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Abstract converge into the intended behavior in finite time. Such a
property is very desirable because after any unexpected per-
turbation modifying the messages and/or the memory state,
the system eventually recovers without any outside inter-
vention. A particular class of self-stabilizing protocols is
snap-stabilizing protocols [6]. Asnap-stabilizing protocol
guarantees that, starting from any configuration, it always
behaves according to its specification. In other words, a
snap-stabilizing protocol is a self-stabilizing protocol which
stabilizes in 0 time unit. Of course, a snap-stabilizing pro-
tocol is optimal in terms of stabilization time. The notion
of O stabilization time is a surprising result in the stabiliza-
tion area. Clearly, the snap-stabilization does not guarantee
that all components of the network never work in a fuzzy
manner. However, the snap-stabilizing property ensures that
if an execution of a protocol is initiated by some proces-
sors, then the protocol behaves as expected. Furthermore,
after the initialization, the protocol does not introduce any
additional fuzzy behavior. Consider, for instance, a shap-
stabilizing PIF protocol. Starting from any configuration,
the protocol ensures that when a procegsoas a message
mto broadcast, them eventually starts the broadcastrof

any other processor will receive, and send an acknowl-
edgment which will reach.

A snap-stabilizing protocol, starting from any configura-
tion, always behaves according to its specification. In other
words, a snap-stabilizing protocol is a self-stabilizing pro-
tocol which stabilizes in O time unit. Here, we propose the
first snap-stabilizing propagation of information with feed-
back for arbitrary networks working with an unfair dae-
mon. An interesting aspect of our solution is that, starting
from any configuration, the number of reception (resp. ac-
knowledgement) of corrupted messages (i.e., messages not
initiated by the root) by a processor is bounded.

1. Introduction

The concept oPropagation of Information with Feed-
back (PIF) has been introduced by Chang [7] and Segall
[13]. The PIF scheme can be described as follows: a node,
calledroot or initiator, initiates a wave by broadcasting a
messagen into the network ifroadcast phase). Each non-
root processor acknowledges to the root the receiphof
(feedback phase). The wave terminates when the root has
received an acknowledgment from all other processors. In
distributed systems, any processor may need to initiate a Several PIF protocols for arbitrary networks have been
PIF wave. Thus, any processor can be the initiator of a PIF proposed in the self-stabilizing area, e.g., [14, 8]. The self-
wave and several PIF protocols may run simultaneously. To stabilizing PIF protocols have also been used in the area
cope with the current executions, every processor maintainsof self-stabilizing synchronizers [4, 2]. Reset protocols are
the identity of the initiators. PIF protocols have been exten- also PIF-based protocols. Several reset protocols existin the
sively used in distributed systems for solving a wide class self-stabilizing literature, e.g., [1, 3]. Self-stabilizing snap-
of problems, e.g., spanning tree construction, distributed in- shot protocols [12, 14] are also based on the PIF scheme.
fimum functions computations, snapshot, termination de- The first snap-stabilizing PIF protocol for arbitrary net-
tection, reset, or synchronization. So, designing efficient works has been presented in [9]. The drawback of this solu-
fault-tolerant PIF protocols is highly desirable. Many fault- tion is that the protocol needs to know the exact size of the
tolerant schemes have been proposed and implemented, butetwork (i.e., the number of processors). So this size must
the most general technique to design a system toleratingbe constant and the protocol cannot work on dynamical net-

arbitrary transient faults iself-stabilization [10]. A self-
stabilizing system, regardless of the initial states of the pro-

works. This drawback is solved in [5].
The complexity analysis of the protocolsin [9, 5] reveals

cessors and messages initially in the links, is guaranteed tQhat they are efficient in terms of rounds for the stabiliza-

*See www.laria.u-picardie.fi/devismes/LaRIA-2006-04.pdf for the
full version of this paper.

tion time (©O(1)), delay O(V) whereN is the number of
processors), and execution tim@((V)), respectively. How-



ever, the correctness of these protocols is proven assuming anaximal value among the local degrees of the processors).
(weakly) fair daemon only. Roughly speaking, a daemon is We assume that the networkrisoted, i.e., among the pro-
considered as an adversary which tries to prevent the pro-cessors, we distinguish a particular onewhich is called
tocol to behave as expected, and fairness means that theoot. We say thap andq are neighbors if and only ifp(q)
daemon cannot prevent forever a processor to execute are E. Each processgrcan distinguish all its links. For sake
enabled action. A more (the most) general daemon is theof simplicity, we refer to a link%,q) of a processaop by the
unfair daemon: an unfair daemon can prevent forever anlabel g. We assume that the labels mf stored in the set
action to be executed except if it is the only enabled action. Neig,, are locally ordered by,. Neig, is considered as
A well-known property of protocols working under an un- a constant input from the system. Our protocols serai-
fair daemon is that each round of their executions contains uniform, i.e., each processor executes the same program ex-
a finite number of steps. So, as the protocols in [9, 5] are ceptr. We consider a local shared memory model of com-
not proven assuming an unfair daemon, their step complex-putation derived from the Dijkstra’s state model [10]. Such
ities cannot a priori be bounded. Therefore, we propose a model is an abstraction of the message-passing model in
in this paper a novel snap-stabilizing PIF protocol proven a sense that the notion of messages is replaced by the fact
assuming an unfair daemon as well as its step complexitythat any processor can directly read the state of its neigh-
analysis. Our protocol is based on the principles presentedbors. In our model, the program of every processor con-
in [5]. This new solution keeps the advantages of the earlier sists in a set ofhared variables (henceforth, referred to
solutions, i.e., efficient round complexities, low memory re- as variables) and aordered finite set of actions inducing
qguirement, and resilience to dynamic topological changes.a priority. This priority follows the order of appearance
However, the snap-stabilizing property of our PIF protocol of the actions into the text of the protocol. A processor can
does not ensure that the network never works in a fuzzy write to its own variable only, and read its own variables and
manner. In particular, if we focus on a non-initiator proces- that of its neighbors. Each action is constitued as follows:
sorp , the snap-stabilization does not ensure thatever < label > :: < guard > — < statement > . The guard
receives corrupted messages (i.e., messages not sent by thaf an action in the program gfis a boolean expression in-
initiator). Nevertheless, we will see that, using our proto- volving variables ofp and its neighbors. The statement of
col, the number of corrupted messages thaay receive is an action ofp updates one or more variablegofAn action
bounded by the size of the network (Theorem 8). Also, we can be executed only if its guard is satisfied. Btate of a
will see thatp does not acknowledge any corrupted mes- processor is defined by the value of its variables. Jht
sage: the number of these corrupted acknowledgments isof a system is the product of the states of all processors. We
bounded by a constant independent of the network (Theo-will refer to the state of a processor and the system &s a (
rem 9). In many PIF-based applications, the acknowledg- cal) state and @lobal) configuration, respectively. We note
ments are crucial. For instance, in a distributed infimum C the set of all configurations of the system. ket C and
functions computation, the computation is distributed dur- A an action ofp € V. A is saidenabled atp in v if and only
ing the broadcast and the result is computed and stored intaif the guard ofA is satisfied by in ~. p is said to besnabled
the acknowledgments. So, the cost of local computationsin ~ if and only if at least one action is enabledzain ~.
generated by acknowledgments of corrupted messages caiVhen several actions are enabled simultaneously at a pro-
be very significant. Thus, bounding the number of cor- cessomp: only the priority enabled action can be activated.
rupted acknowledgments by a small constant enhances thd_et a distributed protocdP be a collection of binary transi-
quality of the solution. tion relations denoted by, onC. A computation of P is a

The rest of the paper is organized as follows: in Section maximal sequence of configurations= vo,71,-.-/YsrYi+1,---
2, we describe the model we use. In the same section, wesuch thatVi > 0, v; — ;41 (called astep) if ~,,1 exists,
define of the snap-stabilization and we give a formal state- else~; is a terminal configurationMaximality means that
ment of the PIF protocol. In Section 3, we present our PIF the sequence is either finite (and no actiorfPois enabled
protocol. We give a sketch of the proof of snap-stabilization in the terminal configuration) or infinite. All computations
for our protocol and some complexity results in Section 4. considered here are assumed to be maxindals the set

Finally, we conclude in Section 5. of all computations of?. As we already said, each execu-
tion is decomposed into steps. Each step is shared into three
2. Computational Model sequential phases atomically executéd:every processor

evaluates its guards$ii) a daemon (also calledscheduler)
chooses some enabled process¢ig, each chosen pro-
hcessor executes its priority enabled action. When the three
phases are done, the next step beginsdaémon can be
defined in terms ofairness anddistributivity. We use the

G = (V,E)whereV is a set oprocessorsandF is the set of
bidirectional asynchronous communication links. We state
thatV is the size of7 (|V| = N) andA its degree (i.e., the



notion of weakly fairness: if a daemon isveakly fair, then

3. Algorithm

every continuously enabled processor is eventually chosen
by the daemon to execute an action. We also use the notion We now describe our snap-stabilizing PIF protocol (Al-

of unfairness. theunfair daemon can forever prevent a pro-

gorithms 1 and 2) referred to as AlgorithRiZF. Algo-

cessor to execute an action except if it is the only enabledrithm PZF is divided into three parts:

processor. Concerning tlaestributivity, we assume that the
daemon idistributed meaning that, at each step, if one or

more processors are enabled, then the daemon chooses at
least one of these processors to execute an action. We con-

sider that any processprexecuted alisabling action in the
computation stepy; — ;41 if p wasenabled in ~; and
not enabled iny; 11, but did not execute any protocol action
in v; — ~v;.4+1. The disabling action represents the follow-
ing situation: at least one neighborthanges its state in
v — vi+1, and this change effectively made the guard of
all actions ofp false in;.1. To compute the time com-
plexity, we use the definition abund [11]. This definition

captures the execution rate of the slowest processor in any

computation. Given a computatienc &, thefirst round

of e (let us call ite’) is the minimal prefix ofe containing
the execution of one action (a protocol action or a disabling
action) of every enabled processor from the initial configu-
ration. Lete” be the suffix ofe such thate = e¢’e”. The
second round of e is the first round ot¢”, and so on.

Snap-Stabilization. Let X be a set.2 - P means that
x € X satisfies the predicat@ defined ont’.

Definition 1 (Snap-stabilization) Let 7 be a task, and
SPr a specification of 7. The protocol P is snap-
stabilizing for SPr ifandonlyif Ve € £ :: el SPr.

The problem to be solved. Any processor can be an ini-
tiator in a PIF and several PIF protocols may run concur-
rently. Here, we consider the problem in a general setting
of the PIF scheme where the PIF is initiatedriynly.

Specification 1 (PIF Wave) A finite computation e = ~g,
e Yis Vitls - - Yt € € iscalled a PIF Waveif and only if
the following condition istrue:

If r broadcasts a message min the step g — 71, then:

[PIF1] For each p # r, there exists a unique i € [1,t —
such that p receivesmin ; — 41, and

[PIF2] In ~, r receives an acknowledgment of the receipt of
m from every processor p # r.

1]

Remark 1 To prove that a PIF protocol is snap-stabilizing
we must show that any execution of the protocol satisfies
these two conditions: (2) if r has a message m to broadcast,
it will do in a finite time, and (iz) from any configuration
where r broadcasts m, the system satisfies Specification 1.

- The PIF Part. This is the main part of the protocol.
This part contains the actions corresponding to each of
the three phases of the PIF: the broadcast phase, the
feedback phase following the broadcast phase, and the
cleaning phase which cleans the trace of the feedback
phase so thatis ready to broadcast a new message.

- The Question Part. This part ensures that each pro-
cessor eventually receives the message frataring
a broadcast phase. Especially when the system con-
tains erroneous behaviors (the system can start from
any configuration). Actually, the question part controls
that, after receiving a message fropa processor does
not execute the feedback phase before all its neighbors
received the message.

- The Correction Part. This part contains the actions
dealing with the error correction, i.e., the actions that
clean the erroneous behaviors.

We now more precisely describe these three parts.

PIF Part. Lety € C whereVp € V, S, = C, referred

to as thenormal starting configuration. In ~, B-action atr

is the only enabled action of the system. Bexecutes3-
action in the first stepr broadcasts a messageswitches

to the broadcast phase Yy, := B, and initiates ajuestion

by Que, := @ (we will see later what the goal of this ques-
tion is). When a processagr waiting for a message (i.e.,
Sp = C) finds one of its neighborgin the broadcast phase
(S = B), p receives the message froq(B-action): it

also switches to the broadcast phaSg (= B), initiates a
question Que, := @), points out tog using P,, and sets

its level L,, to L, + 1. Typically, L, contains the length

of the path followed by the broadcast message frota

p. (Sincer never receives any broadcast message from any
neighbor,P,. and L. are constants.p is now in the broad-
cast phasey, = B) and is supposed to broadcast the mes-
sage to its neighbors exceff. So, step by step, a spanning
tree rooted at (w.r.t. the P variables), noted ree(r), is
dynamically built during the broadcast phase. Eventually,
some processorin Tree(r) cannot broadcast the message
because all its neighbors have already received the mes-
sage from some other neighbotg;(€ Neig,, Sq # C

A P, # p). Then,p (called aleaf of Tree(r)) waits an
authorization from the root to execute the feedback phase.
This authorization corresponds to the receptiomplaynd its
neighbors of an answer to the question previously asked by
p (AnswerOk(p)). After receiving this authorizatiop,can
switch to the feedback phase Bytaction (S, := F). The



Algorithm1 PIZFforp=r

Input: Neig,: setof (locally) ordered neighbors pf

Congtants: P, =1, L, = 0;

Variables: S, € {B,F,P,C}; Que, € {Q,R,A};

Macro: Child, = {q € Neigp :: (Sq # C) AN (Pq = p) AN(Lq = Lp + 1) A[(Sq # Sp) = (Sp € {B,P} ASq = F)]};

Predicates:
CFree(p) = (Vg € Neigyp :: Sq # C)
Leaf(p) = [Vg € Neig, : (Sy # C) = (Py # )]
BLeaf(p) = (Sp=B)AI[VYq € Neigp :: (Pg =p) = (Sq = F)]
AnswerOk(p) =  (Quep = A)A[Vq € Neigy :: (Sq # C) = (Queq = A)]
Broadcast(p) = (Sp =C)A Leaf(p)
Feedback(p) = BLeaf(p) N CFree(p) N AnswerOk(p)
PreClean(p) = (Sp=F)A[Vq € Neigy :: (Pg = p) = (Sq € {F,C})]
Cleaning(p) = (Sp = P)A Leaf(p)
Require(p) = (S, € {BFDALS, = B)= CFree(p)] Al(Quey = Q) A (Vg € Neigy = (Sq # C) = (Queq € {QRD)]

V [(Quep, = A) A (3q € Neigy :: (Sq # C) A (Queq = Q) V (¢ € Child, A Queq = R)))]
(Sp € {B,F})AN[(Sp = B) = CFree(p)] A(Quep, = R) A (Vg € Childy :: Queq € {W,A})
A [Vq € Neigy :: (Sq # C) = (Queq # Q)]

Answer(p)

Actions:

PIF Part:
B-action Broadcast(p) — Sp:= B;Quep :=Q; /* Initialization Action */
F-action Feedback(p) — Sp:=F;
P-action PreClean(p) — Sp =P
C-action Cleaning(p) -  Sp:=C;
Question Part:
QR-action Require(p) — Quep :=R
QA-action Answer(p) —  Quep, := A

feedback phase is then propagated up iFitee(r) as fol-
lows: a non-leaf processgrswitches to the feedback phase
when(3) it is authorized byr (AnswerOk(q)), (it) all its

later (next paragraph) that these abnormal trees are eventu-
ally erased from the system using tBerrection Part. But,
while such a processaris in an abnormal treg; must not
neighbors satisf # C (CFree(q)), and(iiz) all its chil- switches to the feedback phase. Otherwisdpes not re-
dreninTree(r) satisfyS = F (BLeaf(q)). By thismecha-  ceive the broadcast message frprand, as a consequence,
nism, all processor eventually participates to both broadcastg may never receive the message sent byrhat is why
and feedback phase. Onlyletects the end of the feedback we use thajuestions. The goal of the question (and its re-
phase: when settin§, to F'. It then remains to execute the spective answers) is to ensure thpagwitches to the feed-
last phase to the PIF wave: the cleaning phase. The aimback phase only when all its neighbors ardiree(r). Of

of this phase is to clean the trace of the PIF wave to bring course, the neighbors pfare inT'ree(r) since they received
the system in the normal starting configuration again. This the message from The question mechanism is managed
phase works as follows. Sinceletects the end of the feed- into the Que variables:Que, € {Q,R,A} for p = r and
back phase{, = F), r setsS, to P. This value is then  Que, € {Q,R,W,A} for p # r. The@ andR variables are
propagated if'ree(r) toward its leaves®C-action) to in- used for resetting the part of the network which is concerned
form all processors of the termination. Finally, after receiv- by aquestion. The W value corresponds to the request of
ing the P value, each successive leaf cleans itself by setting a processor: “Do you authorize me to feedback?”. Hhe
its S variable toC' (C-action). Therefore, the system will  value corresponds to the answer sending fy.b.,r is the
reach the normal starting configuration again. only processor able to generatdaalue). We now explain
how this phase works. We already saw thajuastion is
initiated atp € V by Que, := @ each timep switches

to a broadcast phase. This action forces all its neighbor
satisfyingS, # C to executeQue, := R (QR-action).
When everyg has resetp also executes) R-action. The

R values are then propagated up in the trees ahd each

g (and only these trees) following thfe variables. By this

Question Part. We saw that when a procesgoswitches
to the broadcast phasg := B), it also initiates ajuestion
(Que, := Q). Then, sinces, = B, p waits an autorization
before executing its feedback phasg, (:= F). This au-
torization corresponds to the receptionjgnd its neigh-

bors of an answer to the question previously askeg.by
The questions are used for providing the following problem.
When the system starts from a configuration differeny of

mechanism, all values possibly in the path from(resp.
q) to its root (w.r.t. theP variable) are erased (in particu-
lar, the A value present since the initial configuration). So,

(the system can start from any configuration), some neigh- from now on, when &4 value reaches a requesting proces-

bors ofp, ¢, may satisfyS, € {B,F'} while they are not in

sor or one of its neighbor, this value cannot come from any

Tree(r). Actually, these processors are in trees rooted by one butr and the processor obviously isTiree(r). Then,

some other processors thanabnormal trees. We will see



Algorithm2 PZF forp #r

Input: Neig,: setof (locally) ordered neighbors pf
Variables: S, € {B,F,P,C,EB,EF}, P, € Neigp; L, € N; Que, € {Q R W ,A};

Macros:
Child,
Pre_Potential,
Potential,

Predicates:
CFree(p)
Leaf(p)
BLeaf(p)
AnswerOk(p)
GoodS(p)
GoodL(p)
AbRoot(p)
EF AbRoot(p)
EBroadcast(p)
EFeedback(p)
Broadcast(p)
Feedback(p)
PreClean(p)
Cleaning(p)
Require(p)

Wait(p)
Answer(p)

Actions:

Correction Part:
EC-action
E B-action
EF-action

PIF Part:
B-action
F-action
P-action
C-action

Question Part:
QR-action
QW-action
QA-action

{q € Neigp :: (Sq#C) A (Pq=p) A (Lq=Lp+1) A[(Sq # Sp) = (Sp € {B.P} A Sq = F)V (S, = EB))l};
{q € Neigp, :: Sq = B };
{q € Neigp :: V¢’ € Pre-Potential,, Lq < L };

(Vq € Neigy :: Sq # C)

[Vq € Neigy :: (Sq # C) = (Pyq # p)l

(Sp = B) A [Vq € Neigp :: (Pq = p) = (Sq = F)]

(Que, = A) A [¥g € Neig, :: (Sq # C) = (Queq = A)]

(Sp = O)V[(Sp, # Sp) = (Sr, = BB)V (S, = F A Sp, € {B.PY)]

(Sp #C) = (Ly = L, +1)

—GoodS(p) V =GoodL(p)

(Sp = EF) A AbRoot(p) A[Vq € Neigp :: (Pg =pA Lq > Lp) = (Sq € {EF,C})]

(Sp € {B,F,P}) A [~ AbRoot(p) = (Sp, = EB)]

(Sp = EB)A[Vq € Neigp :: (P =pA Lq > Lp)=(Sq € {EF,C})]

(Sp = C) A (Potential, # 0) A Leaf(p)

BLeaf(p) AN CFree(p) AN AnswerOk(p)

(S = F) A (Sp, = P)A Vg € Neigy © (P = p) = (Sy € {F.CY)]

(Sp = P) A Leaf(p)

(Sp € {B.F'}) AN(Sp = B) = CFree(p)] A[(Quep = Q) A (Vg € Neigy 2 (Sq # C) = (Queq € {Q.R})]
VI(Que, € {W,A}) A Bq € Neigy :: (S # O) A (Queq = Q) V (g € Childy A Queq = R)I]
(Sp € {B,F}) AN[(Sp = B) = CFree(p)] A (Quep = R) A (Quep, = R)

A (Vg € Childy :: Queq € {W,A}) A (Vg € Neigy :: (Sq # C) = (Queq # Q))

(Sp € {B.FY) ALS, = B) = CFree(p)] A (Quey = W) A (Quep, = A)

A (Vg € Childy :: Queq € {W,A}) A (Vg € Neigy :: (Sq # C) = (Queq # Q))

EFAbRoot(p) —  Sp:=C;

EBroadcast(p) — Sp:= EB,

EFeedback(p) —  Sp:=EF,

Broadcast(p) — Sp 1= B; Pp :=ming,, (Potentialy,); Ly := Lp, + 1; Que, := Q;
Feedback(p) — Sy :i=F;

PreClean(p) — Sy =P

Cleaning(p) — Sy :=C,

Require(p) — Que, := R,

Wait(p) —  Quep :=W;

Answer(p) —  Quep = A;

as we have seen before, eventually, some procegsiors  Correction Part. This part is used for erasing the erro-
Tree(r), called leaves, detect that the broadcast phase canneous behaviors. Of course, the error correction only con-
not progress anymore because all their neighlporave cerns processors such thatS, # C andp ¢ Tree(r),
received a broadcast message from some other processolise., theabnormal processors. The abnormal processors are
(i.e., Sq # C and P, # p, Vg). In this casep executes  arranged into abnormal trees rooted at a processor satisfy-
Quep := W (QW-action) meaning that it is now waiting  ing AbRoot, i.e., anabnormal root. We define the abnor-
for an answer fromr. The W value is then propagated up mal trees as follows: leb such thatdbRoot(p), Vg € V,

into the tree ofp (and only this tree) as follows: a non- ¢ € Tree(p) (the abnormal tree rooted g} if and only if

leaf processog can execut&)W -action if all its children there exists a sequence of processps € p), ..., Pis -
have set theif)ue variable toW and no neighbor has still  (py = ¢) such that¥i € [1...k], p, € Child,, , (among

S = C. When thelV values reaches all the children iof the neighbors designating_; with P only those satisfy-

r execute) A-action: r broadcasts an answer into its ing S # C A =AbRoot are considered gs;_; children).
tree and so on. S&p € V, after initiating a question (i.e.,  So, the error correction consists in the removal of all these
Que, := @), if p and its neigbors are ifiree(r), then they abnormal trees. To remove an abnormal tfeee(p), we
eventually receive & value. In this caseyis sure thatitself ~ cannot simply sef,, to C. Since some processor can be in
and all its neighbor are iliree(r) and is authorized to exe-  T'ree(p). If we setS, to C, p can participate again to the
cute F-action (AnswerOk(p)). Otherwise, the processors broadcast of the tree of which it was the root. Since we do
in an abnormal tree receive nbuntil they leave their trees  not assume the knowledge of any bound on thealues,
(using theCorrection Part) and hook on to the normal tree  this scheme can progress infinitely often, and the system
Tree(r). In particular, ifp is in Tree(r), its F-action will may contain forever an abnormal tree which can prevent the
be enabled only after its neighbors hook offteee(r). progression of the normal trde-ee(r). We solve this prob-

lem by paralyzing the process of any abnormal tree before



remove it. To that goal, we use two additional states irtthe
variables:E B andE'F (for p # r only). If p is an abnormal
root, it sets its variablé), to £B and broadcasts this value
into its tree and only its treei{B-action). Whenp receives
an acknowledgmentHF-action) of all its children (value
EF of variableS), p knows that all the processogof its
tree satisfyF), = E'F and no processor can now receive the
broadcast phase from apy(indeed,S, # B, Vq). Thenp
can leave its treeHC-action) and it will try to receive the
broadcast from one of the processgmnly wheng partic-

ipates in another broadcast. By this process, all abnormal

trees eventually disappear afidee(r) will be able to grow
until it reaches all the processors of the network.

4. Correctness and Complexity Analysis

To prove thatPZF is snap-stabilizing for Specification

into an abnormal tree. This implies that the maximal height
of such trees iV — 2 and the lemma holds. |

Lemma 2 From any configuration containing no abnormal
tree, r executes B-action in at most 6N rounds.

Proof Outline.  Clearly, from such configurations, the
worst case is the following: satisfiesS,, = B and all the
other processors have théirvariable equal t&'. Accord-
ing to the algorithm B-action is propagated to all proces-
sors in at mostV — 1 rounds. (Note that after executing
B-action, a processor is enabled to executg®-action,
S0 B-actions and@Q R-actions work in parallel.) After all
processors executed théraction, one extra round is nec-
essary for the leaves to set thélie variable toR. Then,
the W value is propagated up in the into tligue vari-
ables byQW-action. The time used by th@ W -actions

1 under an unfair daemon we used the following scheme IS bounded byV — 1 rounds. By a similar reasonning tak-

of proof: we first prove thaPZF is snap-stabilizing for a

ing in account that also executes the respective actions,

weakly fair daemon; we then prove that each PIF wave is It IS obvious that th&) A-actions, F-actions, P-actions,

executed in a finite number of steps.

Some Definitions.  Vp € V such thatS,, # C, PPath(p)
is the unique patlpg, p1,p2, - . ..(px = p) satisfying these
two conditions: (i) Vi, 1 < i < k, (Sp, # C) A
(Pp; = pi—1) AN AbRoot(p;), (it) (po = r) V AbRoot(po).
Vp € V such that$ = r) vV AbRoot(p), we define a set
Tree(p) of processors as followslq € V, g € Tree(p) if
andonlyifS, # C andpis the first extremity oP Path(q).
A tree containing only processogssuch thatg = r) Vv
—AbRoot(p) is called anormal tree. Obviously, the system
always contains one normal tree: the tree rooted #&ny
tree rooted at another processor thae called anabnor-
mal tree. A treeT satisfiesAlive(T) (or is calledAlive) if
and only ifdp € T such thatS, = B. A treeT satisfies
Dead(T) (oris calledDead) if and only if = Alive(T).

Proof assuming a Weakly Fair Daemon.

Lemma 1l The system contains no abnormal treein at most
3N — 3 rounds.

Proof Outline. The Correction Part acts upon the abnor-
mal trees as follows: First, thE B values are propagated
down into the trees until their leaves ByB-action in at
mosth + 1 rounds wheré is the maximal height of an ab-
normal tree. Then, also+ 1 rounds are necessary to propa-
gate up theE F' values E F-action) to the abnormal roots.
From this point out, all abnormal trees are dead and still

h + 1 rounds are necessary so that the abnormal trees dis

appear by the successive removing of abnormal rdo¢s-(
action). Now, by definition, all non-root processors can be

andC-actions are successively propagated into the tree in
at mostN rounds each one. Hence, afte¥ — 1 rounds,
the system reaches a configuration whege= V', S, = C
andr executesB-action in the next round. O

By Lemmas 1 and 2, the following result holds.

Theorem 1 From any configuration, r execute B-action in
at most 9N — 3 rounds.

Theorem 2 From any configuration where r executes B-
action, the execution satisfies Specification 1.

Proof Outline. From such a configuration, we know that
the abnormal trees cannot prevent forever the PIF froon
progress (Lemma 1). Also, from the explanation provided
in Section 3 Question Part), we know that any processor

p which has received the message initiated 8-action)
cannot switch to the feedback phase before all its neighbors
also receive this message. This implies that every processor
are eventually into the normal tree and [PIF1] is satisfied.
Also, since they are into the normal tree, eadannot leave

it beforer initiates the cleaning phase Braction. Now,

r initiates this phase only whesi, = F andr setsS, to

F only when all its neighbors are into the normal tree and
all its children are into the feedback phase. Inductively, it
is easy to verify that the childrenof r into the normal tree
also switchS, to £ only when their neighbors are into the
normal tree and their children are into the feedback phase
and so on. Hence, we can conclude thaetssS, to F

only when all the other processors have acknowledged its
O

message to it ([PIF2]).

By Remark 1, Theorems 1, and 2, follows:



Theorem 3 PZF issnap-stabilizingfor Specification 1 un-
der aweakly fair daemon.

Proof assuming an Unfair Daemon. To prove the shap-
stabilization of PZF for an unfair daemon, it remains to
show that any PIF Wave is finite in terms of steps.

Lemma3 ¥p € V \ {r}, if p hooks on to an abnormal tree,
p cannot execute F-action before leaving the tree.

Proof Outline. A processop hooks on to an abnormal
tree byB-action. By B-action, it also initiates a question
(Que, := Q). Now, from Section 3 Question Part) we
know thatp never receives an answepge, := A) while
it is in the tree. So, while it is in the trep,never satisfies
AnswerOk(p) andF-action is disabled ap. O

A processorp in an abnormal tree can executé, P-,
andC-actions at most once before leaving the tree. Now,
Lemma 3 implies that, after leaving the trdeaction atp
will be no more enabled whilgis in an abnormal tree. An-
other consequence is that, andC-action will be also no
more enabled whilg is in an abnormal tree. Hence, during
the whole execution, each processor execiitesP-, and
C-action at most once while it is in an abnormal tree, i.e.,
O(N) F-, P-, andC-actions are executed on the abnormal
trees during the whole execution. Lemma 3 also implies
that any processgr which hooks on to an abnormal tree
will leave it only by executing the actions of ti@errection
Part. Now, the Correction Part ensures thap will leave

the tree only when it is dead. Thus, in the worst case, each

non-root processor — 1) can hook on to each abnormal
tree (V — 1) at most once during the execution, i@(N 2)
B-actions. Hence, follows:

Lemma4 In an execution, O(/N ?) actions of the PIF Part
are executed on the abnormal trees.

We now focus on th&uestion Part. A question is initi-
ated atp when it hooks on to a tre&ue, := Q). Then,

R values are propagated up into tRPaths of p and its
neighborsg such thatS, # C (O(A) processors). Then,
in the worst casdjV values are also propagated up into the
PPaths of pand its neighborg such thatS, # C. Finally,

A values are propagated fromto the processor among
and its neighbors that effectively belong to the normal tree.
Now, as the height of an¥ Path is in O(IV), follows:

Lemma5 Each B-action generates O(A x N) actions of
the Question Part

Lemma6 In an execution, the abnormal trees generate an
overcost of O(A x N3) actions of the Question Part

Proof Outline. A processor propagates a question in trees
because of the initial configuration or when it hooks on to
a tree. Each time it hooks on to an abnormal tree, it gener-
atesO(A x N) actions of theQuestion Part (Lemma 5). Of
course, the number of actions of tieiestion Part gener-
ated if it is in abnormal tree since the initial configuration
is of the same orderJ(Ax N)). Now, O(N) processors
are in abnormal trees at the initial configuration &nav 2)
processors hook on to abnormal trees in the executian.

Finally, we count the actions of thgorrection Part.

Lemma7 In an execution, O(IN2) actions of the Correc-
tion Partare executed on the abnormal trees.

Proof Outline. In the worst case, each processor in abnor-
mal trees has to execute the three actions ofObreection

Part to leave its tree. So, any processor leaves an abnor-
mal tree inO(1) actions of theCorrection Part. Now, O(N)
processors are in abnormal trees at the initial configuration
andO(N?) processors hook on to abnormal trees during the
whole execution. a

From Lemmas 4, 6, and 7, we can deduce this result:

Lemma 8 In an execution, the abnormal trees generate an
overcost of O(A x N3) actions before disappearing.

We now show that, starting from any configuration, the nor-
mal tree,T'ree(r), can only generate a finite number of ac-
tions beforer initiates a PIF wave (byB-action). First,
from Section 3 PIF Part), we can deduce this result:

Lemma9 From any configuration, O(N) actions of the
PIF Partare executed on Tree(r) before r executes B-
action.

Following the same reasonning as for Lemma 6, we can
easily show the next result:

Lemma 10 From any configuration, Tree(r) generates
O(A x N?) actions of the Question Parbefore r executes
B-action.

By Lemma 9, and 10, follows:

Lemma 11 From any configuration, Tree(r) generates
O(A x N?) actions before r executes B-action.

By Lemmas 8 and 11, follows:

Theorem 4 From any configuration, r executes B-action
after O(A x N?) steps.

Corollary 1 From any configuration, a complete wave of
PIF isexecuted in O(A x N3) steps.



By Theorems 3 and Corollary 1, follows: any configuration, the number of corrupted messages (i.e.,
messages not sent bythat a processor may acknowledge

Theorem 5 PZF issnap-stabilizingfor Specification 1 un- is bounded by two.

der the unfair daemon.
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