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Abstract. We consider snap-stabilization in message-passing systems.
Snap-stabilization permits to design protocols that withstand transient
faults: Any computation that is started after faults cease immediately
satisfies the expected specification. Our contribution is twofold, as we
demonstrate that in message passing systems (i) snap-stabilization is
impossible for nontrivial problems if we consider channels with finite yet
unbounded capacity, and (ii) snap-stabilization becomes possible in the
same setting with bounded-capacity channels. The latter contribution is
constructive, as we propose two snap-stabilizing protocols.

1 Introduction

Snap-stabilization [2] offers an attractive approach to transient fault tolerance.
As soon as such faults end a snap-stabilizing protocol immediately operates cor-
rectly. Of course, not all safety predicates can be guaranteed when the system
is started from an arbitrary global state. Snap-stabilization’s notion of safety
is user-centric: When the user initiates a request, the received response is cor-
rect. However, between the request and the response, the system can behave
arbitrarily (except from giving an erroneous response to the user).

A related well-studied concept is self-stabilization [3]. After the end of the
transient faults, a self-stabilizing protocol eventually satisfies its specification.
Thus, snap-stabilization offers stronger safety guarantee than self-stabilization:
It may take an arbitrary long time for a self-stabilizing protocol to start behaving
correctly after the faults.

However, nearly every snap-stabilizing protocol presented so far assumes a
high level communication model in which any process is able to read the states
of every communication neighbor and update its own state in a single atomic
step (this model is often referred to as the state model). Designing protocols with
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arxiv.org/abs/0802.1123) for more details.

V. Garg, R. Wattenhofer, and K. Kothapalli (Eds.): ICDCN 2009, LNCS 5408, pp. 281–286, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://arxiv.org/abs/0802.1123
http://arxiv.org/abs/0802.1123


282 S. Delaët et al.

forward recovery properties (such as self-stabilizing and snap-stabilizing ones)
in the low level message-passing model is rather challenging. In this model, a
process may either send a message to a single neighbor or receive a message
from a single neighbor (but not both) together with some local computations;
also messages in transit could be lost or duplicated.

Our contribution is twofold:

(1) We show that contrary to the high level state model, snap-stabilization is
strictly more difficult to guarantee than self-stabilization in the low level mes-
sage passing model. In more details, for nontrivial specifications, there exists
no snap-stabilizing (even with unbounded memory per process) solution in
message-passing systems with unbounded yet finite capacity channels. This
is in contrast to the self-stabilizing setting, where solutions with unbounded
memory per process [4], unbounded random sequences [5], or operating on
a restricted set of specifications [6] do exist.

(2) We prove that snap-stabilization in the low level message passing model is
feasible when channels have bounded capacity. Our proof is constructive,
as we present snap-stabilizing protocols for propagation of information with
feedback (PIF) and mutual exclusion.

2 Impossibility Results

We introduced the notion of safety-distributed specifications and shown that
no problem having such a specification admits a snap-stabilizing solution in
message-passing systems with finite yet unbounded capacity channels. Intu-
itively, safety-distributed specification has a safety property that depends on
the behavior of more than one process. That is, certain process behaviors may
satisfy safety if done sequentially, while violate it if done concurrently. For ex-
ample, in mutual exclusion, a requesting process eventually executes the critical
section but several requesting processes must not execute the critical section con-
currently. Since most of classical synchronization and resource allocation prob-
lems are safety-distributed, this result prohibits the existence of snap-stabilizing
protocols in message-passing systems if no further assumption is made.

This result hinges on the fact that after some transient faults the configuration
may contain an unbounded number of arbitrary messages. Note that a safety-
distributed specification involves more than one process and thus requires the
processes to communicate to ensure that safety is not violated. However, with
unbounded channels, each process cannot determine if the incoming message is
indeed sent by its neighbor or is the result of faults. Thus, the communication
is thwarted and the processes cannot differentiate safe and unsafe behavior.

3 Possibility Results

We shown that snap-stabilization becomes feasible in message-passing systems if
the channels are of bounded known capacity. We present solutions to propagation
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of information with feedback (PIF) and mutual exclusion. The protocols assume
fully-connected networks and use finite local memory at each process. The chan-
nels are lossy, bounded and FIFO. The program execution is asynchronous. To
ensure nontrivial liveness properties, we make the following fairness assumption:
If a sender process s transmits infinitely many messages to a receiver process r
then, r receives infinitely many of them. The message that is not lost is received
in finite (but unbounded) time. If the channel is full when the message is trans-
mitted, this message is lost. For simplicity, we consider single-message capacity
channels. The extension to an arbitrary but known bounded message capacity
channels is straightforward (see [7]).

3.1 PIF

The PIF scheme can be described as follows: When requested, a process – called
initiator – starts the first phase of the PIF-computation by broadcasting a spe-
cific message m into the network (the broadcast phase). Then, each non-initiator
acknowledges to the initiator the receipt of m (the feedback phase). The PIF-
computation terminates when the initiator receives acknowledgments from every
other process and decides taking account of these acknowledgments. Any process
may need to initiate a PIF-computation. Thus, any process can be the initia-
tor of a PIF-computation and several PIF-computations may run concurrently.
Hence, any PIF protocol has to cope with concurrent PIF-computations.

A basic PIF implementation requires the following input/output variables:

– Reqp. This variable is used to manage the requests for the process p. Reqp

is set to Wait when p is requested to perform a PIF. Reqp is switched from
Wait to In at the beginning of each PIF-computation (n.b. p starts a PIF-
computation only upon a request). Finally, Reqp is switched from In to
Done at the termination of each PIF-computation (this latter switch also
corresponds to the decision event). Since a PIF-computation is started by
p, we assume that Reqp cannot be set to Wait before the termination of the
current PIF-computation, i.e., before Reqp = Done.1

– BMesp. This buffer contains the message to broadcast.
– FMesp[1 . . . n − 1]. FMesp[q] contains the acknowledgment for the broadcast

message that q sends to p.

Using these variables, a process p is requested to broadcast a message m when
(BMesp,Reqp) is set to (m,Wait). Consequently to this request, a PIF-computa-
tion is started, i.e., Reqp is set to In. This computation terminates when Reqp is
set to Done. Between the start and the termination, the protocol has to generate
two types of event at the application level. First, a “B-receive〈m〉 from p”
event at any other process q. When this event occurs, the application at q is
assumed to treat the broadcast message m and then to put an acknowledgment
Ackm into FMesq[p]. The protocol then transmits Ackm to p: This generates a

1 Even if the current computation is due to a fault.
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“F-receive〈Ackm〉 from q” event at p so that the application at p can access
to the acknowledgment.

Note that the protocol has to operate correctly despite arbitrary messages
in the channels left after the faults. Note also that the messages can be lost.
To counter the message loss the protocol repeatedly sends duplicate messages.
To deal with the arbitrary initial messages and the duplicates, we mark each
message with a flag which takes its value in {0,1,2,3,4}. Two arrays are used to
manage the flag marking:

– In Statep[q], process p stores a flag value that it attaches to the messages it
sends to its q’th neighbor.

– In NStatep[q], p stores last flag that it receives from its qth neighbor.

Using these two arrays, our protocol proceeds as follows. When p starts a PIF-
computation, it sets Statep[q] to 0, for every process q. The computation ter-
minates when Statep[q] ≥ 4 for every index q.

During the computation, p repeatedly sends 〈PIF,BMesp,FMesp[q],Statep[q],
NStatep[q]〉 to every process q such that Statep[q] < 4. When some process q
receives 〈PIF,B,F ,pState,qState〉 from p, q updates NStateq[p] to pState. Then,
if pState < 4, q sends 〈PIF,BMesq,FMesq[p],Stateq[p], NStateq[p]〉 to p. Finally, p
increments Statep[q] only when it receives a 〈PIF,B,F ,qState,pState〉 message
from q such that pState = Statep[q] and pState < 4.

The trick behind the algorithm is the following. Assume that p starts to
broadcast the message m. Then, while Statep[q] < 4, Statep[q] is incremented
only when p received a message 〈PIF,B,F ,qState,pState〉 from q such that pState
= Statep[q]. So, Statep[q] will be equal to four only after p successively receives
〈PIF,B,F ,qState,pState〉 messages from q with the flag values 0,1,2, and 3. Now,
initially there is at most one message in the channel from p to q and at most
another one in the channel from q to p. So these messages can only cause at
most two incrementations of Statep[q]. Finally, the arbitrary initial value of
NStateq[p] can cause at most one incrementation of Statep[q]. Hence, since
Statep[q] = 3, we have the guarantee that p will increment Statep[q] to 4 only
after it receives a message sent by q after q receives a message sent by p. That
is, this message is a correct acknowledgment of m by q.

It remains to see when generating the B-receive and F-receive events:

– Any process q receives at least four copies of the broadcast message from p.
But, q generates a B-receive event only once for each broadcast message
from p: When q switches NStateq[p] to 3.

– After it starts, p is sure to receive the correct feedback from q since it receives
from q a 〈PIF,B,F ,qState, pState〉 message such that pState = Statep[q] =
3. As previously, to limit the number of events, p generates a F-receive event
only when it switches Statep[q] from 3 to 4. The next copies are ignored.

3.2 Mutual Exclusion

A mutual-exclusion mechanism ensures that a special section of code, called crit-
ical section (CS), can be executed by at most one process at any time. We adopt
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the specification proposed in [8]: Any process that requests CS enters in CS in fi-
nite time (liveness), and if a requesting process enters in CS, it executes CS alone
(safety). It is important to note that, starting from any configuration, a snap-
stabilizing mutual exclusion protocol cannot prevent several (non-requesting)
processes to execute the CS simultaneously. However, it guarantees that every
requesting process executes the CS alone.

Our snap-stabilizing mutual exclusion protocol is called ME . As previously,
ME uses the variable Req. A process p sets ME .Reqp to Wait when it requests
the access to the CS. Process p is then called a requestor and assumed to not set
ME .Reqp to Wait until ME .Reqp = Done, i.e., until its current request is done.

The main idea behind the protocol is the following: We assume identities on
processes and the process with the smallest identity – called the leader – decides
using a variable called Val which process can execute the CS. Val takes its value
in {0 . . . n − 1} and we assume that any process numbers its incoming channel
from 1 to n − 1. A process p is authorized to access the CS, if p is the leader
and Valp is equal to 0, or p is not the leader and the Val-value of the leader
designates the link incoming from p to the leader.

When a process learns that it is authorized to access the CS: (1) It first ensures
that no other process can execute the CS; (2) It then executes the CS if it wishes
to; (3) Finally, it notifies to the leader that it has terminated Step (2) so that
the leader (fairly) authorizes another process to access the CS.

To apply this scheme, ME is executed by phases from Phase 0 to 4 in such
way that each process goes through Phase 0 infinitely often. After requesting the
CS, a process p can access the CS only after executing Phase 0: p can access to
the CS only if ME .Reqp = In and p switches ME .Reqp from Wait to In only in
Phase 0. Hence, our protocol just ensures that after executing Phase 0, a process
always executes the CS alone. We describe the five phases of our protocol below:

Phase 0. When a process p is in Phase 0, it starts a PIF-computation to collect
the identities of all processes and to evaluate which one is the leader. It also sets
ME .Reqp to In if ME .Reqp = Wait. Finally switches to Phase 1.

Phase 1. When a process p is in Phase 1, p waits the termination of the previous
PIF. Then, p starts a PIF of the message ASK to know if it is authorized to access
the CS and switches to Phase 2. Upon receiving a message ASK from the channel
p, any process q answers YES if Valq = p, NO otherwise. Of course, any process
will only take account of the answer of the leader.

Phase 2. When a process p is in Phase 2, it waits the termination of the PIF
started in Phase 1. After the PIF terminates, p knows if it is authorized to access
the CS. If p is authorized to access the CS, p starts a PIF of the message EXIT.
The goal of this message is to force all other processes to restart to Phase 0.
This ensures no other process executes the CS until p notifies to the leader that
it releases the CS. Indeed, due to the arbitrary initial configuration, some process
q �= p may believe that it is authorized to execute the CS: If q never starts Phase
0. On the contrary, after restarting to 0, q cannot receive any authorization
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from the leader until p notifies to the leader that it releases the CS. Finally, p
terminates Phase 2 by switching to Phase 3.

Phase 3. When a process p is in Phase 3, it waits the termination of the last
PIF. After the PIF terminates, if p is authorized to execute the CS, then: (1)
p executes the CS and switches ME .Reqp from In to Done if ME .Reqp = In,
then either (2.a) p is the leader and switches Valp from 0 to 1 or (2.b) p is
not the leader and starts a PIF of the message EXITCS to notify to the leader
that it releases the CS. Upon receiving such a message, the leader increments
its variable Val modulus n + 1 to authorize another process to access the CS.
Finally, p terminates Phase 3 by switching to Phase 4.

Phase 4. When a process p is in Phase 4, it waits the termination of the last
PIF and then switches to Phase 0.

4 Conclusion

In this paper, we shown that snap-stabilization is impossible for a wide class of
specifications in message-passing systems where the channel capacity is finite yet
unbounded. However, we also show that snap-stabilization is possible in message-
passing systems if we assume a bound on the channel capacity. The proof is
constructive, as we presented two snap-stabilizing protocols for message-passing
systems with a bounded channel capacity.

It is worth investigating if these results could be extended to more general
networks, e.g. with general topologies, and/or where nodes are subject to per-
manent aka crash failures. On the practical side, our results imply the possibility
of implementing snap-stabilizing protocols on real networks, and actually imple-
menting them is a future challenge.

References
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