 1 and Lemma 3, to show that GUIDE is self-
stabilizing, it is sufficient to show that CGP stabilizes from any silent legitimate
configuration of COUNT.

In such a configuration, the value of P.subcount is correct for all P. The
variables of CGP are then computed in a top-down wave which takes O(h)
rounds. (We can prove this by induction on the height of processes in the tree,
similar to the proof for COUNT.) Once a legitimate configuration is reached,
no action is enabled.

Finally, the round convergence time of GUIDE is equal to the round con-
vergence time of COUNT (O(h) rounds) plus the number of rounds for CGP
to reach a final configuration from any configuration where the values of all
P.subcount are correct (O(h) rounds). O

4. Rank Ordering

In this section, we give an algorithm, RANK, that uses guide pairs to solve
the ranking problem on an ordered tree, 7. We are given a value P.weight for
each process P in 7. For convenience, we can assume, in the discussion, that the
weights are integers. The problem is to find the rank of each P. If P, Ps, ..., P,
is the list of processes in T sorted by weight, then r is the rank of P,.

Our algorithm RANK is a hierarchical collateral composition of two algo-
rithms: RANK = CRK o GUIDE. RANK computes the rank of each process P
in 7, and sets the variable P.rank to that value. RANK is self-stabilizing but
not silent. It requires O(n) rounds and O(b+ d, logn) space for each process P.

4.1. Owverview of CRK

4.1.1. Flow of Packages

The key part of the algorithm CRK is the flow of packages. Each package
is an ordered pair x = (z.value, x.guide), where z.value is its value and z.guide
is its guide pair. Moreover, for any two packages = and y, we say = > y iff
x.value > y.value.

Each package has a home process (the node from which the package is orig-
inally issued), although its host (location) can be at any process in the chain

between its home and the root. Each process can host up to two packages:
one up-package, that is moving toward the root, and one down-package, that is
moving back to its home. The guide pair of a package is the same as the guide
pair of its home process, and its value is the weight of its home process if it is
an up-package, and the rank that CRK will assign to its home process if it is a
down-package.

Each process P initiates its flow of packages by creating an up-package whose
value is P.weight. This up-package then moves to the root by forward copying.
The flow of packages is organized so that packages with smaller weights reach
the root before packages with larger weights, in a manner similar to the standard
technique for maintaining min-heap order in a tree.

After the root copies an up-package from a child, it creates a down-package
with the same home process as the up-package, but whose value is a number
(a rank) in the range 1.m. The root maintains a counter so that the first
down-package it creates has value 1, the second value 2, and so forth. Each
down-package then moves back to its home process by forward copying. When
its home process copies a down-package, it assigns, or re-assigns, its rank to be
the value of that package.

The purpose (in fact even the name) of the guide pair is now obvious. It is
used to guide the down-package to its home process.

Since the root copies up-packages in weight order, it creates down-packages
in that same order. The r*" down-package created by the root will carry rank 7
and will use the same guide pair as the r*" up-package copied by the root. Its
home process will then be the process whose weight is the rt" smallest in 7.

RANK is not silent, but rather, endlessly repeats its computation. When
the root detects that it has created all down-packages, it initiates a broadcast
wave which resets the variables of CRK (except the rank and weight variables)
and the computation of ranks starts over.

4.1.2. Redundant Packages

In our model of computation, if a variable of a process P is copied by a
neighbor @, it also remains at P. In the algorithm CRK, each process P can
be home to at most one package, but we cannot avoid the existence of multiple
copies of that package (up and/or down). We handle that problem by defin-
ing a package variable currently hosted by a process as being either active or
redundant. A redundant package can be overwritten, but not an active package.

If x is an up-package currently hosted by some process) which is not the
root, then z is redundant if x has already been copied by Q.par. If x is an up-
package currently hosted by the root, then z is redundant if the root has already
created a down-package with the same guide pair as z. Any other up-package
is active.

If = is a down-package hosted by some process () which is not its home
process, then @ is redundant if it has been copied by some child of @. (The
child that copies x must be the process whose subtree contains the home process
of z.) If = is a down-package hosted by its home process P, then z is redundant
if P.rank is equal to the value of x, indicating that P has already copied its rank

10

from x, or that P.rank was correct before x arrived. Any other down-package
is active.

4.1.8. Status Waves

As it is typical for distributed algorithms which are self-stabilizing, but not
silent, CRK endlessly repeats the calculation of the ranks of the processes in
T. We call one (complete) pass through this cycle of computations an epoch.
At the end of each epoch, the variables of CRK at all processes, other than the
variables for weight and rank, are reset for the next epoch. If an epoch has a
“clean start”, it will calculate the correct rank for each process. Subsequent
epochs will simply recalculate the same value, and P.rank will never change
again. Thus, the ranks will eventually appear constant to the application.

On the other hand, in case of an arbitrary initial configuration, it is possible
for incorrect values of rank to be calculated during the first epoch, but eventually
a configuration will be reached where the next epoch will get a clean start.

This system is controlled by the status variables of the processes. Status
management is illustrated in Figure 2. At the beginning of an epoch, a broad-
cast wave starting from the root changes the status of every process from either
0 or 4 to 1, (Figure 2a), and all variables of CRK except rank and weight are set
to their initial values. When this wave reaches the leaves of T, a convergecast
wave changes the status of all processes to 2 (Figure 2b). All computation of the
ranking algorithm, as discussed above, takes place while processes have status
2. Once a process P detects that all processes in its subtree have created their
own up-package and the subtree no longer contains any up-packages, it sets its
Boolean variable P.up_done to TRUE (Figure 2¢). After Root has created the
last down-package, it also satisfies Root.up_done = TRUE, and consequently ini-
tiates a broadcast wave where the status of all processes change to 3 (Figure 2d).
A process propagates the status 3 once its last down-package becomes redun-
dant. The return convergecast wave then changes the status of all processes
to 4 (Figure 2e), and when this wave reaches the root, the new epoch begins
(Figure 2f).

EEE REE T
N w1 N
R V7 S 7 S 2 / R A B
L0404 04 04 o4 04 2 2 2 04 04 Ol
(a) Initial broadcast wave of status 1 re- (b) Convergecast wave to status 2 allows
sets variables. for up-package propagation.

11

22 2 S22 2n 2 2 2 22 2
(¢) Computation continues until (d) The last down-packages are pushed
Root.up_done = TRUE. by broadcast wave of status 3.

338 J4 8 A
4 4 A 4 4 4

a4 4 a4 a4 4 4 a4 a4 4
(e) The final convergecast wave of sta- (f) Once Root has status 4, it starts a new
tus 4 acknowledges receipt of all down- epoch with a status 1 broadcast wave.
packages.

Figure 2: Status waves for a complete cycle of computations.

Status zero is used for error correction. If any process detects that the current

epoch is erroneous, it changes its status to 0. Status 0 spreads down the tree,
as well as up the tree unless it meets a process whose status is 1. If Root.status
becomes 0 (and all its children have status 0 or 4), then Root initiates a status
1 broadcast wave starting a new epoch. However, we must prevent an endless
cycle of 0 and 1 waves going up and down the tree respectively. We solve this
problem by adding a special rule for the non-root processes. If P.status = 0 and
P.par.status = 1, the status 0 wave cannot move up; instead, the status 0 wave
moves only down, followed by the status 1 wave. This is illustrated in Figures

3 and 4.

2 0 00
/K\ //\ RN
/2 /O\ /2 /0\ /O /0\
2 2)\2 2 0 0 2/ 0 0
(a) (b) (©)

12

1 1 1

/)\\ /N /N

0 0 1 1 1 1

SN)N SN

0 0 0 o/ o)\o 1 1 1
(d) (e))

Figure 3: Error correction when root process gets status 0.
1 1 1 1
RN / \\ VAN VRN
1 0 2 0 2 1 2 1
/) /)\\ SN S S)\\ VRN
2 2 2 2 0 0 2 0 0 2 1 1
(a) (b) (c) (d)

Figure 4: Error correction when Root already has status 1.

4.2. Formal Definition of CRK
4.2.1. Variables of CRK

Let P be any process. P.par, P.guide, and P.weight are inputs of CRK. Then,
the output of CRK is P.rank, an integer. To compute this output, P maintains

the following additional variables:

1. P.up_pkg and P.down_pkg are respectively of package type (that is, a guide

pair and an integer) or L (undefined).

If P.up_pkg (resp. P.down_pkg) is defined, then its home process is some

Qe Tp.
2. P.started, Boolean.

This variable indicates that P has already generated its up-package during

this epoch. (P.up_pkg may or may not still contain that up-package.)
3. P.up_done, Boolean.

This variable is TRUE if all processes in Tp have created their up-packages,
and all such active up-packages have moved above P. Active up-packages

whose home processes are in Tp could still exist at processes above P.
4. P.status € [0..4].

Status variables are used to control the order of computation and to correct

€rTors.
Finally, Root contains the following additional variable:

5. Root.counter € N.

This incrementing integer variable assigns the rank to packages. It is

initialized to be 0 every time a new epoch begins.

13

4.2.2. Predicates of CRK
The predicate Clean_State(P) below indicates that P is in a good (“clean”)
initial state.

Clean_State(P) = P.up-pkg =1 A P.down_pkg = L A —P.started N —P.up_done

The following four predicates are used for error detection:

Is_Consistent(P,g) = (g = P.guide) V (3Q € Chldrn(P), g > Q.guide)

Guide_Error(P) = (P.up_pkg # L A —Is_Consistent(P, P.up_pkg.guide)) V
(P.down_pkg # L A —Is_Consistent(P, P.down_pkg.guide))

Status_Error(P) (P.status € {1,3} A P.par.status # P.status) V

(P.status € {2,4} A (3Q € Chldrn(P), Q.status # P.status)) V

(P.status # 0 A P.par.status = 0) V

(P.status € {0,1} A (3Q € Chldrn(P), Q.status = 0))

Error(P)

Status_Error(P) V

(—Clean_State(P) N P.status =1) V

(Guide_Error(P) A P.status = 2) V

(P.up-done A —P.started A P.status = 2) V

(P.up-done A P.status =2 A (3Q € Chldrn(P), =Q.up-done))

We say that a guide pair g is consistent with P if Is_Consistent(P, g) is TRUE.
If Is_Consistent(P, g) is FALSE, ¢ is the guide pair of no process in the subtree of
P. Guide_Error(P) = TRUE means that P holds a package whose home is not in
the subtree of P. The predicate Status_Error(P) indicates that P detects that
its status is inconsistent with those of its neighbors. Status errors are always
the result of arbitrary initialization; eventually, Status_Error(P) will become
FALSE and will remain FALSE forever for all P. Finally, the predicate Error(P)
detects error in the current wave.

The following four predicates are used for flow control:

Up-Redundant(P) = (P # Root A P.up_pkg # L A P.par.up_pkg # L A
P.par.up_pkg > P.up_pkg) V (P = Root A P.up_pkg # L A
P.down_pkg # L N P.down_pkg.guide = P.up_pkg.guide)

Down_Ready(P)

P.down_pkg # L = ((P.down_pkg.guide # P.guide N
(3Q € Chldrn(P), Q.down_pkg = P.down_pkg)) V
(P.down_pkg.guide = P.guide A P.rank = P.down_pkg.value))

Can_Start(P) - P.started N (P.up_pkg = L V Up-Redundant(P)) A
(VQ € Chldrn(P), (Q.up-done V

(= Up-Redundant(Q) AN Q.up_pkg > (P.weight, P.guide))))

Can_Copy-Up(P,Q) = Q € Chldrm(P) N (Q.up-pkg # L AN —Up-Redundant(Q)) A
(P.up-pkg = L Vv Up-Redundant(P)) A
(P.started Vv (P.weight, P.guide) > Q.up_pkg) A
(YR € Chldrn(P), (R.up-done V (R.up_-pkg # LA
= Up_-Redundant(R) A R.up_pkg > Q.up_pkg)))

P.up_pkg is redundant if Up_Redundant(P) is TRUE. Down_Ready(P) states
that P.down_pkg is redundant or undefined, and thus P is permitted to create

14

or copy a new down-package. Can_Start(P) states that P can create its own
package, that is, P can set P.up_pkg to (P.weight, P.guide). Can_Copy_-Up(P,Q)
states that P can copy Q.up_pkg to P.up_pkg. We note that P can evaluate
Up_Redundant(Q) for any @ € Chldrn(P).

4.2.3. Actions of CRK
Actions of CRK are given below. As earlier in the action table of CGP, they

are listed in priority order.

For Root only:

Err 2 Error(Root) — Root.status < 0
NewEpoch it Root.status € {0,4} A — Root.status < 1; counter < 0
(VQ € Chldrn(Root), Root.up_pkg < L; Root.down_pkg + L
Q.status € {0,4}) Root.started < FALSE; Root.up_done <— FALSE
ConvCast :: Root.status =1 A — Root.status < 2
(VQ € Chldrn(Root),
Q.status = 2)
CreateUpPkg it Root.status = 2 N — Root.up_pkg.value <— Root.weight;
Can_Start(Root) Root.up_pkg.guide < Root.guide;
Root.started <— TRUE
CopyUpPkg it Root.status = 2 N — Root.up_pkg < Q.up_pkg,
(3Q € Chldrn(Root), Q= min_<R00t{R € Chldrn(Root),
Can_Copy-Up(Root, Q)) Can_Copy-Up(Root, R)}
EndUpPkg it Root.started N — Root.up_-done < TRUE

Up-Redundant(Root) A
(VQ € Chldrn(Root),

Q.up_done)
CreateDownPkg :: Down_Ready(Root) A — counter < counter + 1;
Root.up_pkg # L A Root.down_pkg.value < counter;
= Up_Redundant(Root) Root.down_pkg.guide <— Root.up_pkg.guide
SetRank :: Root.down_pkg # L A — Root.rank < Root.down_pkg.value

Root.down_pkg.guide =
Root.guide A

Root.down_pkg.value #
Root.rank

BroadCast it Root.status = 2 N — Root.status <— 3
Root.up_done A
Down_Ready(Root)

EndEpoch it Root.status = 3 A — Root.status < 4

(VQ € Chldrn(Root),
Q.status = 4)

15

For every non-root process P only:

Err :: Error(P) P.status < 0
NewEpoch i P.par.status =1 A P.status < 1;
P.status € {0,4} A P.up_pkg + L;
(VQ € Chldrn(P), Q.status € {0,4}) P.down_pkg < L;
P.started < FALSE;
P.up_done <— FALSE
ConvCast :: P.status =1 A P.status < 2
(VQ € Chldrn(P), Q.status = 2)
CreateUpPkg it P.status =2 A Can_Start(P) P.up_pkg.value < P.weight;
P.up_pkg.guide < P.guide;
P.started < TRUE
CopyUpPkg i P.status =2 A P.up_pkg < Q.up-pkg,
(3Q € Chldrn(P), Can_Copy-Up(P, Q)) Q = min< , {R € Chldrn(P),
Can-Copy-Up(P, R)}
EndUpPkg :: P.started A Up-Redundant(P) A P.up_done < TRUE
(VQ € Chldrn(P), Q.up_done)
CopyDownPkg :: Down_Ready(P) A P.down_pkg <+ P.par.down_pkg
P.par.down_pkg # L A
P.par.down_pkg # P.down_pkg A
Is_Consistent(P, P.par.down_pkg)
SetRank :: P.down_pkg # L A P.rank < P.down_pkg.value
P.down_pkg.guide = P.guide A
P.down_pkg.value # P.rank
BroadCast it P.par.status =3 A P.status =2 A P.status < 3
(VQ € Chldrn(P), Q.status = 2) A
Down_Ready(P)
EndEpoch :: P.status = 3 A

(VQ € Chldrn(P), Q.status = 4)

P.status < 4

The actions above achieve three tasks. They are (1) error correction, (2)
control of epochs, and (3) rank computation (using the flow of packages).

Error Correction. Action Err performs the error correction.

If one process

detects any inconsistency among its state and that of its neighbors, it initiates
a reset of the network by changing its status to 0.

Epochs. We now describe what happens during one epoch. In this description,
we assume that the epoch contains no initialization errors. (As mentioned above,
if any process detects such an error, the epoch is aborted, and a new, error-free,
epoch begins.)

The new epoch starts when Root executes Action NewEpoch. If Root.status
is either 0 or 4, and every child of Root has status 0 or 4, then Root broadcasts
a status 1 wave and resets to a clean state.

When the status 1 wave reaches the leaves, all processes execute Action
ConvCast in a convergecast wave, changing status to 2, so that rank computation
can begin.

When Root detects that there are no more up-packages in the tree, and it
has already sent every down-package, it initializes a status 3 broadcast wave

16

by executing Action BroadCast. Note that there could still be active down-
packages below Root, but there could not be any active up-packages. Thus,
Root is finished with its task for the current epoch. A non-root process P
propagates the status 3 wave by Action BroadCast after sending all its down-
packages. There could still be active down-packages below P, but no active
up-packages. Since P.par.status = 3 and the down-package at P is redundant,
P knows that its job for this epoch is done, and so changes its status to 3.
Once the status 3 wave reaches the leaves, all process execute Action EndEpoch

in a convergecast status 4 wave. When that wave reaches Root, the current
epoch is done, and Root initiates a new epoch.

Rank Computation. The computation of the ranks is bottom-up, and starts
when the convergecast status 2 wave starts at the leaves. The flow of up-
packages is organized using CreateUpPkg and CopyUpPkg, that is, a process
either inserts its own package in the flow or copies some package coming from
a child in such a way to ensure that packages are moved up in ascending order
of weight. Once a process P has detected that Tp has no active up-package, it
sets P.up_done to TRUE by Action EndUpPkg. Root initializes the broadcast of
the status 3 wave only after Root.up_done changes to TRUE.

When Root receives a new up-package, that is, Root.up_pkg becomes active, if
Root.down_pkg is available (that is, it is either L or redundant), Root is enabled
to create a new down-package by executing CreateDownPkg. If counter =r,
then Root.up_pkg is the r'" up-package copied or created by Root, i.e., its weight
is the r*" smallest weight in the network; r will then become the value of the
down-package.

The new active down-package is propagated to its home process by forward
copying, guided by its guide pair, using Action CopyDownPkg. When it reaches
its home process P, the value field of that package contains the correct value of
the rank of P. P updates P.rank using Action SetRank, if necessary.

Figure 5 depicts a synchronous execution of a rank computation. For every
process P, we show its inputs (processes are subscripted with their guide pair
and their weight is given upper right), some of its computation variables (in the
middle: up-package, down-package, up_done and started flags and root-counter)
and its output (at the bottom: rank). At each step, when the value of a variable
changes, we write the new value in bold. Dashed arrows show the next moves
of a up- or down-package.

The example starts in a configuration where every computation variable has
been reset by Action NewEpoch (Figure 5a). The output variables rank hold
arbitrary values, denoted by “?.” In Figure 5b, every leaf creates its own up-
package with its guide pair and its weight. The up-packages are then routed,
in weight order, up to the root, as shown in Figures 5¢ and 5d. In Figure 5e,
the root process Root = P increments its counter to 1 and creates the first
down-package of the current epoch: the smallest weight is 5 and is held by the
process labeled by the guide pair (4,4). This down-package is routed down to
P, 4, thanks to guide pairs, as shown in Figures 5f and 5g. Finally, in Figure 5h,
Py 4 assigned its own rank.

17

Pl 1 started

up_pkg

up_done

down_pkg

started

up_pkg down _pkg

up_done

started

up_pk:

up_done

rank

rank

Py

up_pkg

up-done

started | fa

up_pkg ‘ 1 ‘ down_pkg ‘ 1 ‘

up_done

‘ rank

started

up_pkg

up_done

weight

PS‘Z

down_pkg

rank

rank

up_done

started

up_pkg

up_done

down_pkg

started

up_pkg

up_done

down _pkg

up_done

rank

rank

Py

started

up,pkg‘ 4,415

L(éo wn_pkg ‘ € ‘

started

up_pkg| 5,316 ‘ down,pkg‘ € ‘

up_done

rank

started

up_pkg

up_done

up_done

PS‘Z

rank

started

up,pkg‘ 4,415

up_done

;U’LL‘IL,[)]»‘[] ‘ € ‘

P4‘4‘

+

started

up_done

Pl 1 started
-=Z= up_pkg

up_done

started

up_pkg down _pkg

up_done up_done

rank rank

Py

started started

L(éown,pkg‘ € ‘ up_pkg| 5,316 ‘ down,pkg‘ 1 ‘

up,pkg‘ 4,415

up_done

‘ rank

started

weight

started

up_pkg up-pkg

up_done up_done

rank rank

started

down_pkg ‘

up,pkg‘ 4,415

up_done

P4‘4‘

Pl,l weight

started | fa

up_pkg

up_done counter

ran. k

started
up_pkg

up_done

/\

weight .

down_pkg 7

started true

rank

Py

started
up,pkg‘ 4,415

up_done

down_pkg ‘ 4,41 ‘

P4,4 ‘ rank
(s)
Py | started weight E

counter

‘ rank

up_done | fa

down_pkg - ————————————————————— |

started

up_pkg

53|6 ‘ down,pkg‘ € ‘

up_done

up_pkg

up_done

rank

started
'up,pkg‘ 4,45 ‘ doum,pk'g‘ 4,411 ‘

up_done

rank
(h)

Pl

316 ‘ dau'n,pkg‘

Figure 5: Example of an execution until the first rank is assigned.

21

4.2.4. Correctness of CRK

By Theorem 1, to show the correctness of RANK, it suffices to show that
the variables of CRK stabilize to their correct values, starting from any silent
legitimate configuration of GUIDE. Let v be such a configuration. The first
part of the proof deals with error correction.

We say that a process P is inconsistent if P.status = 2, P.up_done, and there
is some @ € Chldrn(P) such that Q.up-done = FALSE.

Lemma 5. If at least one round has elapsed after configuration v, the following
conditions hold for every process P:

(a) —Clean_State(P) A (P.status = 1) is FALSE.
(b) P.up_done A —P.started A (P.status = 2) is FALSE.

(¢) P is not inconsistent; i.e., if P.status = 2 and P.up_done = TRUE, then
Q.up_done = TRUE for all Q) € Chldrn(P).

Proof: Let consider the three conditions separately.

(a) If Clean_State(P) = FALSE and P.status = 1, then P is enabled to execute
Action Err. Moreover, this condition only deals with local variables of P.
So, Action Err is continuously enabled, and P executes P.status < 0 in
at most one round. Then, = Clean_State(P) A (P.status = 1) is FALSE.

Assume —Clean_State(P) A (P.status = 1) is FALSE. Then, if P.status = 1,
P cannot modify its other variables before changing its status. More-
over, every time P.status is reset to 1, the other variables are reset to a
clean state (see Action NewEpoch). So, = Clean_State(P) A (P.status = 1)
remains FALSE forever.

(b) If P.up_done = TRUE, P.started = FALSE, and P.status = 2, then P is
enabled to execute Action Err. Moreover, this condition only deals with
local variables of P. So, Action Err is continuously enabled, and P exe-
cutes P.status <— 0 in at most one round. Then, P.up_done A —P.started A
(P.status = 2) is FALSE.

Assume P.up_done A —P.started A (P.status = 2) is FALSE. Then, P al-
ways sets P.up_done and P.started to FALSE together in Action NewEpoch.
Moreover, P sets P.up_done to TRUE only if P.started holds (see Action
EndUpPkg). So, P.up_done A —P.started A (P.status = 2) remains FALSE
forever.

(c) Assume P is inconsistent. Then, in one round, either every Q € Chldrn(P)
satisfies Q.up_done = true or P executes Action Err. In both cases, P is
no more inconsistent.

Assume P is not inconsistent. Then, P sets P.up_done to TRUE, by ex-
ecuting Action EndUpPkg, only when every Q.up_done = TRUE for all

22

Q € Chldrn(P). Moreover, any @ € Chldrn(P) sets Q.up-done to FALSE,
by executing Action NewEpoch, only when P.up_done = FALSE. Thus, P
cannot later become inconsistent.

O

Lemma 6. If at least one round has elapsed after configuration =y, and
if Status_Error(P) = TRUE, then one of the following conditions holds:

e P # Root and P.par.status = 0.

e There is some Q € Chldrn(P) such that Q.status = 0.

Proof: First, values 1 and 3 are propagated in the tree by broadcast waves.
Then, values 2 and 4 are propagated in the tree by convergecast waves. So,
by definition of Status_Error(P), if Status_Error(P) = FALSE at some point,
then Status_Error(P) will become TRUE only after some neighbor of P switches
its status to 0. Finally, by the definition of Action Err, P cannot satisfy
Status_Error(P) = TRUE during one round without changing its status to 0.
O

Lemma 7. If a process with status 0 holds an active package, this package
remains blocked until it is removed or cleaned.

Proof: If a process P has status 0, then no other process can copy its up or
down packages because each of its neighbors either has status 0, is its parent and
has status 1, or is enabled to execute Action Err, the action with the highest
priority. The next time P changes its status by executing Action NewEpoch, its
state will become clean. O

Lemma 8. Within O(n) rounds from vy, if process P contains an active package
such that there is mo process in its subtree which is the home process of that
package, then P.status = 0.

Proof: Consider any configuration +" after one round from . Consider an
active package x in +' at any process P such that there is no process in the
subtree of P that is the home process of that package.

Assume that there is an ancestor of P with status 0, or a process in the
subtree of P with status 0. Then, in at most h rounds, any process that holds x
as an active package has status 0 by Action Err (remember that processes with
status 1 do not hold any package, by Lemma 5), and by Lemma 7, x cannot be
copied anymore, so we are done.

Assume that no ancestor and no descendant of P have status 0. We have
four cases, depending on the status of P.

23

(a)

P.status = 4. Assume that there is an ancestor Q of P whose status is
1. By Lemma 6 and the definition of Status_Error, all descendants of P
have status 4, and for every ancestor R of P, we have R.status € {1,4}
and (R.status = 1) = (R = Root) V (R.par.status = 1). Thus, in at most
h rounds, the subtree of P has been reset to a clean state by Action
NewEpoch, and we are done.

Assume that there is no ancestor @ of P such that Q.status = 1. Then,
by Lemma 6 and the definition of Status_Error, all descendants of P have
status 4, and for every ancestor R of P we have R.status € {3,4} and
(R.status = 3) = (R = Root) V (R.par.status = 3). Thus, in at most h
rounds, all ancestors of P will change to status 4 by executing Action
EndEpoch, and we reduce to the previous case.

P.status = 3. If there is a process that has status 4, we reduce to the
previous case, by Lemma 6 and the definition of Status_Error.

Otherwise, every process of the tree has status 2 or 3, and if a process has
status 3, then either it is Root, or its parent also has status 3, by Lemma
6 and the definition of Status_Error. In this case, = can only be copied
down in the tree (and only if it is a down package). In O(n) rounds, one
of the following conditions will hold.

(i) « becomes an active package of a node @ such that Guide_Error(Q)A
(Q.status = 2). (In the worst case @ is a leaf.) The children of @
cannot copy x, and after one additional round, @ has status 0, and
x cannot be copied anymore, by Lemma 7, so we are done.

(ii) The broadcast wave of status 3 reaches the leaves of the tree, and in
at most h additional rounds, after the convergecast of the status 4
wave, we have Case (a).

P.status = 2. If there is a process @) such that Q.status = 3, then
Root.status = 3 by Lemma 6 and the definition of Status_Error, and we
reduce to Case (b).

Otherwise, by Lemma 6, every process has status 1 or 2, and if a process
has status 1, either it is Root or its parent has status 1. By executing
Action ConvCast, all processes of 7 have status 2 within at most h rounds.

— If z is an up-package, it can only be copied up the tree. Either P
satisfies Guide_Error(P) A (P.status = 2), its parent cannot copy z,
after one round P has status 0, and = cannot be copied any more
(by Lemma 7), so we are done; or in O(n) rounds, z becomes a down
package at the Root, which has status 2, and is no longer an active
up-package at any process.

— If z is a down-package, it can only be copied down in the tree. After
O(n) rounds, the host Q of x satisfies Guide_Error(Q) AN(Q.status = 2).
(In the worst case @ is a leaf.) The children of Q) cannot copy z. Af-
ter one additional round, @ has status 0, and, by Lemma 7, x cannot
be copied anymore; hence we are done.

24

(d) P.status = 1. By Lemma 5, P does not hold any package, so this case is
contradictory.

O

Lemma 9. Within O(n) rounds from -y, if a process P contains a package, then
there is a process in its subtree which is the home process of that package.

Proof: By Lemmas 7 and 8, after O(n) rounds, every process P holding an ac-
tive package that does not have its home in the subtree of P satisfies P.status = 0
and no process copies this package.

The status 0 wave is propagated in O(h) rounds, by Action Err, up the tree
until reaching the root, or a process with status 1 all of whose ancestors also
have status 1, causes all processes in the subtree Tp to change their status to 1
within O(h) rounds by executing Action NewEpoch.

Hence, within O(n) rounds, all inconsistent active packages will be removed
from the tree, by Lemma 6. (]

By Lemmas 5, 6, and 9, within O(n) rounds from ~, Error(P) is FALSE
forever for each process P. There may still exist processes with status 0,
but in that case, by the definition of Error, and for any process P, we have
P.status{0,1,4}, (P.status =0) = (P = Root) V (P.par.status € {0,1}),
(P.status =1) = (P = Root) V (P.par.status = 1), and (P.status =4) =
(P # Root) A (P.par.status € {1,4}). Hence, at the end of the status 1 broad-
cast wave, which takes at most O(h) rounds, no process will have status 0.
Thus, we have the following lemma:

Lemma 10. Within O(n) rounds after configuration ~y, Error(P) is FALSE and
P.status € {1,2,3,4} forever, for each process P.

From Lemma 10, we can deduce that the following invariant holds within
O(n) rounds after ~y for all P.

1. Error(P) is FALSE and P.status € {1,2,3,4}.

That is, all initial errors will eventually be corrected.
2. If P.status € {1,3}, then either P = Root or P.par.status = P.status.
3. If P.status € {2,4}, then Q.status = P.status for all Q € Chldrn(P).

We now show that, starting from any configuration where all previous in-
variants hold, infinitely many complete epochs are executed, and each of those
epochs takes O(n) rounds.

o If Root.status = 4, then all processes have status 4 and Root initiates a
status 1 broadcast wave by executing Action NewEpoch.

e If Root.status = 1, then all processes P have either status 1 or 4. Moreover,
(P.status = 1) = (P = Root) V (P.par.status = 1). Thus, the status 1
broadcast wave reaches all processes in at most h rounds.

25

e After the status 1 wave reaches the leaves, the status 2 convergecast wave
is initiated by the leaves by execution of Action ConvCast, and moves to
Root in at most h rounds.

e Once Root.status = 2, all processes have status 2. The flow of packages
starts in parallel at processes of status 2.

e By Claim 1, for every process P, if P.status = 2 and P.up_done, every
process () in Tp subtree satisfies Q.up_done. Moreover, —P.started =
- P.up_done. By executing Action CreateUpPkg, the deepest node P sat-
isfying P.status = 2 and —P.started eventually sets P.started to TRUE and
initiates its own up-package. The up-packages go up in the tree in weight
order. Every process P satisfies P.up_done after O(n) rounds.

e When each process P satisfies P.up_done, Root eventually satisfies
Down_Ready(Root). Then, Root initiates the status 3 broadcast wave by
executing Action BroadCast.

e When Root.status = 3, all processes P have either status 2 or 3. More-
over, (P.status = 3) = (P = Root) V (P.par.status = 3). So, status 3 is
broadcast to the whole tree by Action BroadCast. As each node must
wait for its down-package to become redundant before switching to status
3, this phase is takes O(n) rounds.

e Finally, once the status 3 wave reaches a leaf, the status 4 convergecast
wave is initiated. That wave is completed within at most h rounds. Root
eventually has status 4, again.

Consider now any epoch that starts from a configuration, where all previous
invariants (1-3) hold. We define S = {Q : Q.status € {1,2,3}}. We call S the
active portion of T. The following invariants hold for all P € S.

4. If P.status = 1, then P.started and P.up_done are FALSE, and P.up_pkg =
P.down_pkg = L.

If the status of P is 1, then P has initialized its variables and has not yet
begun the calculations of the epoch.

Proof: By Claim 1, and definitions of Error(P) and Clean_State(P). O
5. If P.up_done then P.started, and Q.up_done for all Q@ € Chldrn(P).

If there is no active up-package in 7Tp, then there is no active up-package
in 7o for any child . Furthermore, the package whose home is P has
already been created and copied up.

Proof: P.up_done is initialized to FALSE for all processes P during the
broadcast wave of status 1 (Claim 4). Then, all P.up_done are set to TRUE
in a bottom up fashion by Action EndUpPkg. O

26

10.

11.

P.up_done if and only if there is no active up-package in 7Tp.

Proof: P.up_done is initialized to FALSE for all processes P during the
broadcast wave of status 1 (Claim 4). Then, all P.up_done are set to TRUE
in a bottom up fashion by Action EndUpPkg. We can verify this claim by
induction. O

If P hosts an active up-package, there is some process @ € Tp NS that is
the home process of that package.

Proof: If there is no process () € Tp that is the home process of that
package, then in O(n) rounds, some process R satisfies R.status = 0 by
Lemma 8, a contradiction to Claim 1.

Assume that Q ¢ S, that is, Q.status = 4. Then, Root.status € {3,4} by
Claims 1-3. Before satisfying Root.status € {3,4}, Root has changed its
status from 1 to 2 and from 2 to 3. But, Root changes its status to 3 only
if Root.up_done (see Action BroadCast). In this case, there is no active
up-package in 7 by Claim 6, a contradiction. O

If P.started is FALSE, then there is no active package in & whose home
process is P.

Proof: P resets P.started to FALSE during the status 1 broadcast wave
(Claim 4). Moreover, when P receives status 1 broadcast wave, all package
variables in the path from P to Root have been reset. Then, the P.started
remains FALSE until P creates its up-package. O

If P.started is TRUE, then there is at most one active package whose home
process is P.

Proof: P.started switches to TRUE only if P.status = 2. Then, all descen-
dents and all ancestors has reset their package variables before P switches
P.status to 2. So, there is no active package whose home is P hosted by
these processes. Moreover, there is no such package anywhere else, other-
wise in O(n) rounds, some process R will satisfy R.status = 0 by Lemma
8; a contradiction to Claim 1. Hence, when P is enabled to switches
P.started to TRUE, there is no active package whose home process is P.

Then, P creates its own package only once (when switching P.started
to TRUE), and once a package has been copied, previous copies become
redundant. O

If Q@ € Chldrn(P) and if P.up_pkg # L, then either Q.up_pkg.weight >
P.up_pkg.weight or Q.up_done.
Proof: Min-heap order is maintained, so that up-packages reach Root in

weight order. O

Let p be the number of processes R such that R.started is FALSE or R ¢ S,
and ¢ be the number of active up-packages in S. If Root.status € {1,2},
then p + g + counter = n, the size of T.

27

Proof: At the start of each epoch, p = n and ¢ = counter = 0. Each
time a process executes Action CreateUpPkg, p is decremented and ¢
is incremented. FEach time Root executes Action CreateDownPkg, ¢ is
decremented and counter is incremented. At the end (that is, the last
configuration before Root takes status 3), p = ¢ =0 and counter =n. O

12. If P.weight is the i*" smallest weight in 7, then i > counter if and only
if either P.started is FALSE, or there is an active up-package whose home
process is P.

Proof: From Claims 7-11. O

13. If P.started is TRUE and P.rank is not the correct rank of P, then there
is an active package in S whose home process is P.

Proof: From the previous claim, the active up-package whose home is
P will cause the creation of a down-package whose home is P with the
correct rank value. O

14. If P.status = 3, then P.started and P.up_done are TRUE, P.up_pkg and
P.down_pkg are both redundant, and P.rank has the correct value.

If the status of P is 3, then P has completed its role in the epoch.

Proof: Root is the first process to change its status to 3 during the
epoch (by Action BroadCast), hence when P changes its status to 3,
Root.up_done is TRUE, which, in turn, implies that P.up_done is TRUE
(Claim 5). Moreover, if P.up_done, then P.started and P.up_pkg are re-
dundant (see Action EndUpPkg). P gets status 3 only if there is no active
down-package in the path from the root to P, so P.down_pkg is redundant,
too (see Action BroadCast). Finally, by Claim 13, P.rank has the correct
value. O

Infinitely many complete epochs are executed, and during each of these
epochs, all processes switch to status 3. By Claim 14, we thus have the following
theorem:

Theorem 11. RANK is self-stabilizing, computes the ranking of all processes
in O(n) rounds from an arbitrary initial configuration, and works under the
weakly fair scheduler.

References

[1] E. W. Dijkstra, Self-stabilizing systems in spite of distributed control, Com-
mun. ACM 17 (11) (1974) 643-644.

[2] S. Dolev, Self-Stabilization, The MIT Press, 2000.

[3] P. Flocchini, A. M. Enriques, L. Pagli, G. Prencipe, N. Santoro, Point-
of-failure shortest-path rerouting: Computing the optimal swap edges dis-
tributively, IEICE Transactions 89-D (2) (2006) 700-708.

28

[4]

[12]

A. K. Datta, S. Gurumurthy, F. Petit, V. Villain, Self-stabilizing network
orientation algorithms in arbitrary rooted networks, Stud. Inform. Univ.
1 (1) (2001) 1-22.

P. Chaudhuri, H. Thompson, Self-stabilizing tree ranking, Int. J. Comput.
Math. 82 (5) (2005) 529-539.

B. Bourgon, A. K. Datta, V. Natarajan, A self-stabilizing ranking algorithm
for tree structured networks, in: Proceedings of the First Workshop on Self-
Stabilizing Systems (WSS’95), 1995, pp. 23-28.

T. Herman, I. A. Pirwani, A composite stabilizing data structure, in: A. K.
Datta, T. Herman (Eds.), Self-Stabilizing Systems, 5th International Work-
shop (WSS), Vol. 2194 of Lecture Notes in Computer Science, Springer,
2001, pp. 167-182.

T. Herman, T. Masuzawa, A stabilizing search tree with availability prop-
erties, in: Fifth International Symposium on Autonomous Decentralized
Systems (ISADS 2001), 2001, pp. 398—405.

D. Bein, A. K. Datta, V. Villain, Snap-stabilizing optimal binary search
tree, in: T. Herman, S. Tixeuil (Eds.), Self-Stabilizing Systems, 7th In-
ternational Symposium (SSS), Vol. 3764 of Lecture Notes in Computer
Science, Springer, 2005, pp. 1-17.

S. Dolev, M. G. Gouda, M. Schneider, Memory requirements for silent
stabilization, Acta Inf. 36 (6) (1999) 447-462.

A. K. Datta, L. L. Larmore, S. Devismes, K. Heurtefeux, Y. Rivierre, Self-
stabilizing small k-dominating sets, IJNC, International Journal of Net-
working and Computing 3 (1) (2013) 116-136.

G. Tel, Introduction to distributed algorithms (2nd Ed.), Cambridge Uni-
versity Press, 2000.

29

