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Abstract. We give a leader recovery protocol that recovers a legitimate configu-
ration where a single leader exists, after at most k arbitrary memory corruptions
hit the system. That is, if a leader is elected before state corruptions, the same
leader is elected after recovery. Our protocol works in any anonymous bidirec-
tional, yet oriented, ring of size n, and does not require that processes know n,
although the knowledge of k is assumed. If n > 18k + 1, our protocol recov-
ers the leader in O(k?) rounds using O(log k) bits per process, assuming unfair
scheduling. Our protocol handles dynamic faults in the sense that memory cor-
ruption may still occur while the network has started recovering the leader.

1 Introduction

Self-stabilization [1] is often regarded as a strong forward recovery mechanism that
recovers from any transient failure. Informally, a self-stabilizing protocol is able to re-
cover correct behavior in finite time after arbitrary faults and attacks placed the system
in some arbitrary initial state. Its generality comes at a price: extra memory could be
needed in order to crosscheck inconsistencies; symmetries occurring in the initial state
could cause a given problem (e.g. leader election or mutual exclusion) to be impos-
sible to solve deterministically, and when few faults hit the network, “classic” self-
stabilization does not generally guarantee a smaller recovery time.

The intuition that when few faults hit the system, it should be possible to impose
more stringent constraints on the recovery than just a basic “eventual” correctness has
proven to be a fertile area in recent research [2—5]. Defining the number of faults hitting
a network using some kind of Hamming distance,* variants of the self-stabilization
paradigm have been given, e.g., k-stabilization [2] guarantees that the system recovers
when the initial configuration is at distance at most k from a legitimate configuration.
This notion is weaker than self-stabilization, as this latter permits recovering from any
configuration. In the literature, weakened forms of self-stabilization have been used
for (1) circumventing impossibility results in self-stabilization (e.g. deterministic leader
election or recovery in anonymous networks) and (2) obtaining recovery times that only
depend on the number of faults & (as opposed to n or D, the network size or diameter).
The algorithm given here recovers in O(k?) rounds, and satisfies both conditions.

The concept of only-k-dependent recovery time has been refined under the name of
time adaptivity (or fault locality) [3-5], when the recovery time depends on the actual
distance f to a legitimate configuration in the initial state. Initial work on time adaptivity
required the initial distance to be not greater than k (that is, they are k-stabilizing),
but the latest work [3] does not have this limitation and is thus also self-stabilizing.
However, it is important to note that it distinguishes between “output” stabilization
(which considers only the output variables of each process that are mentioned in the
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The minimal number of processes whose state must be changed to recover a correct configuration.



problem specification) and the “state” stabilization (which considers the global state,
i.e., all variables used by the protocol). In all aforementioned work, only the output is
corrected quickly (that is, depending on f or k), while the global state is recovered more
slowly (that is, the recover time depends on D or n). Output vs. state stabilization has
an important practical consequence: if a new fault occurs after output stabilization yet
before state stabilization, output complexity guarantees are not maintained after the new
fault. For networks that are subject to intermittent failures, protocols should strive to
provide state stabilization. As a consequence, the “fault gap” (defined as the minimum
time between consecutive faults that can be handled by the protocol [6]) remains large.

The problem of correcting global states quickly using self-stabilizing algorithms
was investigated for the purpose of fault containment [6-9] (that is, preventing local
memory corruptions from propagating to the whole network). The state of the art in this
matter nevertheless requires that only a single process is corrupted [6], faulty processes
are surrounded by many correct ones so that few faults can be caught quickly [8], the
network is fully synchronous [7], or that the recovery guarantee is only probabilistic [9].
The “fault gap” that results from those approaches is significantly reduced, as only a
delay that depends on the fault span must separate consecutive faults.

Our contribution. We give a leader recovery protocol, LE(k), that recovers a legitimate
configuration where a single leader exists, after at most k arbitrary memory corruptions
hit the system. That is, if a leader is elected before state corruption, the same leader is
elected after recovery. Our protocol works for an anonymous bidirectional, yet oriented,
ring of size n, and does not require that processes know n, although the knowledge of
k is assumed. If n > 18k + 1, our protocol recovers the leader in O(k?) rounds using
O(log k) bits per process, assuming unfair scheduling.

With respect to “output stabilization”, our protocol recovers the full correct state
quickly (O(k?) rounds). With respect to fault-containment, LE(k) can handle up to
k faults, faults can be arbitrarily spread, the network is fully asynchronous, and the
scheduling is unfair, and finally the recovery property is deterministic.

LE(k) also exhibits an interesting property with respect to the “fault gap” metric.
In our approach, the k tolerated memory corruptions need not occur in the initial state.
In fact, they may occur in a dynamic way after the network has started recovering the
leader. In other words, faults that can be handled by our protocol are not only arbitrarily
placed, but also arbitrarily timed. For a particular set of & faults, the fault gap between
those faults is optimal, that is, zero. However, a delay, that depends on k, still must be
observed between sets of k faults in a computation.

2 Preliminaries

Model. We consider distributed systems of n deterministic anonymous processes or-
ganized into an oriented ring: each process p distinguishes one of its neighbors as its
successor, and the other its predecessor. The orientation is consistent: the successor of
the predecessor of any process p is p.

Communication between neighboring processes is carried out using a finite number
of locally shared variables. Each process has its own set of shared variables which it
can write and which its two neighbors can read, i.e., the ring is bidirectional.

The state of a process is defined to be the vector of values of its variables. A con-
figuration of the system consists of a state for each process. A process can change its
state by executing its local algorithm. We assume uniformity, that is, all processes have



the same local algorithm. The set of local algorithms defines a distributed algorithm on
the ring. The local algorithm executed by each process is described using a finite set of
guarded actions of the form: If (guard) then (statement). The guard of an action at
process p is a Boolean expression involving only variables of p and its neighbors. The
statement of an action of p updates some variables of p. An action can be executed only
if its guard is true. An action of a process p is enabled in a configuration ~y if its guard
is true in 7y, and p is said to be enabled in -y if at least one of its actions is enabled in .

k-Stabilization. Let .4 be a distributed algorithm. An ordered pair (y,~’) is a step of A
if there exist a non-empty subset .S of processes enabled in 7 such that ' is the result of
the atomic execution one enabled action per process of .S on . An ordered pair (-y,v’)
is a fault of A if there is exactly one process of the network which has a different state
in+/ than in ~y, and if 7/ does not follow from by any step of A. A k-fault computation
of A is a sequence of configurations 7,7, - - - such that: (1) there are at most k choices
of ¢ for which (;, v:,,) is a fault of A, (2) for all other i, (v,,7,,.) is a step of A, and
(3) the sequence is either infinite, or ends at a final configuration, where no process is
enabled. A is silent if all its k-fault computations end at a final configuration.

k-fault computations are driven by a daemon that chooses when the faults occur
and which processes execute an action when there is a step. We assume the unfair
distributed daemon, which is otherwise unconstrained. In particular, it can choose to
never select an enabled process in any step, unless it is the only enabled process.

Let £ be a non-empty set of final configurations of .A. For a given integer & > 0,
A is said to be k-stabilizing w.r.t. L if every k-fault computation of A which begins
at some configuration A € L is finite and ends at \. £ is called the set of legitimate
configurations of .A. In the problem we address £ has n members; for each process ¢,
there is exactly one legitimate configuration in which ¢ is the leader.

3 Algorithm LE(k)

In a legitimate configuration of LE(k), there is one leader process ¢, and no action
of LE(k) is enabled. Once a fault occurs, LE(k) starts. If at most k faults occur, the
computation will end, and the last configuration will be the same as the first.

Define the interval of relevance of a process p to be the set of all processes within
distance 3k of p, which has 6k + 1 processes in all. Every process has a vote, and in a
legitimate configuration, every process within £’s interval of relevance votes for ¢, while
every other process’ vote is L. Since the system is anonymous, a process p’s vote for a
process q is a relative address, namely ¢ where q is 4 steps to the right of p, or —i if ¢
is ¢ steps to the left of p. In particular, in a legitimate state, £ will be the unique process
whose vote is 0.

Since a fault can change any variable, it can change the vote of a process. A single
fault can cause up to three processes to change their votes, but not more. Thus, through-
out any k-fault computation of LE(k), there will be at least 3k + 1 votes for ¢, and at
most 3k votes for any process other than /.

Every process p has a rumor field as well, which is either L, or is the “rumor” that
some process, say g, is the leader. In a legitimate configuration the rumor fields of all
processes are the same as their votes.

Processes do not change their votes easily, but rumors spread rapidly. If the rumor
field of a process p is different from its vote, it must decide whether to change its vote
to match the rumor. To make this decision, p initiates a guery to count votes for the



rumored leader. A rumored leader is called a candidate. If the rumor field is L, p can
initiate a query where the candidate is the process that p is voting for.

A query has a home process and a candidate process. The home process is the one
that initiated the query, and the candidate of the query is the one of its home process.

A query traverses a path of query variables called its query path. During that traver-
sal, the query visits every process within the interval of relevance of its candidate pro-
cess, say ¢, and counts all votes for ¢. Upon returning to p, it reports the count of votes.
If g receives at least 3k 41 votes, p concludes that q is the leader; otherwise, p concludes
q is not the leader.

There are three query tracks, which span the entire ring, each intersecting each
process at a query variable. A query consists of one live query token, which is located in
one of the query tracks. The process at which the live token is located is called the host
of the query. The traversal of a query consists of (1) moving along the first query track
toward the leftmost process in the interval of relevance of its candidate, then (2) crossing
to the second query track and traversing (rightward) the whole interval of relevance of
the candidate to count the votes for it, and finally (3) crossing to the third query track
and moving leftward along that track until returning to its home process to report the
total number of votes for the candidate.

A query moves by forward copying and rear deletion. When a live token is copied to
the next query variable in the path, the old copy is designated dead and must be deleted
before the live token can be copied forward.

During the time the query is outstanding, its home process p will not change its
vote (unless it faults) but its rumor field might change. If the candidate of the query
differs from p’s vote, and if the query reports that the candidate has at least 3k + 1
votes in the interval of relevance, then p changes its vote to be for that candidate and
initiates a new rumor that the candidate is the leader, unless its rumor variable is already
for that candidate. Otherwise, i.e., the query reports no more than 3k votes for the
candidate, p does not change its vote (or changes it to L if the vote was already for
the candidate) and initiates a denial, which floods the interval of relevance with the
information that the candidate is not the leader, and then self-deletes. That denial wave
(unless it is interrupted by a fault or a higher priority denial wave) causes all rumors for
the candidate to be deleted.

If p’s rumor field is L, but p is voting for a process ¢, then p initiates a query where
q is the candidate. If the query counts at least 3k + 1 votes for ¢, then p changes its
rumor to g; but if the query counts at most 3k votes, p changes its vote to L and also
issues a denial for q.

If a process p is voting for a false leader, it will eventually change to vote to be for
true leader, £. If another process, say ¢, is voting for £ but has a rumor supporting some
other candidate, say m, it initiates a query with m as the candidate. When ¢ discovers
that m is not the leader, it issues a denial of the rumor. If another false rumor spreads to
q, it will again send out a query. Eventually, ¢ will send a query whose candidate is £.
When this query returns with the information that ¢ has at least 3k 41 votes, g will issue
the rumor that ¢ is the leader. Processes voting for false leaders will see this rumor, and
will then initiate their own queries, confirming that ¢ is the leader.

Rogue Queries. Faults can create rogue queries. A query is rogue if its home is a
process p but p did not initiate it. One fault can cause up to nine rogue queries to be
created. In the worst case, there is no way to distinguish a rogue query from one that
was initialized normally. Thus, LE(k) cannot specifically delete rogue queries.



Lost Queries. If a process p initializes a query and that query is deleted due to a fault,
then p could, in principle, wait forever for the query to return. If p suspects that its query
has been deleted, it sends out a probe wave, either to the left or the right, whichever is
the direction of the missing query, and if it receives back the report that there is no
query, it returns to the resting state, allowing it to initiate a new query if necessary.

We use two additional variables to count the number of consecutive processes to the
left (resp. right) of a process, including the process itself, which have no query, probe,
or report token. The value of these variables are only eventually correct, this is why we
cannot directly used them to decide that a query is missing. Rather, we use them to stop
generating probe waves: while the count is less or equal to 6k + 1 in some direction, the
process p does not generate a probe in that direction, because there could exist a token
up to 6k + 1 hops away from p in that direction, and its home could be p.

Deadlock Prevention. As with denials, the rumors, probes, and reports can overwrite
others with lower priority. This ensures that these waves cannot be deadlocked.

However, the query tracks should be carefully addressed. To avoid congestion in
the query tracks, LE(k) never allows two neighboring processes to be querying simul-
taneously. There is a resource between each pair of adjacent processes, (think of the
chopstick between two philosophers in the classic Dining Philosophers problem), and a
process must have both adjacent resources to initiate a query, and must hold onto both
while it is querying. A resource can be held by only one of its two neighboring pro-
cesses. It is implemented using two flags, one at each node. To prevent contention, we
allow a process to pass a token query flag to its neighbor, but not to seize the token.

The number of outstanding queries never exceeds the number of legitimate queries
plus the number of rogue queries. Because of the flags, no more than half of the pro-
cesses can have legitimately initiated outstanding queries, and there are no more than
9k rogue queries. So, the number of outstanding queries never exceeds 5 + 9k < n
Thus, assuming n > 18k + 1, the third query track cannot be deadlocked because there
is always some empty place in that track. Similarly, the other query tracks also cannot
be deadlocked.
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