
Self-Stabilizing Small k-Dominating Sets
Stéphane Devismes, Karel Heurtefeux, Yvan Rivierre

VERIMAG Lab., Université Joseph Fourier,
Grenoble, France

e-mail: Firstname.Lastname@imag.fr

Ajoy K. Datta, Lawrence L. Larmore
School of Computer Science, University of Nevada,

Las Vegas, USA
e-mail: Firstname.Lastname@unlv.edu

Abstract—A self-stabilizing algorithm, after transient
faults hit the system and place it in some arbitrary global
state, recovers in finite time without external (e.g., hu-
man) intervention. In this paper, we propose a distributed
asynchronous silent self-stabilizing algorithm for finding
a minimal k-dominating set of at most d n

k+1
e processes

in an arbitrary identified network of size n. We propose
a transformer that allows our algorithm work under an
unfair daemon (the weakest scheduling assumption). The
complexity of our solution is in O(n) rounds and O(Dn2)
steps using O(logn+ k log n

k
) bits per process where D is

the diameter of the network.

Keywords-Distributed systems, self-stabilization, k-
dominating sets, k-clustering.

I. INTRODUCTION

Consider a simple connected undirected graph G =
(V,E), where V is a set of nodes and E a set of edges.
For any process p and q, we define ‖p, q‖, the distance
from p to q, to be the length of the shortest path in G
from p to q. Given a non-negative integer k, a subset of
processes D is a k-dominating set of G if every process
that is not in D is at distance at most k from a process
in D.

Building a k-dominating set in a graph is useful
because it allows to split the graph into k-clusters. A k-
cluster of a graph is a non-empty subgraph C of radius at
most k, i.e., where all members of C are within distance
k of the clusterhead of C. We define a k-clustering of
a graph to be a partitioning of the graph into distinct k-
clusters. The set of clusterheads of a given k-clustering
is a k-dominating set; conversely, if D is a k-dominating
set, a k-clustering is obtained by having every node
choose its closest member in D as its clusterhead.

A major application of k-clustering is in implementing
efficient routing scheme. For example, we could use the
rule that a process, that is not a clusterhead, communi-
cates only with processes in its own cluster, and that
clusterheads communicate with each other via virtual
“super-edges,” implemented as paths in the network.

Ideally, we would like to find a minimum k-
dominating set, namely a k-dominating set of the small-
est possible cardinality. However, this problem is known

to be NP-hard [20]. We can instead consider the
problem of finding a minimal k-dominating set, a k-
dominating set D is minimal if for all D′ (D, D′ is
not a k-dominating set. In other words, a k-dominating
set has no proper subset which is also k-dominating.
However, the minimal property does not guarantee that
the k-dominating set is small. See, for example, Figure
1. The singleton {v0} is a minimal 1-dominating set.
However, the set of gray nodes is also a minimal 1-
dominating set. To overcome this problem, we propose
a self-stabilizing algorithm that builds a minimal k-
dominating set, whose size is bounded by d n

k+1e, where
n is the size of the network.

v0

v1
v2

v3

v4

v5
v6

v7

Fig. 1: Example of minimal 1-dominating set

A. Related Work

Self-stabilization [16], [17] is a versatile property,
enabling an algorithm to withstand transient faults in
a distributed system. A distributed algorithm is self-
stabilizing if, after transient faults hit the system and
place it in some arbitrary global state, the system recov-
ers without external (e.g., human) intervention in finite
time.

There exist several asynchronous self-stabilizing dis-
tributed algorithms for finding a k-dominating set of
a network, e.g., [14], [11], [6]. All these algorithms
are proven assuming an unfair daemon. The solution in
[14] stabilizes in O(k) rounds using O(k log n) space
per process. The one in [11] stabilizes in O(n) rounds
using O(log n) space per process. The algorithm pro-
posed in [6] stabilizes in O(kn) rounds using O(k log n)
space per process. Note that only the algorithm in [11]
builds a k-dominating set that is minimal. Moreover,
none of these solutions guarantees to output a small

k-dominating set. There are several self-stabilizing solu-
tions that compute a minimal 1-dominating set, e.g., [30],
[23]. However, the generalization of 1-dominating set
solutions to k-dominating set solutions does not scale
up, in particular it does not maintain interesting bounds
on the size of the computed dominating set.

There exist several non self-stabilizing distributed so-
lutions for finding a k-dominating set of a network [27],
[26], [1], [19], [29]. Deterministic solutions proposed
in [1], [19] are designed for asynchronous mobile ad hoc
networks, i.e., they assume networks with a Unit Disk
Graph (UDG) topology. The time and space complexities
of the solution in [1] are O(k) and O(k log n), respec-
tively. Solution proposed in [19] is an approximation
algorithm with O(k) worst case ratio over the optimal so-
lution. The time and space complexities of the distributed
algorithm in [19] are not given. In [27], authors consider
the problem of deterministically finding a k-dominating
set of at most d n

k+1e processes. Their solution assumes a
synchronous system and has a complexity in O(k log∗ n)
time. However, the authors missed one special case in
the proof, which unfortunately can make the proof fail in
some networks. The same flaw is present in a few sub-
sequent papers [26], [28]. Ravelomanana [29] proposes
a randomized algorithm designed for synchronous UDG
networks whose time complexity is O(D) rounds.

All previous non self-stabilizing solutions can be
transformed into self-stabilizing ones using some trans-
formers [24], [9]. However, the transformed self-
stabilizing solutions are expected to be inefficient, both
in time and space, because those transformers use some
mechanisms like snapshots.

B. Contributions
In this paper, we propose a deterministic, distributed,

asynchronous, silent, and self-stabilizing algorithm for
finding a minimal k-dominating set of at most d n

k+1e
processes in any arbitrary identified network.

We first consider the upper bound on the size of
minimum k-dominating sets given in [27]. We show that
the proof given in [27] missed a case, and propose a
correction that does not change the bound.

Next, we propose an asynchronous silent self-
stabilizing algorithm, called SMDS(k), for finding a
minimal k-dominating set of small size based on our
proof of the bound. To simplify the design of our algo-
rithm, we make it as a composition of four layers. The
first three layers together compute a k-dominating set of
at most d n

k+1e processes. As the resulting k-dominating
set may not be minimal, we apply the algorithm given
in [11] as the fourth layer to remove nodes from D until
we obtain a minimal k-dominating set. The four layer
composed algorithm is proven assuming a weakly fair

daemon. The solution stabilizes in O(n) rounds using
O(log n+ k log n

k) bits per process, where n is the size
of the network.

We then propose a general method to efficiently
transform a self-stabilizing weakly fair algorithm into a
self-stabilizing algorithm working under an unfair dae-
mon (the weakest scheduling assumption). The proposed
transformer has several advantages over the previous
solutions. (1) It preserves the silence property. (2) It
does not degrade the round complexity or the memory
requirement of the input algorithm. (3) It builds efficient
algorithms in terms of step complexity (O(Dn × R),
where R is the stabilization time of the input algorithm in
rounds). For example, using this method, the transformed
version of SMDS(k) stabilizes in O(Dn2) steps, where
D is the diameter of the network.

Finally, we analyse, using simulations, the size of the
k-dominating set computed by our algorithm. Simulation
results show that the average size of the k-dominating
sets we obtain from our algorithm is significantly smaller
than the upper bound. In particular, we observed a no-
ticeable gain in the size after the minimization performed
by the fourth (or the last) layer.

C. Roadmap

In the next section, we present the computational
model used in this paper. In Section III, we give a
counterexample for the proof of the upper bound given in
[27], and propose a correction. In Section IV, we present
a composition technique. This technique is used to build
our self-stabilizing algorithm, Algorithm SMDS(k),
which is presented in Section V. In Section VI, we
show how to transform Algorithm SMDS(k) to obtain
a solution that works under an unfair daemon. Section
VII is used to report the simulation results. We make
concluding remarks in Section VIII.

Due to the lack of space, many technical proofs have
been omitted. See the technical report for details [10]
(http://www-verimag.imag.fr/TR/TR-2011-6.pdf).

II. PRELIMINARIES

A. Computational Model

We consider networks as simple connected undirected
graphs G = (V,E), where V is a set of n processes and
E a set of bidirectional links. Processes are assumed to
have distinct identifiers. In the following, we make no
distinction between a process and its identifier, that is,
the identifier of process p is simply denoted by p.

If b bits are used to store each identifier, then the space
complexity of our algorithm will be Ω(b) per process,
but henceforth, as is commonly done in the literature,
we will assume that b = O(log n).

2

We assume the shared memory model of computation,
introduced by Dijkstra [16]. In this model, a process p
can read its own variables and that of its neighbors, but
can write only to its own variables. Let Np denote the
set of neighbors of p.

Each process operates according to its (local) pro-
gram. We call (distributed) algorithm A a collection
of n programs, each one operating on a single process.
The program of each process is a set of actions of the
following form:

〈label〉 :: 〈guard〉 −→ 〈statement〉.

Labels are only used to identify actions. The guard of
an action in the program of a process p is a Boolean
expression involving the variables of p and its neighbors.
The statement of an action of p updates one or more
variables of p. An action can be executed only if it
is enabled, i.e., its guard evaluates to true. A process
is said to be enabled if at least one of its actions
is enabled. The state of a process in the (distributed)
algorithm A is defined by the values of its variables in
A. A configuration of A is an instance of the states of
processes in A. We denote by γ(p) the state of process
p in configuration γ.

Let 7→ be the binary relation over configurations of
A such that γ 7→ γ′ if and only if it is possible for the
network to change from configuration γ to configuration
γ′ in one step of A. An execution of A is a maximal
sequence of its configurations e = γ0γ1 . . . γi . . . such
that γi−1 7→ γi for all i > 0. The term “maximal” means
that the execution is either infinite, or ends at a terminal
configuration in which no action of A is enabled at any
process. Each step γi 7→ γi+1 consists of one or more
enabled processes executing an action. The evaluations
of all guards and executions of all statements of those
actions are presumed to take place in one atomic step;
this model is called composite atomicity [17].

We assume that each step from a configuration to
another is driven by a scheduler, also called a daemon. If
one or more processes are enabled, the scheduler selects
at least one of these enabled processes to execute an
action. A scheduler may have some fairness properties.
Here, we consider two kinds of fairness properties. A
scheduler is weakly fair if it allows every continuously
enabled process to eventually execute an action. The
unfair scheduler models designing of an algorithm with
the weakest fairness assumption: it can forever prevent
a process to execute an action except if the process is
the only enabled process.

We say that a process p is neutralized in the step
γi 7→ γi+1 if p is enabled in γi and not enabled in γi+1,
but does not execute any action between these two con-
figurations. The neutralization of a process represents the

following situation: at least one neighbor of p changes
its state between γi and γi+1, and this change effectively
makes the guard of all actions of p false.

We use the notion of round. The first round of an
execution %, noted %′, is the minimal prefix of % in which
every process that is enabled in the initial configuration
either executes an action or becomes neutralized. Let %′′

be the suffix of % starting from the last configuration of
%′. The second round of % is the first round of %′′, the
third round of % is the second round of %′′, and so forth.

B. Self-Stabilization and Silence

A configuration conforms to a predicate if the pred-
icate is satisfied in the configuration; otherwise the
configuration violates the predicate. By this definition,
every configuration conforms to predicate true, and
none conforms to predicate false. Let R and S be
predicates on configurations of the algorithm. Predicate
R is closed with respect to the algorithm actions if every
configuration of any execution of the algorithm, that
starts in a configuration conforming to R, also conforms
to R. Predicate R converges to S if R and S are
closed, and every execution starting from a configuration
conforming to R contains a configuration conforming to
S.

A distributed algorithm is self-stabilizing [16] with
respect to predicate R if true converges to R. Any
configuration conforming to R is said to be legitimate,
and other configurations are called illegitimate.

We say that an algorithm is silent [18] if each of
its executions is finite. In other words, starting from an
arbitrary configuration, the network will eventually reach
a configuration where none of its actions is enabled at
any process.

III. BOUND

In this section, we present an upper bound on the
size of the minimum k-dominating set in any connected
network. This upper bound originally appeared in [27].
However, the proof proposed in [27] overlooked a special
case. The same case was overlooked in some other
subsequent work as well [26], [28]. Below, we exhibit
a counterexample to show the special case where the
proof of [27] is not valid. We then show how to fix the
problem without affecting the upper bound.

Let T be an arbitrary spanning tree of G = (V,E)
rooted at some process r, that is, any connected graph
T = (VT , ET) such that VT = V , ET ⊆ E, and |ET | =
|VT | − 1, where the process r is distinguished. In T ,
the height of process p, h(p), denotes its distance to
the root r. The height of T , noted h(T), is equal to
maxp∈VT

h(p). By extension, we denote by h(T (p)) the
height of the subtree rooted at p, T (p).

3

The original proof consists in dividing the processes
of V into levels T0, . . . , Th according to their height in
the tree, and assigning all the processes of height i to
Ti. These sets are merged into k + 1 sets D0, . . . , Dk

by taking Di =
⋃
j≥0 Ti+j(k+1).

When k < h, the proof in [27] claims that (1) the size
of the smallest set Di is at most d n

k+1e, and (2) every
Di (i ∈ [0..k]) is k-dominating. The upper bound is then
obtained by considering the set Di of smallest size.

Actually, this latter set is not always k-dominating. For
example, consider the case k = 2 in the tree network of
Figure 2. Clearly, D2 is not a 2-dominating set, because
u is not 2-dominated by any process in D2; ‖u,w‖ = 3.

T0 ∈ D0

T1 =D1

T2 =D2

T3 ∈ D0

r

u v

w

x

Fig. 2: Counterexample of the original proof

This mistake can be corrected without changing the
bound. Actually, the mistake only appears when the
smallest Di (i ∈ [0..k]), say Dj , is not D0. In this
case, a leaf process whose height is strictly less than
j may be not k-dominated by any process in Dj (as in
the previous example). To correct this mistake we simply
proceed as follows. When k ≥ h (in this case ‖D0‖ = 1)
or every Di (i ∈ [0..k]) has the same size (i.e., d n

k+1e),
then we choose D0. Otherwise, the size of the smallest
Di (i ∈ [0..k]), say Dj , is strictly less than d n

k+1e and
Dj ∪ {r} is k-dominating set.

Theorem 1 For every connected network G = (V,E)
of n processes and for every k ≥ 1, there exists a k-
dominating set D such that |D| ≤ d n

k+1e.

Proof. If n = 0, then d n
k+1e = 0 = |∅| and ∅ is a

k-dominating set.
Assume now that n > 0. Let T be an arbitrary rooted

spanning tree of G, and denote its height by h. Consider
the k + 1 sets D0, . . . , Dk, as previously defined.
• Assume that k ≥ h. Then, D0 only contains the

root, and every other process is within distance k
of the root. So, D0 is a k-dominating set of size
1 ≤ d n

k+1e.
• Assume that k < h. Then, for every i ∈ [0..k],
|Di| > 0.

– Assume that for every i ∈ [0..k − 1], |Di| =
|Di+1|. Then, for every i ∈ [0..k], |Di| =
d n
k+1e. Consider a process v /∈ D0. Then, the

height of v, h(v), satisfies h(v) mod (k+1) 6=
0. Let u be the ancestor of v such that h(u) =
h(v) − (h(v) mod (k + 1)) (such a process
exists because h(v) ≥ (h(v) mod (k + 1)).
Then, as h(v) mod (k + 1) ≤ k, u is within
distance k from v.
Remark that h(v) = bh(v)k+1 c × (k + 1) +

(h(v) mod (k+ 1)). So, h(u) = bh(v)k+1 c× (k+
1) and h(u) mod (k + 1) = 0, i.e., u ∈ D0.
Hence, D0 is a k-dominating set such that
|D0| = d n

k+1e.
– Assume that there exists i ∈ [0..k− 1], |Di| 6=
|Di+1|. Let j ∈ [0..k] such that ∀i ∈ [0..k],
|Dj | ≤ |Di|. Then, |Dj | < d n

k+1e. Let D =
Dj ∪ {r} where r is a root of T . Then, |D| ≤
d n
k+1e. Consider a process v /∈ D.
∗ If h(v) ≤ k, then v is within distance k from
r and r ∈ D.

∗ If h(v) > k, then the height of v, h(v),
satisfies h(v) mod (k + 1) 6= j. Let u be
the ancestor of v such that h(u) = h(v) −
((h(v) − j) mod (k + 1)). As h(v) > k
and (h(v) − j) mod (k + 1) < k + 1,
h(u) ≥ 1. Thus, u exists. Moreover, h(v)−
h(u) = (h(v) − j) mod (k + 1) ≤ k,
so v is within distance k from u. Finally,
h(u) mod (k+1) = (h(v)−((h(v)−j) mod
(k + 1))) mod (k + 1) = ((h(v) mod (k +
1))− ((h(v)− j) mod (k + 1))) mod (k +
1) = ((h(v)−(h(v)−j)) mod (k+1)) mod
(k + 1) = j mod (k + 1). As j ≤ k,
h(u) mod (k + 1) = j. So, u ∈ Dj , i.e.,
u ∈ D.

Hence, D is a k-dominating set such that |D| ≤
d n
k+1e.

�

IV. HIERARCHICAL COLLATERAL COMPOSITION

To simplify the design of our algorithm we use a
variant of the well-known collateral composition [31].
Roughly speaking, when we collaterally compose two
algorithms A and B, A and B run concurrently and B
uses the outputs of A in its computations. In the variant
we use, we modify the code of B so that a process
executes an action of B only when it has no enabled
action in A.

Definition 1 (Hierarchical Collateral Composition)
Let A and B be two algorithms such that no variable
written by B appears in A. The hierarchical collateral
composition of A and B, noted B ◦ A, is the algorithm
defined as follows:

4

• B ◦ A contains all variables of A and B.
• B ◦ A contains all actions of A.
• For every action Gi → Si of B, B ◦A contains the

action ¬C ∧ Gi → Si where C is the disjunction
of all guards of actions in A.

Below, we give a property of the hierarchical collat-
eral composition (Theorem 2) that states sufficient condi-
tions to show the correctness of the composite algorithm.
For space consideration, the proofs of Theorem 2 have
been omitted, see the technical report for details [10].

Theorem 2 B ◦A stabilizes to SP under a weakly fair
daemon if the following conditions hold:
• A is silent under a weakly fair daemon.
• B stabilizes under a weakly fair daemon to SP from

any configuration where no action of A is enabled.1

V. ALGORITHM SMDS(k)

In this section, we present a silent self-stabilizing algo-
rithm, called SMDS(k) (Small Minimal k-Dominating
Set), which builds a minimal k-dominating set of at
most d n

k+1e processes in any arbitrary network with
nodes with unique ID’s, assuming a weakly fair daemon.
This algorithm is a hierarchical collateral composition
of four silent self-stabilizing algorithms, SMDS(k) =
MIN (k) ◦ DS(k) ◦ ST ◦ LE where:
• LE is a leader election algorithm.
• ST builds a spanning tree rooted at the process

elected by LE .
• DS(k) computes a k-dominating set of at most
d n
k+1e processes based on the spanning tree built

by ST .
• MIN (k) reduces the k-dominating set built by
DS(k) to a minimal one.

We give more details about the four layers of
SMDS(k) in Subsections V-A to V-D. The complexity
of SMDS(k) is presented in Subsection V-E.

A. Algorithm LE
LE is any silent self-stabilizing leader election al-

gorithm for arbitrary identified networks, assuming a
weakly fair daemon. In the following, we assume the
existence of the output predicate IsLeaderp, defined for
processes p, such that IsLeaderp holds if p believes to
be the leader. So, LE converges to the predicate SPLE
defined as follows: SPLE holds if and only if there exists
a unique process p such that IsLeaderp. In the literature,
there are several silent self-stabilizing leader election
algorithms that work under a weakly fair daemon [2],

1Recall that in such a configuration, the specification of A is
satisfied.

[13], [12]. Here, we propose to use the algorithm given
in [13]. This algorithm stabilizes in O(n) rounds using
O(log n) bits per process, and does not require processes
to know any upper bound on n.

B. Algorithm ST
ST is any silent self-stabilizing spanning tree algo-

rithm for arbitrary rooted networks, assuming a weakly
fair daemon. ST uses the output of LE to decide the
root of its spanning tree. In other words, ST builds a
spanning tree rooted at the process elected by LE . In the
following, we assume that the output of ST is a macro
called Parentp, which is defined for all processes p.
Parentp returns ⊥ if p believes to be the root of the
spanning tree, otherwise Parentp designates a neighbor
q as the parent of p in the spanning tree. So, ST ◦ LE
converges to the predicate SPST defined as follows:
SPST holds if and only if there exists a unique process
r such that Parentr =⊥, and the graph T = (V,ET)
where ET = {{p, Parentp},∀p ∈ V \{r}} is a spanning
tree.

Many silent self-stabilizing spanning tree algorithms
designed for arbitrary rooted networks and working
under a weakly fair daemon have been proposed in the
literature. See [21] for a good survey on this topic. One
of the first papers on that topic provides an algorithm
to build an arbitrary spanning tree [7]. Since then,
numerous algorithms have been published on various
types of spanning trees, e.g., depth-first spanning tree [8],
breadth-first spanning tree [22]. In our simulations, we
tested our solution with each of the above three spanning
tree algorithms.

From Theorem 2, we can deduce the following lemma:

Lemma 1 ST ◦LE is a silent algorithm which stabilizes
to SPST under a weakly fair daemon.

C. Algorithm DS(k)

DS(k) (see Algorithm 1 for the formal description)
uses the spanning tree T built by ST to compute a k-
dominating set of at most d n

k+1e processes. It is based
on the construction proposed in the proof of Theorem
1 (page 4). Informally, DS(k) uses the following three
variables at each process p:
• p.color ∈ [0..k]. In this variable, p computes
h(p) mod (k + 1) (that is its height in T modulus
k + 1) in a top-down fashion using Action Fix-
Color. Hence, once DS(k) has stabilized, each set
Di, defined in Section III, corresponds to the set
{p ∈ V | p.color = i}.

• The integer array p.pop[i] is defined for all i ∈
[0..k]. In each cell p.pop[i], p computes the number
of processes in its subtree T (p) having color i, that

5

is, processes q such that q.color = i. This com-
putation is performed in a bottom-up fashion using
Action FixPop. Hence, once DS(k) has stabilized,
r knows the size of each set Di.

• p.min ∈ [0..k]. In this variable, p computes the
smallest index of the smallest non-empty set Di,
that is, the least used value to color some processes
of the network. This value is evaluated in a top-
down fashion using Action FixMin based on the
values computed in the array r.pop. Once the values
of r.pop are correct, the root r can compute in
r.min the least used color (in case of equality,
we choose the smallest index). Then, the value of
r.min is broadcast in the tree.

According to Theorem 1 (page 4), after DS(k) has
stabilized, the set of processes p such that p = r or
p.color = p.min, i.e., the set {p ∈ V | IsDominatorp},
is a k-dominating set of at most d n

k+1e processes. So,
DS(k) ◦ ST ◦ LE converges to the predicate SPDS(k)
defined as follows: SPDS(k) holds if and only if the set
{p ∈ V | IsDominatorp = true} is a k-dominating set
of at most d n

k+1e processes.
Due to the lack of space, the proof of the following

theorem has been omitted, see the technical report for
details [10].

Theorem 3 DS(k) ◦ ST ◦ LE stabilizes to SPDS(k) in
O(n) rounds under a weakly fair daemon.

r

p2p1 p3

p4

p5 p6

p7 p8

p9 p10

p11 p12

0

1

2

0

1

2

0

Fig. 3: Example of 2-dominating set computed by our
algorithm

Figure 3 shows an example of a 2-dominating set
computed by DS(2) ◦ ST ◦ LE . In the figure, bold
lines represent tree-edges, and dashed lines indicate non-
tree-edges. In this example, once DS(2) ◦ ST ◦ LE has
stabilized, r.pop[0] = 5, r.pop[1] = 5, and r.pop[2] = 3.
Thus, r.min = 2, which means that the smallest used
color is 2. D2 = {p4, p9, p10} and |D2| = 3. In this case,

the 2-dominating set that DS(2) ◦ ST ◦ LE eventually
outputs is SD = {r} ∪ D2, i.e., {r, p4, p9, p10}. This
2-dominating set follows the bound given in Theorem
1 (page 4). The size of SD is 4, which is less than
d 13
2+1e = 5. However, SD is not minimal. For example,
{r, p10} is a proper subset of SD that is 2-dominating.
Also, note that this latter set is minimal because none of
its proper subsets is a 2-dominating set.

Algorithm 1 DS(k), code for each process p
Inputs:
Parentp ∈ Np ∪ {⊥} Parent process of p in the spanning tree,

or ⊥ for root.

Variables:
p.color ∈ [0..k] Color of p.
p.pop[i] ∈ N, ∀i ∈ [0..k] Population of color i,

in the subtree rooted at p.
p.min ∈ [0..k] Color with smallest population, in V .

Macros:
EvalColorp = 0 if (Parentp = ⊥)

else (Parentp.color + 1) mod (k + 1)
SelfPopp(i) = 1 if (p.color = i) else 0
Childrenp = {q ∈ Np | Parentq = p}
EvalPopp(i) = SelfPopp(i) +

∑
q∈Childrenp

q.pop[i]

MinPopp = mini∈[0..k] {p.pop[i] | p.pop[i] > 0}
MinColorp = mini∈[0..k] {i | p.pop[i] = MinPopp}
EvalMinp = MinColorp if (Parentp = ⊥) else Parentp.min

Predicates:
IsRootp ≡ Parentp = ⊥
ColorOKp ≡ p.color = EvalColorp
PopOKp ≡ ∀i ∈ [0..k], p.pop[i] = EvalPopp(i)
MinOKp ≡ p.min = EvalMinp
IsDominatorp ≡ IsRootp ∨ p.color = p.min

Actions:
FixColor :: (¬ColorOKp) −→ p.color ← EvalColorp

FixPop :: (ColorOKp∧ −→ ∀i ∈ [0..k],
¬PopOKp) p.pop[i]← EvalPopp(i)

FixMin ::
(ColorOKp∧

−→ p.min← EvalMinpPopOKp∧
¬MinOKp)

D. Algorithm MIN (k)

MIN (k) computes a minimal k-dominating set
which is a subset of the k-dominating set computed by
DS(k). In Section VII, we will see that the minimization
performed by MIN (k) provides a gain which is not
negligible.

This last layer of our algorithm can be achieved
using the silent self-stabilizing algorithm MIN (k)
given in [11]. This algorithm takes a k-dominating
set I as input, and constructs a subset of I that is
a minimal k-dominating set. The knowledge of I is
distributed meaning that every process p uses only the
input IsDominatorp to know whether it is in the k-
dominating set or not. Based on this input,MIN (k) as-
signs the output Boolean variable p.inD of every process
p in such way that eventually {p ∈ V | p.inD = true}
is a minimal k-dominating set of the network.

6

Using the output of algorithm DS(k) ◦ ST ◦ LE as
input for algorithm MIN (k), the size of the resulting
minimal k-dominating set remains bounded by d n

k+1e,
because MIN (k) can only remove nodes in the k-
dominating set computed by DS(k). Hence,MIN (k)◦
DS(k)◦ST ◦LE stabilizes to the predicate SPSMDS(k)
defined as follows: SPSMDS(k) holds if and only if the
set {p ∈ V | p.inD = true} is a minimal k-dominating
set of at most d n

k+1e processes.
As SMDS(k) =MIN (k)◦DS(k)◦ST ◦LE , from

Theorem 2 and Theorem 3, we can claim the following
result:

Theorem 4 (Overall Correctness) SMDS(k) stabi-
lizes to SPSMDS(k) under a weakly fair daemon.

E. Complexity Analysis

We first consider the round complexity of SMDS(k).
Using the algorithm of [13], the layer LE stabilizes in
O(n) rounds. After the layer LE has stabilized, the layer
ST stabilizes in O(n) rounds if we use the algorithm of
[22], for example. Once the spanning tree is available,
DS(k) stabilized in O(n) rounds, by Theorem 3. Finally,
the k-dominating set computed by the first three layers
is minimized by MIN (k) in O(n) rounds (see [11]).

Theorem 5 SMDS(k) stabilizes to SPSMDS(k) in
O(n) rounds.

We now consider the space complexity of SMDS(k).
LE , ST , and MIN (k) can be implemented using
O(log n) bits per process [13], [22], [11]. DS(k) at each
process is composed of two variables whose domain has
k+1 elements, and an array of k+1 integers. However, in
the terminal configuration, the minimum non-null value
of a cell is at most d n

k+1e. So, the algorithm still works
if we replace any assignment of any value val to a cell
by min(val, d N

k+1e + 1) where N is any upper bound
on n. In this case, each array can be implemented using
O(k log n

k) bits. Note that this bound can be obtained
only if we assume that each process knows the upper
bound N . However, n can be computed dynamically
using the spanning tree.

Theorem 6 SMDS(k) can be implemented using
O(log n+ k log n

k) bits per process.

VI. TRANSFORMER

In the previous section, we showed that SMDS(k)
stabilizes to SPSMDS(k) under a weakly fair daemon.
We now propose an automatic method to transform any
self-stabilizing algorithm under a weakly fair daemon
into a self-stabilizing algorithm under an unfair daemon

(for the same specification). Our method preserves the
silence property of the input algorithm.

There already exist several methods to transform a
weakly fair algorithm into an unfair one. In [3], authors
propose the cross-over composition. Using this com-
position, a weakly fair algorithm can be transformed
by composing it with an algorithm that is fair2 under
an unfair daemon. However, this technique does not
preserve the silence of the input algorithm. Moreover, no
step complexity analysis is given for the output unfair
algorithm. In [25], authors propose a transformer that
preserves the silence of the input algorithm. Furthermore,
the step complexity analysis of the transformed algo-
rithm is given: O(n4 × R) where R is the stabilization
time of the input algorithm in rounds. Finally, note that
the round complexity of the transformed version is much
higher than that of the input algorithm (of the same order
of the step complexity).

In contrast with the previous solutions, our trans-
former does not degrade the round complexity of the
algorithm. Moreover, the step complexity analysis of the
transformed algorithm is O(Dn × R) where R is the
stabilization time of the input algorithm in rounds.

Let A be an algorithm that stabilizes to SPA under a
weakly fair daemon. A has x actions. Actions of A are
indexed by [0..x− 1], and are of the following form:

Ai :: Gi −→ Si.

We denote by At the transformed version of A.
Actually, At is obtained by composing A with a self-
stabilizing phase clock algorithm. This latter is treated
as a black box, called U , with the following properties:

1) Every process p has an incrementing variable
p.clock, a member of some cycling group Zα
where α is a positive integer.

2) The phase clock is self-stabilizing under an unfair
daemon, i.e., after it has stabilized, there exists an
integer function f on processes such that:
• f(p) mod α = p.clock
• For all processes p and q, |f(p) − f(q)| ≤
‖p, q‖.

• For every process p, f(p) increases by 1
infinitely often using statement Incrp.

3) There is an action I :: Can Incrp → Incrp for
each process p such that, once U is stabilized, I
is the only action that p can execute to increment
its local clock. Moreover, U does not require exe-
cution of action I during the stabilization phase.

An algorithm that matches all these requirements can be
found in [5].

2I.e., an algorithm which guarantees that every process executes an
infinite number of steps under an unfair daemon.

7

At is obtained by composing A with U as follows:
• At contains all variables of A and U .3

• At contains all actions of U except I which is
replaced by the following actions:

– A′i :: Can Incrp ∧ Gi → Incrp, Si for every
i ∈ [0..x− 1],

– L :: Can Incrp ∧ Stablep ∧ Latep → Incrp
where Stablep ≡ (∀i ∈ [0..x − 1] | ¬Gi) and
Latep ≡ (∃q ∈ Np | q.clock > p.clock)

Roughly speaking, our transformer enforces fairness
among processes that are enabled in A because they
can only move once at each clock tick. Once A has
stabilized, every process p satisfies Stablep and, once all
clocks have the same value, no further action is enabled,
hence the silence is preserved.

Theorem 7 At stabilizes to SPA under an unfair dae-
mon.

Theorem 8 If A is silent, then At is silent.

Below, we present the complexity of the transformed
algorithm. These results assume that U is the algorithm
of Boulinier et al. in [5]. Refer to [10] for the proof.

Theorem 9 The memory requirement of At is
O(log n) + MEM bits per process, where MEM is
the memory requirement of A.

Theorem 10 At stabilizes to SPA in O(n+dRD e×2D)
rounds, where R is the stabilization time of A in rounds.

Theorem 11 At stabilizes to SPA in O(n2 + DnR)
steps, where R is the stabilization time of A in rounds.

As a case study, SMDS(k)
t stabilizes to SPSMDS(k)

in O(n) rounds and O(Dn2) steps using O(log n +
k log n

k) bits per process by Theorems 5-6 and 9-11. This
shows that our transformer does not degrade the round
complexity and memory requirement while achieving an
interesting step complexity.

VII. SIMULATIONS

A. Model and assumptions

All the results provided in this section are computed
using WSNet [4]. WSNet is an event-driven simulator
for wireless networks. We adapt our algorithm from
the state model to the message-passing model using the
techniques proposed in [15].

3As usual, we assume that A does not write into the variables of
U , and conversely.

Using this simulator, we deploy processes randomly
on a square plane. Processes are motionless and equipped
with radio. Two processes u and v can communicate
if and only if the euclidean distance between them is
at most rad, where rad is the transmission range. In
other words, the network topology is a Unit Disk Graph
(UDG). For simplicity, we consider physical and MAC
layers to be ideal: there are neither interferences nor
collisions. However, as stated in in [15], our algorithm
still works assuming fair lossy links. Moreover, process
executions are concurrent and asynchronous.

In our simulations, we consider connected UDG net-
works of size, n, between 50 and 400. They are deployed
using a uniform random distribution of processes on
a 100m side square. Tuning the transmission range
between 10m and 50m makes it possible to control the
average degree d of the network which varies between
10 and 50. Finally, k was varied between 1 and 6.

The performance of SMDS(k) may differ depending
on the spanning tree construction we used in the second
layer. Hence, we test our protocol using three different
spanning tree constructions: depth-first spanning tree
(DFS tree) [8], breadth-first spanning tree (BFS tree)
[22], and arbitrary spanning tree [7].

B. Motivations

In the context of sensors and ad-hoc networks, it is
interesting to study average performance of algorithms
DS(k) andMIN (k) in random topologies, not just the
worst case. In particular, does the choice of spanning tree
make a difference in terms of size of k-dominating set
built by DS(k) or DS(k) ◦MIN (k)? What is the gain
due to MIN (k)? Is this gain the same for all spanning
trees? How does the size of the output k-dominating set
depend on k, n, and d?

C. Results

In this section, we summarize the performance of
our algorithm in terms of the size of the k-dominating-
set built by DS(k) and DS(k) ◦ MIN (k) in random
topologies, varying k, n, d and the chosen spanning tree.

Figure 4a shows the size of k-dominating set versus
k after stabilization of algorithm DS(k). We observe
that there is a noticeable difference between computed
k-dominating sets depending on the type of the spanning
tree. The DFS tree, by construction, induces a large
number of k-dominating processes. We remark that the
average size obtained by simulation is close to the
theoretical upper bound. On the other hand, the k-
dominating set built on arbitrary and BFS trees have
better performances. The height of the tree also has a
major impact on the size of the k-dominating set.

8

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

C
a

rd
in

a
lit

y
 o

f
th

e
 k

-d
o

m
in

a
ti
n

g
 s

e
t

Parameter k

BFS Tree without the 4th layer
DFS Tree without the 4th layer

Arbitrary Spanning Tree without the 4th layer
Upper bound on size of k-dominating set

(a)

 0

 20

 40

 60

 80

 100

1 2 3 4 5 6

C
a

rd
in

a
lit

y
 o

f
th

e
 k

−
d

o
m

in
a

ti
n

g
 s

e
t

Parameter k

BFS Tree with the 4th layer
DFS Tree with the 4th layer

Arbitrary Spanning Tree with the 4th layer
Upper bound on size of k−dominating set

(b)

Fig. 4: Average size of k-dominating set vs. k (n = 200 and d ∈]10, 20[): (a) before; (b) after minimization

The impact of the average degree can be observed in
Figure 5a. The size of the k-dominating set built on a
DFS tree does not change, while it decreases the size
of the ones built on a BFS or an arbitrary spanning
tree. When the average degree increases, the diameter of
the network decreases. In the case of BFS and arbitrary
spanning trees, that leads to a decrease of height, thus a
decrease of the size of the k-dominating set.

Figures 4a and 5a show that the size of the k-
dominating sets built by DS(k) in random UDGs are
not far from the worst case, regardless of the tree they
are built on. In this context, it is interesting to study if
MIN (k) is able to reduce significantly the size of the
k-dominating set computed by DS(k).

Figure 4b illustrates both the gain obtained in terms
of size of k-dominating set and the differences among
the k-dominating sets according to the tree on which
algorithm MIN (k) is applied. For the three spanning
tree constructions and for 1 ≤ k ≤ 6, the overall average
reduction is more than 75%. For higher values of k, the
good performance of DS(k) on BFS tree prevents large
gains usingMIN (k). Here, the size of k-dominating set
obtained by MIN (k) is quite similar for all spanning
trees considered, with a slight advantage for the arbitrary
spanning tree.

For k = 2, Figure 5b shows variations of the size of k-
dominating set versus d. MIN (k) uniformly improves
the size of the k-dominating sets regardless of d.

In summary, our simulations establish that the size
of the computed k-dominating set is not uniformly
influenced by the types of the trees on which DS(k)
is deployed. MIN (k) works very well on all the trees
considered. For example, Table I shows the average gain
of minimization on the k-dominating sets computed by
DS(k) for k = 2, n = 200, and d in]10, 20[.

Tree Before the 4th layer After the 4th layer average gain
BFS 56.93 9.93 83%
DFS 65.87 8.93 86%
Arbitrary 59.17 7.83 87%

Table I: Average gain of minimization

Finally, over all simulations we made, we observed
that our four-layer algorithm computes minimal k-
dominating sets that are on an average drastically smaller
than the theoretical bound, see for example Figure 4b.
More precisely, for n = 200, 1 ≤ k ≤ 6, and d ∈]10, 20[,
the size of k-dominating sets we obtain, is on an average
89% smaller than the theoretical bound.

VIII. CONCLUSION

In this paper, we proposed a distributed asynchronous
silent self-stabilizing algorithm for finding a minimal k-
dominating set of size at most d n

k+1e in an arbitrary
network. We proved this algorithm assuming a weakly
fair daemon. We then proposed a transformer, and used
it to prove that the proposed algorithm also works under
an unfair daemon. Using this transformer, our solution
remains silent, stabilizes in O(n) rounds and O(Dn2)
steps, and uses O(log n+k log n

k) bits per process, where
D is diameter of the network. Our experimental results
show that the size of the k-dominating set obtained by
our solution is usually much smaller than d n

k+1e.
An immediate extension of this work is to find if it

is possible to enhance the stabilization time to O(k)
rounds (the optimal). Another future research topic is
to attempt to find a distributed self-stabilizing algorithm
for computing a minimal k-dominating set which is a
constant approximation from the minimum one, that is,
an algorithm that computes a minimal k-dominating set
with a size s such that s

sopt
≤ c where c is a constant

and sopt is the size of the minimum k-dominating set of
the network.

9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30 35 40 45 50

C
a

rd
in

a
lit

y
 o

f
th

e
 k

-d
o

m
in

a
ti
n

g
 s

e
t

Average degree

BFS tree without the 4th layer (k = 2)
DFS tree without the 4th layer (k = 2)

Arbitrary tree without the 4th layer (k = 2)

(a)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30 35 40 45 50

C
a

rd
in

a
lit

y
 o

f
th

e
 k

−
d

o
m

in
a

ti
n

g
 s

e
t

Average degree

BFS tree with the 4th layer (k = 2)
DFS tree with the 4th layer (k = 2)

Arbitrary tree with the 4th layer (k = 2)

(b)

Fig. 5: Average size of k-dominating set vs. d (k = 2 and n = 200): (a) before; (b) after minimization

ACKNOWLEDGMENT

This work has been partially supported by the ANR
project ARESA2.

REFERENCES

[1] A D Amis, R Prakash, D Huynh, and T Vuong. Max-min
d-cluster formation in wireless ad hoc networks. In IEEE
INFOCOM, pages 32–41, 2000.

[2] A. Arora and M. Gouda. Distributed reset. IEEE Trans. Comput.,
43:1026–1038, 1994.

[3] Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. Cross-
over composition - enforcement of fairness under unfair adver-
sary. In WSS, pages 19–34, 2001.

[4] Elyes Ben Hamida, Guillaume Chelius, and Jean-Marie Gorce.
Scalable versus accurate physical layer modeling in wireless
network simulations. pads, 0:127–134, 2008.

[5] Christian Boulinier, Franck Petit, and Vincent Villain. When
graph theory helps self-stabilization. In PODC, pages 150–159,
2004.

[6] Eddy Caron, Ajoy K. Datta, Benjamin Depardon, and
Lawrence L. Larmore. A self-stabilizing k-clustering algorithm
for weighted graphs. JPDC, 70(11):1159–1173, 2010.

[7] Nian-Shing Chen, Hwey-Pyng Yu, and Shing-Tsaan Huang. A
self-stabilizing algorithm for constructing spanning trees. Inf.
Process. Lett., 39:147–151, 1991.

[8] Zeev Collin and Shlomi Dolev. Self-stabilizing depth-first search.
Inf. Process. Lett., 49:297–301, 1994.

[9] Alain Cournier, Ajoy K. Datta, Franck Petit, and Vincent Villain.
Enabling snap-stabilization. In ICDCS, pages 12–19, 2003.

[10] Ajoy K. Datta, Stéphane Devismes, Karel Heurtefeux,
Lawrence L. Larmore, and Yvan Rivierre. Self-stabilizing
small k-dominating sets. Technical report, VERIMAG, 2011.
http://www-verimag.imag.fr/TR/TR-2011-6.pdf.

[11] Ajoy K. Datta, Stéphane Devismes, and Lawrence L. Larmore.
A self-stabilizing o(n)-round k-clustering algorithm. In SRDS,
pages 147–155, 2009.

[12] Ajoy K. Datta, Lawrence L. Larmore, and Hema Piniganti. Self-
stabilizing leader election in dynamic networks. In SSS, pages
35–49, 2010.

[13] Ajoy K. Datta, Lawrence L. Larmore, and Priyanka Vemula. Self-
stabilizing leader election in optimal space. In SSS, pages 109–
123, 2008.

[14] Ajoy K. Datta, Lawrence L. Larmore, and Priyanka Vemula. A
Self-Stabilizing O(k)-Time k-Clustering Algorithm. The Com-
puter Journal, page bxn071, 2009.

[15] Sylvie Delaët, Bertrand Ducourthial, and Sébastien Tixeuil. Self-
stabilization with r-operators revisited. In Self-Stabilizing Sys-
tems, pages 68–80, 2005.

[16] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Commun. ACM, 17:643–644, 1974.

[17] Shlomi Dolev. Self-stabilization. MIT Press, 2000.
[18] Shlomi Dolev, Mohamed G. Gouda, and Marco Schneider. Mem-

ory requirements for silent stabilization. In PODC, pages 27–34,
1996.

[19] Y Fernandess and D Malkhi. K-clustering in wireless ad hoc
networks. In ACM POMC 2002, pages 31–37, 2002.

[20] M. R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. W. H. Freeman,
1979.

[21] Felix C. Gärtner. A survey of self-stabilizing spanning-tree
construction algorithms. Technical Report 38, 2003.

[22] Shing-Tsaan Huang and Nian-Shing Chen. A self-stabilizing
algorithm for constructing breadth-first trees. Inf. Process. Lett.,
41:109–117, 1992.

[23] Michiyo Ikeda, Sayaka Kamei, and Hirotsugu Kakugawa. A
space-optimal self-stabilizing algorithm for the maximal inde-
pendent set problem. In PDCAT, pages 70–74, 2002.

[24] Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions
for message-passing systems. Distributed Computing, 7(1):17–
26, 1993.

[25] Adrian Kosowski and Lukasz Kuszner. Energy optimisation in
resilient self-stabilizing processes. In symposium on Parallel
Computing in Electrical Engineering, pages 105–110, 2006.

[26] Shay Kutten and David Peleg. Fast distributed construction of
k-dominating sets and applications. In PODC, pages 238–251,
1995.

[27] David Peleg and Eli Upfal. A trade-off between space and
efficiency for routing tables. JACM, 36(3):510–530, 1989.

[28] Lucia Draque Penso and Valmir C. Barbosa. A distributed
algorithm to find k-dominating sets. Discrete Appl. Math., 141(1-
3):243–253, 2004.

[29] Vlady Ravelomanana. Distributed k-clustering algorithms for
random wireless multihop networks. In ICN (1), pages 109–116,
2005.

[30] S. Shukla, D. J. Rosenkrantz, and S. S. Ravi. Observations on
self-stabilizing graph algorithms on anonymous networks. In
WSS, pages 7.1–7.15, 1995.

[31] Gerard Tel. Introduction to Distributed Algorithms. Cambridge
University Press, 2nd edition, 2001.

10

