
Snap-Stabilizing PIF and Useless Computations∗

Alain Cournier Stéphane Devismes Vincent Villain
LaRIA, CNRS FRE 2733

Université de Picardie Jules Verne, Amiens (France)

Abstract

A snap-stabilizing protocol, starting from any configura-
tion, always behaves according to its specification. In other
words, a snap-stabilizing protocol is a self-stabilizing pro-
tocol which stabilizes in 0 time unit. Here, we propose the
first snap-stabilizing propagation of information with feed-
back for arbitrary networks working with an unfair dae-
mon. An interesting aspect of our solution is that, starting
from any configuration, the number of reception (resp. ac-
knowledgement) of corrupted messages (i.e., messages not
initiated by the root) by a processor is bounded.

1. Introduction

The concept ofPropagation of Information with Feed-
back (PIF) has been introduced by Chang [7] and Segall
[13]. The PIF scheme can be described as follows: a node,
calledroot or initiator, initiates a wave by broadcasting a
messagem into the network (broadcast phase). Each non-
root processor acknowledges to the root the receipt ofm
(feedback phase). The wave terminates when the root has
received an acknowledgment from all other processors. In
distributed systems, any processor may need to initiate a
PIF wave. Thus, any processor can be the initiator of a PIF
wave and several PIF protocols may run simultaneously. To
cope with the current executions, every processor maintains
the identity of the initiators. PIF protocols have been exten-
sively used in distributed systems for solving a wide class
of problems, e.g., spanning tree construction, distributed in-
fimum functions computations, snapshot, termination de-
tection, reset, or synchronization. So, designing efficient
fault-tolerant PIF protocols is highly desirable. Many fault-
tolerant schemes have been proposed and implemented, but
the most general technique to design a system tolerating
arbitrary transient faults isself-stabilization [10]. A self-
stabilizing system, regardless of the initial states of the pro-
cessors and messages initially in the links, is guaranteed to

∗See www.laria.u-picardie.fr/∼devismes/LaRIA-2006-04.pdf for the
full version of this paper.

converge into the intended behavior in finite time. Such a
property is very desirable because after any unexpected per-
turbation modifying the messages and/or the memory state,
the system eventually recovers without any outside inter-
vention. A particular class of self-stabilizing protocols is
snap-stabilizing protocols [6]. Asnap-stabilizing protocol
guarantees that, starting from any configuration, it always
behaves according to its specification. In other words, a
snap-stabilizing protocol is a self-stabilizing protocol which
stabilizes in 0 time unit. Of course, a snap-stabilizing pro-
tocol is optimal in terms of stabilization time. The notion
of 0 stabilization time is a surprising result in the stabiliza-
tion area. Clearly, the snap-stabilization does not guarantee
that all components of the network never work in a fuzzy
manner. However, the snap-stabilizing property ensures that
if an execution of a protocol is initiated by some proces-
sors, then the protocol behaves as expected. Furthermore,
after the initialization, the protocol does not introduce any
additional fuzzy behavior. Consider, for instance, a snap-
stabilizing PIF protocol. Starting from any configuration,
the protocol ensures that when a processorp has a message
m to broadcast, then:p eventually starts the broadcast ofm,
any other processor will receivem, and send an acknowl-
edgment which will reachp.

Several PIF protocols for arbitrary networks have been
proposed in the self-stabilizing area, e.g., [14, 8]. The self-
stabilizing PIF protocols have also been used in the area
of self-stabilizing synchronizers [4, 2]. Reset protocols are
also PIF-based protocols. Several reset protocols exist in the
self-stabilizing literature, e.g., [1, 3]. Self-stabilizing snap-
shot protocols [12, 14] are also based on the PIF scheme.
The first snap-stabilizing PIF protocol for arbitrary net-
works has been presented in [9]. The drawback of this solu-
tion is that the protocol needs to know the exact size of the
network (i.e., the number of processors). So this size must
be constant and the protocol cannot work on dynamical net-
works. This drawback is solved in [5].

The complexity analysis of the protocols in [9, 5] reveals
that they are efficient in terms of rounds for the stabiliza-
tion time (O(1)), delay (O(N) whereN is the number of
processors), and execution time (O(N)), respectively. How-

ever, the correctness of these protocols is proven assuming a
(weakly) fair daemon only. Roughly speaking, a daemon is
considered as an adversary which tries to prevent the pro-
tocol to behave as expected, and fairness means that the
daemon cannot prevent forever a processor to execute an
enabled action. A more (the most) general daemon is the
unfair daemon: an unfair daemon can prevent forever an
action to be executed except if it is the only enabled action.
A well-known property of protocols working under an un-
fair daemon is that each round of their executions contains
a finite number of steps. So, as the protocols in [9, 5] are
not proven assuming an unfair daemon, their step complex-
ities cannot a priori be bounded. Therefore, we propose
in this paper a novel snap-stabilizing PIF protocol proven
assuming an unfair daemon as well as its step complexity
analysis. Our protocol is based on the principles presented
in [5]. This new solution keeps the advantages of the earlier
solutions, i.e., efficient round complexities, low memory re-
quirement, and resilience to dynamic topological changes.
However, the snap-stabilizing property of our PIF protocol
does not ensure that the network never works in a fuzzy
manner. In particular, if we focus on a non-initiator proces-
sor p , the snap-stabilization does not ensure thatp never
receives corrupted messages (i.e., messages not sent by the
initiator). Nevertheless, we will see that, using our proto-
col, the number of corrupted messages thatp may receive is
bounded by the size of the network (Theorem 8). Also, we
will see thatp does not acknowledge any corrupted mes-
sage: the number of these corrupted acknowledgments is
bounded by a constant independent of the network (Theo-
rem 9). In many PIF-based applications, the acknowledg-
ments are crucial. For instance, in a distributed infimum
functions computation, the computation is distributed dur-
ing the broadcast and the result is computed and stored into
the acknowledgments. So, the cost of local computations
generated by acknowledgments of corrupted messages can
be very significant. Thus, bounding the number of cor-
rupted acknowledgments by a small constant enhances the
quality of the solution.

The rest of the paper is organized as follows: in Section
2, we describe the model we use. In the same section, we
define of the snap-stabilization and we give a formal state-
ment of the PIF protocol. In Section 3, we present our PIF
protocol. We give a sketch of the proof of snap-stabilization
for our protocol and some complexity results in Section 4.
Finally, we conclude in Section 5.

2. Computational Model

We consider a network as an undirected connected graph
G = (V ,E) whereV is a set ofprocessors andE is the set of
bidirectional asynchronous communication links. We state
thatN is the size ofG (|V | = N) and∆ its degree (i.e., the

maximal value among the local degrees of the processors).
We assume that the network isrooted, i.e., among the pro-
cessors, we distinguish a particular one,r, which is called
root. We say thatp andq are neighbors if and only if (p,q)
∈ E. Each processorp can distinguish all its links. For sake
of simplicity, we refer to a link (p,q) of a processorp by the
label q. We assume that the labels ofp, stored in the set
Neigp, are locally ordered by≺p. Neigp is considered as
a constant input from the system. Our protocols aresemi-
uniform, i.e., each processor executes the same program ex-
ceptr. We consider a local shared memory model of com-
putation derived from the Dijkstra’s state model [10]. Such
a model is an abstraction of the message-passing model in
a sense that the notion of messages is replaced by the fact
that any processor can directly read the state of its neigh-
bors. In our model, the program of every processor con-
sists in a set ofshared variables (henceforth, referred to
as variables) and anordered finite set of actions inducing
a priority. This priority follows the order of appearance
of the actions into the text of the protocol. A processor can
write to its own variable only, and read its own variables and
that of its neighbors. Each action is constitued as follows:
< label > :: < guard > → < statement > . The guard
of an action in the program ofp is a boolean expression in-
volving variables ofp and its neighbors. The statement of
an action ofp updates one or more variables ofp. An action
can be executed only if its guard is satisfied. Thestate of a
processor is defined by the value of its variables. Thestate
of a system is the product of the states of all processors. We
will refer to the state of a processor and the system as a (lo-
cal) state and (global) configuration, respectively. We note
C the set of all configurations of the system. Letγ ∈ C and
A an action ofp ∈ V . A is saidenabled atp in γ if and only
if the guard ofA is satisfied byp in γ. p is said to beenabled
in γ if and only if at least one action is enabled atp in γ.
When several actions are enabled simultaneously at a pro-
cessorp: only the priority enabled action can be activated.
Let a distributed protocolP be a collection of binary transi-
tion relations denoted by�→, onC. A computation of P is a
maximal sequence of configurationse = γ0,γ1,...,γi,γi+1,...
such that,∀i ≥ 0, γi �→ γi+1 (called astep) if γi+1 exists,
elseγi is a terminal configuration.Maximality means that
the sequence is either finite (and no action ofP is enabled
in the terminal configuration) or infinite. All computations
considered here are assumed to be maximal.E is the set
of all computations ofP . As we already said, each execu-
tion is decomposed into steps. Each step is shared into three
sequential phases atomically executed:(i) every processor
evaluates its guards,(ii) a daemon (also calledscheduler)
chooses some enabled processors,(iii) each chosen pro-
cessor executes its priority enabled action. When the three
phases are done, the next step begins. Adaemon can be
defined in terms offairness anddistributivity. We use the

notion ofweakly fairness: if a daemon isweakly fair, then
every continuously enabled processor is eventually chosen
by the daemon to execute an action. We also use the notion
of unfairness: theunfair daemon can forever prevent a pro-
cessor to execute an action except if it is the only enabled
processor. Concerning thedistributivity, we assume that the
daemon isdistributed meaning that, at each step, if one or
more processors are enabled, then the daemon chooses at
least one of these processors to execute an action. We con-
sider that any processorp executed adisabling action in the
computation stepγi �→ γi+1 if p was enabled in γi and
not enabled inγi+1, but did not execute any protocol action
in γi �→ γi+1. The disabling action represents the follow-
ing situation: at least one neighbor ofp changes its state in
γi �→ γi+1, and this change effectively made the guard of
all actions ofp false inγi+1. To compute the time com-
plexity, we use the definition ofround [11]. This definition
captures the execution rate of the slowest processor in any
computation. Given a computatione ∈ E , thefirst round
of e (let us call ite′) is the minimal prefix ofe containing
the execution of one action (a protocol action or a disabling
action) of every enabled processor from the initial configu-
ration. Lete′′ be the suffix ofe such thate = e′e′′. The
second round of e is the first round ofe ′′, and so on.

Snap-Stabilization. Let X be a set.x � P means that
x ∈ X satisfies the predicateP defined onX .

Definition 1 (Snap-stabilization) Let T be a task, and
SPT a specification of T . The protocol P is snap-
stabilizing for SPT if and only if ∀e ∈ E :: e � SPT .

The problem to be solved. Any processor can be an ini-
tiator in a PIF and several PIF protocols may run concur-
rently. Here, we consider the problem in a general setting
of the PIF scheme where the PIF is initiated byr only.

Specification 1 (PIF Wave) A finite computation e = γ0,
. . ., γi, γi+1, . . ., γt ∈ E is called a PIF Waveif and only if
the following condition is true:
If r broadcasts a message m in the step γ0 �→ γ1, then:

[PIF1] For each p 	= r, there exists a unique i ∈ [1, t − 1]
such that p receives m in γi �→ γi+1, and

[PIF2] In γt, r receives an acknowledgment of the receipt of
m from every processor p 	= r.

Remark 1 To prove that a PIF protocol is snap-stabilizing
we must show that any execution of the protocol satisfies
these two conditions: (i) if r has a message m to broadcast,
it will do in a finite time, and (ii) from any configuration
where r broadcasts m, the system satisfies Specification 1.

3. Algorithm

We now describe our snap-stabilizing PIF protocol (Al-
gorithms 1 and 2) referred to as AlgorithmPIF . Algo-
rithmPIF is divided into three parts:

- The PIF Part. This is the main part of the protocol.
This part contains the actions corresponding to each of
the three phases of the PIF: the broadcast phase, the
feedback phase following the broadcast phase, and the
cleaning phase which cleans the trace of the feedback
phase so thatr is ready to broadcast a new message.

- The Question Part. This part ensures that each pro-
cessor eventually receives the message fromr during
a broadcast phase. Especially when the system con-
tains erroneous behaviors (the system can start from
any configuration). Actually, the question part controls
that, after receiving a message fromr, a processor does
not execute the feedback phase before all its neighbors
received the message.

- The Correction Part. This part contains the actions
dealing with the error correction, i.e., the actions that
clean the erroneous behaviors.

We now more precisely describe these three parts.

PIF Part. Let γ ∈ C where∀p ∈ V , Sp = C, referred
to as thenormal starting configuration. In γ, B-action at r
is the only enabled action of the system. So,r executesB-
action in the first step:r broadcasts a messagem, switches
to the broadcast phase bySr := B, and initiates aquestion
by Quer := Q (we will see later what the goal of this ques-
tion is). When a processorp waiting for a message (i.e.,
Sp = C) finds one of its neighborsq in the broadcast phase
(Sq = B), p receives the message fromq (B-action): it
also switches to the broadcast phase (Sp := B), initiates a
question (Quep := Q), points out toq usingPp, and sets
its level Lp to Lq + 1. Typically, Lp contains the length
of the path followed by the broadcast message fromr to
p. (Sincer never receives any broadcast message from any
neighbor,Pr andLr are constants.)p is now in the broad-
cast phase (Sp = B) and is supposed to broadcast the mes-
sage to its neighbors exceptPp. So, step by step, a spanning
tree rooted atr (w.r.t. theP variables), notedTree(r), is
dynamically built during the broadcast phase. Eventually,
some processorp in Tree(r) cannot broadcast the message
because all its neighbors have already received the mes-
sage from some other neighbors (∀q ∈ Neigp, Sq 	= C
∧ Pq 	= p). Then,p (called aleaf of Tree(r)) waits an
authorization from the root to execute the feedback phase.
This authorization corresponds to the reception byp and its
neighbors of an answer to the question previously asked by
p (AnswerOk(p)). After receiving this authorization,p can
switch to the feedback phase byF -action (Sp := F). The

Algorithm 1 PIF for p = r
Input: Neigp : set of (locally) ordered neighbors ofp;

Constants: Pp =⊥; Lp = 0;

Variables: Sp ∈ {B,F ,P ,C}; Quep ∈ {Q,R,A};

Macro: Childp = {q ∈ Neigp :: (Sq �= C) ∧ (Pq = p) ∧ (Lq = Lp + 1) ∧ [(Sq �= Sp) ⇒ (Sp ∈ {B,P} ∧ Sq = F)]};

Predicates:
CFree(p) ≡ (∀q ∈ Neigp :: Sq �= C)
Leaf(p) ≡ [∀q ∈ Neigp :: (Sq �= C) ⇒ (Pq �= p)]
BLeaf(p) ≡ (Sp = B) ∧ [∀q ∈ Neigp :: (Pq = p) ⇒ (Sq = F)]
AnswerOk(p) ≡ (Quep = A) ∧ [∀q ∈ Neigp :: (Sq �= C) ⇒ (Queq = A)]
Broadcast(p) ≡ (Sp = C) ∧ Leaf(p)
Feedback(p) ≡ BLeaf(p) ∧ CFree(p) ∧ AnswerOk(p)
PreClean(p) ≡ (Sp = F) ∧ [∀q ∈ Neigp :: (Pq = p) ⇒ (Sq ∈ {F ,C})]
Cleaning(p) ≡ (Sp = P) ∧ Leaf(p)
Require(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CFree(p)] ∧ [[(Quep = Q) ∧ (∀q ∈ Neigp :: (Sq �= C) ⇒ (Queq ∈ {Q,R}))]

∨ [(Quep = A) ∧ (∃q ∈ Neigp :: (Sq �= C) ∧ ((Queq = Q) ∨ (q ∈ Childp ∧ Queq = R)))]]
Answer(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CFree(p)] ∧ (Quep = R) ∧ (∀q ∈ Childp :: Queq ∈ {W ,A})

∧ [∀q ∈ Neigp :: (Sq �= C) ⇒ (Queq �= Q)]
Actions:

PIF Part:
B-action :: Broadcast(p) → Sp := B; Quep := Q; /* Initialization Action */
F -action :: Feedback(p) → Sp := F ;
P -action :: PreClean(p) → Sp := P ;
C-action :: Cleaning(p) → Sp := C;

Question Part:
QR-action :: Require(p) → Quep := R;
QA-action :: Answer(p) → Quep := A;

feedback phase is then propagated up intoTree(r) as fol-
lows: a non-leaf processorq switches to the feedback phase
when(i) it is authorized byr (AnswerOk(q)), (ii) all its
neighbors satisfyS 	= C (CFree(q)), and(iii) all its chil-
dren inTree(r) satisfyS = F (BLeaf(q)). By this mecha-
nism, all processor eventually participates to both broadcast
and feedback phase. Onlyr detects the end of the feedback
phase: when settingSr to F . It then remains to execute the
last phase to the PIF wave: the cleaning phase. The aim
of this phase is to clean the trace of the PIF wave to bring
the system in the normal starting configuration again. This
phase works as follows. Sincer detects the end of the feed-
back phase (Sr = F), r setsSr to P . This value is then
propagated inTree(r) toward its leaves (PC-action) to in-
form all processors of the termination. Finally, after receiv-
ing theP value, each successive leaf cleans itself by setting
its S variable toC (C-action). Therefore, the system will
reach the normal starting configuration again.

Question Part. We saw that when a processorp switches
to the broadcast phase (Sp := B), it also initiates aquestion
(Quep := Q). Then, sinceSp = B, p waits an autorization
before executing its feedback phase (Sp := F). This au-
torization corresponds to the reception byp and its neigh-
bors of an answer to the question previously asked byp.
The questions are used for providing the following problem.
When the system starts from a configuration different ofγ
(the system can start from any configuration), some neigh-
bors ofp, q, may satisfySq ∈ {B,F} while they are not in
Tree(r). Actually, these processors are in trees rooted by
some other processors thanr: abnormal trees. We will see

later (next paragraph) that these abnormal trees are eventu-
ally erased from the system using theCorrection Part. But,
while such a processorq is in an abnormal tree,p must not
switches to the feedback phase. Otherwise,q does not re-
ceive the broadcast message fromp and, as a consequence,
q may never receive the message sent byr. That is why
we use thequestions. The goal of the question (and its re-
spective answers) is to ensure thatp switches to the feed-
back phase only when all its neighbors are inTree(r). Of
course, the neighbors ofp are inTree(r) since they received
the message fromr. The question mechanism is managed
into theQue variables:Quep ∈ {Q,R,A} for p = r and
Quep ∈ {Q,R,W ,A} for p 	= r. TheQ andR variables are
used for resetting the part of the network which is concerned
by a question. TheW value corresponds to the request of
a processor: “Do you authorize me to feedback?”. TheA
value corresponds to the answer sending byr (n.b.,r is the
only processor able to generate aA value). We now explain
how this phase works. We already saw that aquestion is
initiated atp ∈ V by Quep := Q each timep switches
to a broadcast phase. This action forces all its neighborq
satisfyingSq 	= C to executeQueq := R (QR-action).
When everyq has reset,p also executesQR-action. The
R values are then propagated up in the trees ofp and each
q (and only these trees) following theP variables. By this
mechanism, allA values possibly in the path fromp (resp.
q) to its root (w.r.t. theP variable) are erased (in particu-
lar, theA value present since the initial configuration). So,
from now on, when aA value reaches a requesting proces-
sor or one of its neighbor, this value cannot come from any
one butr and the processor obviously is inTree(r). Then,

Algorithm 2 PIF for p 	= r
Input: Neigp : set of (locally) ordered neighbors ofp;

Variables: Sp ∈ {B,F ,P ,C,EB,EF}; Pp ∈ Neigp ; Lp ∈ N; Quep ∈ {Q,R,W ,A};

Macros:
Childp = {q ∈ Neigp :: (Sq �=C) ∧ (Pq=p) ∧ (Lq=Lp+1) ∧ [(Sq �= Sp) ⇒ ((Sp ∈ {B,P} ∧ Sq = F) ∨ (Sp = EB))]};
Pre Potentialp = {q ∈ Neigp :: Sq = B };
Potentialp = {q ∈ Neigp :: ∀q′ ∈ Pre Potentialp , Lq ≤ Lq′};

Predicates:
CFree(p) ≡ (∀q ∈ Neigp :: Sq �= C)
Leaf(p) ≡ [∀q ∈ Neigp :: (Sq �= C) ⇒ (Pq �= p)]
BLeaf(p) ≡ (Sp = B) ∧ [∀q ∈ Neigp :: (Pq = p) ⇒ (Sq = F)]
AnswerOk(p) ≡ (Quep = A) ∧ [∀q ∈ Neigp :: (Sq �= C) ⇒ (Queq = A)]
GoodS(p) ≡ (Sp = C) ∨ [(SPp �= Sp) ⇒ ((SPp = EB) ∨ (Sp = F ∧ SPp ∈ {B,P}))]
GoodL(p) ≡ (Sp �= C) ⇒ (Lp = LPp + 1)
AbRoot(p) ≡ ¬GoodS(p) ∨ ¬GoodL(p)
EFAbRoot(p) ≡ (Sp = EF) ∧ AbRoot(p) ∧ [∀q ∈ Neigp :: (Pq = p ∧ Lq > Lp) ⇒ (Sq ∈ {EF ,C})]
EBroadcast(p) ≡ (Sp ∈ {B,F ,P}) ∧ [¬AbRoot(p) ⇒ (SPp = EB)]
EFeedback(p) ≡ (Sp = EB) ∧ [∀q ∈ Neigp :: (Pq = p ∧ Lq > Lp) ⇒ (Sq ∈ {EF ,C})]
Broadcast(p) ≡ (Sp = C) ∧ (Potentialp �= ∅) ∧ Leaf(p)
Feedback(p) ≡ BLeaf(p) ∧ CFree(p) ∧ AnswerOk(p)
PreClean(p) ≡ (Sp = F) ∧ (SPp = P) ∧ [∀q ∈ Neigp :: (Pq = p) ⇒ (Sq ∈ {F ,C})]
Cleaning(p) ≡ (Sp = P) ∧ Leaf(p)
Require(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CFree(p)] ∧ [[(Quep = Q) ∧ (∀q ∈ Neigp :: (Sq �= C) ⇒ (Queq ∈ {Q,R}))]

∨ [(Quep ∈ {W ,A}) ∧ (∃q ∈ Neigp :: (Sq �= C) ∧ ((Queq = Q) ∨ (q ∈ Childp ∧ Queq = R)))]]
Wait(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CFree(p)] ∧ (Quep = R) ∧ (QuePp = R)

∧ (∀q ∈ Childp :: Queq ∈ {W ,A}) ∧ (∀q ∈ Neigp :: (Sq �= C) ⇒ (Queq �= Q))
Answer(p) ≡ (Sp ∈ {B,F}) ∧ [(Sp = B) ⇒ CFree(p)] ∧ (Quep = W) ∧ (QuePp = A)

∧ (∀q ∈ Childp :: Queq ∈ {W ,A}) ∧ (∀q ∈ Neigp :: (Sq �= C) ⇒ (Queq �= Q))
Actions:

Correction Part:
EC-action :: EFAbRoot(p) → Sp := C;
EB-action :: EBroadcast(p) → Sp := EB;
EF -action :: EFeedback(p) → Sp := EF ;

PIF Part:
B-action :: Broadcast(p) → Sp := B; Pp := min≺p (Potentialp); Lp := LPp + 1; Quep := Q;
F -action :: Feedback(p) → Sp := F ;
P -action :: PreClean(p) → Sp := P ;
C-action :: Cleaning(p) → Sp := C;

Question Part:
QR-action :: Require(p) → Quep := R;
QW -action :: Wait(p) → Quep := W ;
QA-action :: Answer(p) → Quep := A;

as we have seen before, eventually, some processorsp in
Tree(r), called leaves, detect that the broadcast phase can-
not progress anymore because all their neighborsq have
received a broadcast message from some other processors
(i.e., Sq 	= C andPq 	= p, ∀q). In this case,p executes
Quep := W (QW -action) meaning that it is now waiting
for an answer fromr. TheW value is then propagated up
into the tree ofp (and only this tree) as follows: a non-
leaf processorq can executeQW -action if all its children
have set theirQue variable toW and no neighbor has still
S = C. When theW values reaches all the children ofr,
r executesQA-action: r broadcasts an answerA into its
tree and so on. So,∀p ∈ V , after initiating a question (i.e.,
Quep := Q), if p and its neigbors are inTree(r), then they
eventually receive aA value. In this case,p is sure that itself
and all its neighbor are inTree(r) and is authorized to exe-
cuteF -action (AnswerOk(p)). Otherwise, the processors
in an abnormal tree receive noA until they leave their trees
(using theCorrection Part) and hook on to the normal tree
Tree(r). In particular, ifp is in Tree(r), its F -action will
be enabled only after its neighbors hook on toTree(r).

Correction Part. This part is used for erasing the erro-
neous behaviors. Of course, the error correction only con-
cerns processorsp such thatSp 	= C andp /∈ Tree(r),
i.e., theabnormal processors. The abnormal processors are
arranged into abnormal trees rooted at a processor satisfy-
ing AbRoot, i.e., anabnormal root. We define the abnor-
mal trees as follows: letp such thatAbRoot(p), ∀q ∈ V ,
q ∈ Tree(p) (the abnormal tree rooted atp) if and only if
there exists a sequence of processors (p0 = p), ..., pi, ...,
(pk = q) such that,∀i ∈ [1...k], pi ∈ Childpi−1 (among
the neighbors designatingpi−1 with P only those satisfy-
ing S 	= C ∧ ¬AbRoot are considered aspi−1 children).
So, the error correction consists in the removal of all these
abnormal trees. To remove an abnormal treeTree(p), we
cannot simply setSp to C. Since some processor can be in
Tree(p). If we setSp to C, p can participate again to the
broadcast of the tree of which it was the root. Since we do
not assume the knowledge of any bound on theL values,
this scheme can progress infinitely often, and the system
may contain forever an abnormal tree which can prevent the
progression of the normal treeTree(r). We solve this prob-
lem by paralyzing the process of any abnormal tree before

remove it. To that goal, we use two additional states in theS
variables:EB andEF (for p 	= r only). If p is an abnormal
root, it sets its variableSp to EB and broadcasts this value
into its tree and only its tree (EB-action). Whenp receives
an acknowledgment (EF -action) of all its children (value
EF of variableS), p knows that all the processorsq of its
tree satisfyEq = EF and no processor can now receive the
broadcast phase from anyq (indeed,Sq 	= B, ∀q). Thenp
can leave its tree (EC-action) and it will try to receive the
broadcast from one of the processorsq only whenq partic-
ipates in another broadcast. By this process, all abnormal
trees eventually disappear andTree(r) will be able to grow
until it reaches all the processors of the network.

4. Correctness and Complexity Analysis

To prove thatPIF is snap-stabilizing for Specification
1 under an unfair daemon we used the following scheme
of proof: we first prove thatPIF is snap-stabilizing for a
weakly fair daemon; we then prove that each PIF wave is
executed in a finite number of steps.

Some Definitions. ∀p ∈ V such thatSp 	= C, PPath(p)
is the unique pathp0, p1, p2, . . .,(pk = p) satisfying these
two conditions: (i) ∀i, 1 ≤ i ≤ k, (Spi 	= C) ∧
(Ppi = pi−1) ∧ ¬AbRoot(pi), (ii) (p0 = r) ∨AbRoot(p0).
∀p ∈ V such that (p = r) ∨ AbRoot(p), we define a set
Tree(p) of processors as follows:∀q ∈ V , q ∈ Tree(p) if
and only ifSq 	= C andp is the first extremity ofPPath(q).
A tree containing only processorsp such that (p = r) ∨
¬AbRoot(p) is called anormal tree. Obviously, the system
always contains one normal tree: the tree rooted atr. Any
tree rooted at another processor thanr is called anabnor-
mal tree. A treeT satisfiesAlive(T) (or is calledAlive) if
and only if∃p ∈ T such thatSp = B. A treeT satisfies
Dead(T) (or is calledDead) if and only if¬Alive(T).

Proof assuming a Weakly Fair Daemon.

Lemma 1 The system contains no abnormal tree in at most
3N − 3 rounds.

Proof Outline. TheCorrection Part acts upon the abnor-
mal trees as follows: First, theEB values are propagated
down into the trees until their leaves byEB-action in at
mosth + 1 rounds whereh is the maximal height of an ab-
normal tree. Then, alsoh+1 rounds are necessary to propa-
gate up theEF values (EF -action) to the abnormal roots.
From this point out, all abnormal trees are dead and still
h + 1 rounds are necessary so that the abnormal trees dis-
appear by the successive removing of abnormal roots (EC-
action). Now, by definition, all non-root processors can be

into an abnormal tree. This implies that the maximal height
of such trees isN − 2 and the lemma holds. �

Lemma 2 From any configuration containing no abnormal
tree, r executes B-action in at most 6N rounds.

Proof Outline. Clearly, from such configurations, the
worst case is the following:r satisfiesSr = B and all the
other processors have theirS variable equal toC. Accord-
ing to the algorithm,B-action is propagated to all proces-
sors in at mostN − 1 rounds. (Note that after executing
B-action, a processor is enabled to executedQR-action,
soB-actions andQR-actions work in parallel.) After all
processors executed theirB-action, one extra round is nec-
essary for the leaves to set theirQue variable toR. Then,
the W value is propagated up in the into theQue vari-
ables byQW -action. The time used by theQW -actions
is bounded byN − 1 rounds. By a similar reasonning tak-
ing in account thatr also executes the respective actions,
it is obvious that theQA-actions, F -actions, P -actions,
andC-actions are successively propagated into the tree in
at mostN rounds each one. Hence, after6N − 1 rounds,
the system reaches a configuration where∀p ∈ V , Sp = C
andr executesB-action in the next round. �

By Lemmas 1 and 2, the following result holds.

Theorem 1 From any configuration, r execute B-action in
at most 9N − 3 rounds.

Theorem 2 From any configuration where r executes B-
action, the execution satisfies Specification 1.

Proof Outline. From such a configuration, we know that
the abnormal trees cannot prevent forever the PIF fromr to
progress (Lemma 1). Also, from the explanation provided
in Section 3 (Question Part), we know that any processor
p which has received the message initiated byr (B-action)
cannot switch to the feedback phase before all its neighbors
also receive this message. This implies that every processor
are eventually into the normal tree and [PIF1] is satisfied.
Also, since they are into the normal tree, eachp cannot leave
it beforer initiates the cleaning phase byP -action. Now,
r initiates this phase only whenSr = F andr setsSr to
F only when all its neighbors are into the normal tree and
all its children are into the feedback phase. Inductively, it
is easy to verify that the childrenq of r into the normal tree
also switchSq to F only when their neighbors are into the
normal tree and their children are into the feedback phase
and so on. Hence, we can conclude thatr setsSr to F
only when all the other processors have acknowledged its
message to it ([PIF2]). �

By Remark 1, Theorems 1, and 2, follows:

Theorem 3 PIF is snap-stabilizing for Specification 1 un-
der a weakly fair daemon.

Proof assuming an Unfair Daemon. To prove the snap-
stabilization ofPIF for an unfair daemon, it remains to
show that any PIF Wave is finite in terms of steps.

Lemma 3 ∀p ∈ V \ {r}, if p hooks on to an abnormal tree,
p cannot execute F -action before leaving the tree.

Proof Outline. A processorp hooks on to an abnormal
tree byB-action. By B-action, it also initiates a question
(Quep := Q). Now, from Section 3 (Question Part) we
know thatp never receives an answer (Quep := A) while
it is in the tree. So, while it is in the tree,p never satisfies
AnswerOk(p) andF -action is disabled atp. �

A processorp in an abnormal tree can executeF -, P -,
andC-actions at most once before leaving the tree. Now,
Lemma 3 implies that, after leaving the tree,F -action at p
will be no more enabled whilep is in an abnormal tree. An-
other consequence is thatP -, andC-action will be also no
more enabled whilep is in an abnormal tree. Hence, during
the whole execution, each processor executesF -, P -, and
C-action at most once while it is in an abnormal tree, i.e.,
O(N) F -, P -, andC-actions are executed on the abnormal
trees during the whole execution. Lemma 3 also implies
that any processorp which hooks on to an abnormal tree
will leave it only by executing the actions of theCorrection
Part. Now, theCorrection Part ensures thatp will leave
the tree only when it is dead. Thus, in the worst case, each
non-root processor (N − 1) can hook on to each abnormal
tree (N − 1) at most once during the execution, i.e.,O(N 2)
B-actions. Hence, follows:

Lemma 4 In an execution, O(N 2) actions of the PIF Part
are executed on the abnormal trees.

We now focus on theQuestion Part. A question is initi-
ated atp when it hooks on to a tree (Quep := Q). Then,
R values are propagated up into thePPaths of p and its
neighborsq such thatSq 	= C (O(∆) processors). Then,
in the worst case,W values are also propagated up into the
PPaths of p and its neighborsq such thatSq 	= C. Finally,
A values are propagated fromr to the processor amongp
and its neighbors that effectively belong to the normal tree.
Now, as the height of anyPPath is in O(N), follows:

Lemma 5 Each B-action generates O(∆ × N) actions of
the Question Part.

Lemma 6 In an execution, the abnormal trees generate an
overcost of O(∆ × N 3) actions of the Question Part.

Proof Outline. A processor propagates a question in trees
because of the initial configuration or when it hooks on to
a tree. Each time it hooks on to an abnormal tree, it gener-
atesO(∆×N) actions of theQuestion Part (Lemma 5). Of
course, the number of actions of theQuestion Part gener-
ated if it is in abnormal tree since the initial configuration
is of the same order (O(∆×N)). Now, O(N) processors
are in abnormal trees at the initial configuration andO(N 2)
processors hook on to abnormal trees in the execution.�

Finally, we count the actions of theCorrection Part.

Lemma 7 In an execution, O(N 2) actions of the Correc-
tion Partare executed on the abnormal trees.

Proof Outline. In the worst case, each processor in abnor-
mal trees has to execute the three actions of theCorrection
Part to leave its tree. So, any processor leaves an abnor-
mal tree inO(1) actions of theCorrection Part. Now,O(N)
processors are in abnormal trees at the initial configuration
andO(N 2) processors hook on to abnormal trees during the
whole execution. �

From Lemmas 4, 6, and 7, we can deduce this result:

Lemma 8 In an execution, the abnormal trees generate an
overcost of O(∆ × N 3) actions before disappearing.

We now show that, starting from any configuration, the nor-
mal tree,Tree(r), can only generate a finite number of ac-
tions beforer initiates a PIF wave (byB-action). First,
from Section 3 (PIF Part), we can deduce this result:

Lemma 9 From any configuration, O(N) actions of the
PIF Part are executed on Tree(r) before r executes B-
action.

Following the same reasonning as for Lemma 6, we can
easily show the next result:

Lemma 10 From any configuration, Tree(r) generates
O(∆ × N2) actions of the Question Partbefore r executes
B-action.

By Lemma 9, and 10, follows:

Lemma 11 From any configuration, Tree(r) generates
O(∆ × N2) actions before r executes B-action.

By Lemmas 8 and 11, follows:

Theorem 4 From any configuration, r executes B-action
after O(∆ × N3) steps.

Corollary 1 From any configuration, a complete wave of
PIF is executed in O(∆ × N 3) steps.

By Theorems 3 and Corollary 1, follows:

Theorem 5 PIF is snap-stabilizing for Specification 1 un-
der the unfair daemon.

Space Complexity. It is easy to see thatPIF remains
valid if we bound the maximal value ofL by N . So, we can
claim that anyL variable can be stored inO(log(N)) and,
by taking account of the other variables, follows:

Theorem 6 The space requirement of PIF is O(log(N) +
log(∆)) bits per processor.

Time Complexity. The following results complete the
complexity analysis. The first one can be deduce from The-
orem 1, Lemmas 1 and 2.

Theorem 7 From any initial configuration, a complete PIF
wave is executed in at most 15N − 3 rounds.

We have seen that a processor executeB-action to hook on
to abnormal trees at mostN − 1 times. Moreover, it is easy
to see that it can hook on to the normal tree byB-action
only once beforer initiates the protocol. Hence, follows:

Theorem 8 Starting from any configuration,∀p ∈ V , p can
receive O(N) corrupted messages.

We have seen that, during the whole execution, a proces-
sor can executeF -action at most once while it is into an
abnormal tree. Moreover, it is easy to see that a processor
of the normal tree can executeF -action only once beforer
initiates the protocol. Hence, follows:

Theorem 9 Starting from any configuration, ∀p ∈ V , p
acknowledges at most twice corrupted messages.

5 Conclusion

We proposed the first snap-stabilizing PIF for arbitrary
rooted networks proven assuming an unfair daemon. The
protocol does not need any pre-computed spanning tree as
well as the knowledge of the size of the network. The mem-
ory requirement of our solution is equivalent to those of
[9, 5] (O(log(N) + log(∆)) bits per processor). In contrast
with the previous snap-stabilizing solutions ([9, 5]), we can
now evaluate the step complexities of our protocols. From
any configuration, the protocol starts inO(∆ × N 3) steps
(resp. at most9N − 3 rounds). Also, using our protocol, a
complete PIF wave is executed inO(∆ × N 3) steps (resp.
at most 15N − 3 rounds). The round complexities of our
solution are also equivalent to those of [9, 5]. Finally, an-
other desirable property of our solution is that, starting from

any configuration, the number of corrupted messages (i.e.,
messages not sent byr) that a processor may acknowledge
is bounded by two.

References

[1] Y. Afek, S. Kutten, and M. Yung. Memory-efficient
self-stabilization on general networks. InWDAG90 Dis-
tributed Algorithms 4th International Workshop Proceed-
ings, Springer-Verlag LNCS:486, pages 15–28, 1990.

[2] L. O. Alima, J. Beauquier, A. K. Datta, and S. Tixeuil. Self-
stabilization with global rooted synchronizers. InICDCS98
Proceedings of the 18th International Conference on Dis-
tributed Computing Systems, pages 102–109, 1998.

[3] A. Arora and M. Gouda. Distributed reset.IEEE Transac-
tions on Computers, 43:1026–1038, 1994.

[4] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and
G. Varghese. Time optimal self-stabilizing synchronization.
In STOC93 Proceedings of the 25th Annual ACM Sympo-
sium on Theory of Computing, pages 652–661, 1993.

[5] L. Blin, A. Cournier, and V. Villain. An improved snap-
stabilizing pif algorithm. InDSN SSS’03 Workshop: Sixth
Symposium on Self-Stabilizing Systems (SSS’03), pages
199–214. LNCS 2704, 2003.

[6] A. Bui, A. Datta, F. Petit, and V. Villain. State-optimal
snap-stabilizing PIF in tree networks. InProceedings of
the Fourth Workshop on Self-Stabilizing Systems, pages 78–
85, Austin, Texas, USA, June 1999. IEEE Computer Society
Press.

[7] E. Chang. Echo algorithms: depth parallel operations on
general graphs.IEEE Transactions on Software Engineer-
ing, SE-8:391–401, 1982.

[8] A. Cournier, A. Datta, F. Petit, and V. Villain. Self-
stabilizing PIF algorithm in arbitrary rooted networks. In
21st International Conference on Distributed Computing
Systems (ICDCS-21), pages 91–98. IEEE Computer Society
Press, 2001.

[9] A. Cournier, A. Datta, F. Petit, and V. Villain. Snap-
stabilizing PIF algorithm in arbitrary rooted networks. In
22st International Conference on Distributed Computing
Systems (ICDCS-22), pages 199–206. IEEE Computer So-
ciety Press, 2002.

[10] E. Dijkstra. Self stabilizing systems in spite of distributed
control. Communications of the Association of the Comput-
ing Machinery, 17:643–644, 1974.

[11] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-
stabilizing leader election.IEEE Transactions on Parallel
and Distributed Systems, 8(4):424–440, 1997.

[12] S. Katz and K. Perry. Self-stabilizing extensions for
message-passing systems.Distributed Computing, 7:17–26,
1993.

[13] A. Segall. Distributed network protocols.IEEE Transac-
tions on Information Theory, IT-29:23–35, 1983.

[14] G. Varghese. Self-stabilization by local checking and cor-
rection (Ph.D. thesis). Technical Report MIT/LCS/TR-583,
MIT, 1993.

