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Abstract no faults, since information about every participant haseo

repetitively sent to every othgrarticipant As pointed out

In this paper, our focus is to lower the communicationin [4], the amount of information that has to be gathered
complexity of self-stabilizing protocolselow the need of highly depends on the task to be solved if only the output
checking every neighbor forever. Our contribution is three of the protocol is to be used for such anomaly detection.
fold: (i) We provide new complexity measures for commuThe paper also points out that more efficient schemes could
nication efficiency of self-stabilizing protocols, esjdigiin be available for some particular implementations. However
the stabilized phase or when there are no faufii3,On the  to the best of our knowledge, the minimal amount of
negative side, we show that for non-trivial problems such agommunicated information in self-stabilizing systemstil$ s
coloring, maximal matching, and maximal independent setfully local [4]-[6]: when there are no faults, every participant
it is impossible to get (deterministic or probabilistic)lise  has to communicate with every otheeighborrepetitively.
stabilizing solutions wherevery participant communicates In this paper, our focus is to lower the communication
with less than every neighbor in the stabilized phase, andomplexity of self-stabilizing protocolbelow the need of
(iii) On the positive side, we present protocols for maximalchecking every neighbor. A quick observation shows that
matching and maximal independent set such that a fractiomon-existent communication is impossible in the context of
of the participants communicates wigxactly oneneighbor  self-stabilization: the initial configuration of the netko

in the stabilized phase. could be such that the specification is violated while no
participant is sending nor getting neighboring informatio
1. Introduction resulting in a deadlock. On the other side, there exist

problems (such as coloring, maximal matching, maximal
Self-stabilization[1] is a general paradigm to provide independent set) that admit solutions where participants
forward recovery capabilities to distributed systems agd n  only have to communicate with their full set of neighbors.
works. Intuitively, a protocol is self-stabilizing if it iable to ~ We investigate the possibility of intermediate solutions. (
recover without external intervention from any catastioph where participants communicate repetitively only with a
transient failure. Among the many self-stabilizing sadas  strict subsetof their neighbors) that would lead to more
available today [2], the most useful ones for real networksefficient implementations in stabilized phase or when there

are those that admit efficient implementations. are no faults. Good candidates for admitting such interest-
Most of the literature is dedicated to improving efficiency ing complexity solutions areilent protocols [7]: a silent
after failures occui.e., minimizing the stabilization time —  protocol is a self-stabilizing protocol that exhibits thd-a

the maximum amount of time one has to wait before failureditional property that after stabilization, communicatis
recovery. While this metric is meaningful to evaluate thefixed between every pair of neighbors (that is, neighbors
efficiency in the presence of failures, it fails at capturihg  repetitively communicate the same information foreverg W
overhead of self-stabilization when there are no faults, othus concentrate on lowering communication complexity
after stabilization. In order to take forward recovery et  requirements for silent self-stabilizing protocols.

in case of failures, a self-stabilizing protocol has to gath  In more details, the contribution of the paper is threefold:
information from other nodes in order to detect inconsis- 1) We provide new complexity measures for communica-
tencies. Of course, global communication mechanism will tion efficiency of self-stabilizing protocols, especially
lead to a large coverage of anomaly detection [3] at the in the stabilized phase or when there are no faults. Our
expense of an extremely expensive solution when there are  notion of communication efficiency differs from the

. _ one introduced in [8] (that was subsequently used for
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— a.k.a. ftss— [11]). The essential difference is that process. Communication variables maintained by process
the efficiency criterion of [8] isglobal (eventually p can be read and written by, but only read byp's
only n — 1 communication channels are used) while neighbors. Each procegs also maintains a finite set of
our notion is local (eventually processes only comme-internal variablesthat may only be accessed hy Each
nunicate with a strict subset of their neighbors). Asvariable ranges over a fixed domain. We use uppercase letters
noted in [8]-[11], global communication efficiency to denote communication variables and lowercase ones to
often leads to solutions where one process needs tdenote internal variables. Some variables carctestant
periodically send messages to every other process. IWe refer to a variable of the proces® aswv.p. The state
contrast, with our notion, the communication load isof a process is defined by the values of its variables. A
entirely distributed and balanced. configurationis an instance of the states of all processes. The
2) On the negative side, we show two impossibility communication statef a process is its state restricted to its
results holding for a wide class of problems. This classcommunication variables. Bommunication configuratiois
includes many classical distributed problemg, col-  an instance of the communication states of all processes.
oring, maximal matching, and maximal independent A protocolis a collection ofn sequentialocal algorithms
set. We first show that there is no (deterministic oreach process executing one local algorithm. A process
probabilistic) self-stabilizing solutions for such prob- updates its state by executing its local algorithm. A local
lems in arbitrary anonymous networks whezeery  algorithm consists of a finite set of guarded actions of the
participant has to communicate with a strict subsetform (guard) — (action). A guard is a Boolean predicate
of its neighbors once the system is stabilized. Weover the variables of the process and the communication
then show that it is even more difficult to self-stabilize variables of its neighbors. Araction is a sequence of
these problems if the communication constraint musttatements assigning new values to its variables. An action
always hold. Indeed, even with symmetry-breakingcan be executed only if its guard isue. We assume that
mechanisms such as a leader or acyclic orientation othe execution of any action iatomic An action is said
the network, those tasks remain impossible to solve. enabledin some configuration if its guard isue in this
3) On the positive side, we present two protocols suclconfiguration. By extention, we say that a process is enabled

that a fraction of the participants communicates withif at least one of its actions is enabled.
exactly oneneighbor in the stabilized phase. A computation C' is an infinite sequenc&v,soy1),

The remaining of the paper is organized as follows. Section 2. . (visivi+1), ... such that for anyi > 0: (i) v, is a

presents the computational model we use in this paper. Weonfiguration, (iij) s; is a non-empty subset of processes

introduce in Section 3 new complexity measures for commue€hosen according to scheduler and(iii) each configuration

nication efficiency. Sections 4 and 5 describe our negative;; iS obtained after all processes i) execute fromry;

and positive results. Section 6 provides some concludingne of their enabled actions, if ahyAny triplet (v;s;vi11)

remarks and open questions. is called astep Any finite sequence of consecutive steps
of C starting from~, is a prefix of C. A suffix of C is

2. Model any computation obtained by removing a finite sequence
(708071)s - - - (YeSkYE+1) from C. The suffix associated

A distributed systens a setll of » communicating state to the prefix(yosoy1) ..., (vi—18:—17:) is the suffix of C
machines callegrocessesEach procesg can directly com-  starting from-;. A configurationy’ is saidreachablefrom
municate usingidirectional media with a restricted subset the configurationy if and only if there exists a computation
of processes calledeighbors We denote byl".p the set of starting from~ that contains the configuratioyi.

p's neighbors and by.p the degree op. We consider here A scheduleris a predicate that determines which are the
distributed systems having ambitrary connected topology possible computations. We assume herdistributed fair
modelized by an undirected connected graph= (II, E) scheduler Distributed means that any non-empty subset of
where E is a set ofm edges representing the bidirectional processes can be chosen in each step to execute an action.
media between neighboring processes. In the seglel, Fair means that every process is selected infinitely many
denotes the degree ¢f and D its diameter. times to execute an action. We assume priority on the

We assume that each procgsgan distinguish any two guarded actions that are induced by the order of appearance
neighbors usindocal indices that are numbered from 1 to of the actions in the code of the protocols. Actions appearin
d.p. We indifferently use théabel ¢ to designate the process first have higher priority than those appearing last.

q or the local index of; in the code of some procegs We To evaluate the time complexity, we use the notion of
will often use theanonymousassumption which states that round [12]. This notion captures the execution rate of the
the processes may only differ by their degrees. slowest process in any computation. The fitnd of an

Communications are carried out using a finite number
of communication variableshat are maintained by each 1. If all processes im; are disabled iny;, thenv; 11 = ;



computationC, notedC’, is the minimal prefix ofC where  3.3. Communication Stability

every process has been activated by the schedulerClet

be the suffix associated t@'. The secondound of C'is the In our protocols, some processes may read the communi-

first round of C”, and so on. cation variables of every neighbor forever, while other-pro
A configurationconformsto a predicate if this predicate cesses may eventually read the communication variable of a

is satisfied in this configuration; otherwise the configamati single neighbor. We emphasize this behavior by introducing

violatesthe predicate. By this definition every configuration the k-stability and two weakened forms: the-k-stability

conforms to the predicateue and none conforms to the and the(-(x, k)-stability.

predicatefalse Let 2 and S be predicates on configurations.  LetC = (yps071), ... (vi—15:_17), - - - be @ computation.

PredicateR is closedwith respect to the protocol actions if Let R’ (C) be the set of neighbors from whighreads some

every configuration of any computation that starts in a concommunication variables in step;s;y;+1). Let {R,(C) =

figuration conforming taR also conforms tdk. PredicateR |RS(C)U---URL(C)U...|.

convergego S if R andS are closed and every computation

starting from a configuration conforming t8 contains a  pefinition 4 (k-Stable) A protocol is k-stableif in every

configuration conforming tc. _ computationC, every procesy satisfiestR,(C) < k.
Self-Stabilization [13] can be defined as followsproto-

col stabilizes to a predicat® if and only if true converges to
R. In any protocol that stabilizes to the predic#&teany con-
figuration that conforms t@ is saidlegitimate Conversely,
any configuration that violateR is saidillegitimate

All protocols presented in this paper asdent [7]: A
protocol is silent if and only if starting from any configura-
tion, it converges to a configuration after which the values
of its communication variables are fixetlVe call silent o
configurationany configuration from which the values of satisfiest 1,
all communication variables are fixed.

Definition 5 (¢-k-Stable) A protocol is (-k-stable if in
every computatiorC, there is a suffixC’ such that every
processp satisfiestR,(C") < k.

Definition 6 (O-(x,k)-Stable) A protocol is ¢-(x, k)-stable
if in every computationC, there are a subsetS of x
processes and a suffix’ such that every procegs € S
(C") <k.

4. Impossibility Results
3. Measures for Communication Efficiency _ 3
We now provide a general condition on the output of
communication variables that prevents the existence oesom
communication stable solutions. Informally, if the commu-

We are interested in designing self-stabilizing protocolsrllcatlon variables of two neighboring procesgeandg can

where processes do not communicate with all their neighborge in two states, anda, that are legitimate separately but

during each step. The-efficiencydefined below allows to not simultaneously, there exists fpk-stable solution for
compare protocols following this criterion. k < A. This condition, that we refer to by the notion of

neighbor-completeness actually satisfied by every silent
self-stabilizing solution to the problems we consider ia th
gaper: maximal independent set, maximal matching.

3.1. k-efficiency

Definition 1 (k-efficient) A protocol is said to b&-efficient
if in every step of its possible computations, every proces

reads communication variables of at masheighbors. . ) . .
Definition 7 (neighbor-completeness)A protocol A is said

neighbor-completéor predicateP if and only if A is silent,
self-stabilizes taP, and for every process, there exists a
communication state qf, say «,, such that:

1. There exists a silent configuration where the communi-
cation state ofp is «,.

Definition 2 (Communication Complexity) The commu- 2. For every neighbor of, sayq, there exists a commu-

nication complexityof a processp is the maximal amount nication state_ ofy, s_ayaq, such that: o
of memoryp reads from its neighbors in any given step. (a) Every configuration where the communication state
of p is a;,, and the communication state gfis o,

violates P.
(b) There exists a silent configuration where the commu-
nication state ofg is .

3.2. Space Complexity

To compare the space complexity of distributed algo-
rithms, we distinguish two complexity criteria.

Definition 3 (Space complexity) The space complexityof

a processp is the sum of the local memory space (that is,
the space needed for communication and internal variables)
and the communication complexity jf



Theorem 1 There is no (-k-stable (even probabilistic) of p3 is equal toA. Without loss of generality, assume that
neighbor-completgrotocol working in arbitrary anonymous this neighbor isp4. (As in the configuration (a) in Figure
networks of degreé\ > k. 1.) As v is silent, the communication state pf in +4 is
. . the same as in3: as.
Proof: Assume, by the. contraquqn,_that there exists Similarly, from v, (v; with i = 4), the system eventually
a ¢-k-stable protocol that is (deterministically or proba- re5ches 3 silent configuratior, from which p, stops to
bilistically) neighbor-completefor a predicate” in any  reaq the communication variables of one neighppmwith

anonymous network Of_ dggra& > k. j € {3,5} and where the communication statezqfis .
To show the contradiction, we prove that for afyy> 0, Consider the following two cases:

there exist topologies of degre& for which there is no

O-k-stable protocol that isneighbor-completdor P with TPy :,595' (As in the colr(lﬂgfuratlon (b) in Figure D).
k = A — 1. This result implies the contradiction for any C/OI’]SI er a new network of seven processes:.. .,
k < A. p,. Assume the following initial configuration: Any
We first consider the cas& = 2. (The caseA =1 _prociess/p; with 7 € {1,2,3}_has/ th? same state as
can be easily deduce using a network of two processes and " 73 P4 h:’;\shthe rs]tate Oby N 73, Ps hasdtr}ehstatehof
following the same construction as the one for= 2.) We P In 73, pg Nas the state ob in 3, andpz has the
will then explain how to generalize the cade— 2 for any state ofp; in «y}. (This configuration corresponds to the
A>9 configuration (c) of Figure 1.) We can then remark that

ph is in the same situation that in the configuration
5, so p; does not read the communication variables
of pj. Similarly, p, does not read the communication
variables of p;. Moreover, no process modifies the
content of its communication variable, otherwise they
can do the same in4 or v, and this contradicts the
fact that+}; and~, are silent. Hencey is silent and,
as p5 and p), have the same communication state in
v as ps in 3 and py in 4, v violates P. Thus,
any computation starting fromy never converges to a
configuration satisfyingP, i.e., protocol A is not self-
stabilizing for P, a contradiction.

- p; = p3. This case is similar to the previous one: By
constructing a configuration such as the configuration
(d) in Figure 1, we also obtain a contradiction.

CaseA = 2 andk = A — 1: Consider an anonymous
chain of five processes, p2, p3, ps4, andps. (Figure 1 may
help the reader.)

Figure 1. The black crosses indicate that the communi-
cation variable of a process is not read by a neighbor

By Definition, there exists a communication statepgf Figure 2. Generalization for A = 3
say az such that:
1. There exists a silent configuratio3 where the com- The previous proof can be generalizated koe= A — 1
munication state ops is as. and A > 2 using a graph ofA% + 1 nodes where there is a
2. For every neighbor ops, p; (i € {2,4}), there exists node of degree\ (the role of this node is the same as node
a communication state of;, say«;, such that: p3 in the case&x = A — 1 and A = 2) that is linked toA

(a) Any configuration where the communication state ofnodes of degreé\. Each of these lash nodes being linked
ps IS ag and the communication state of is «; to A — 1 pendent nodes. Figure 2 depicts the generalization

violates P. for A =3. O
(b) There exists a silent configuratiom; where the
communication state qf; is «;. Definition 8 (Dag-orientation) LetS.p be the set of possi-

From the configurationys, the system eventually reaches ble states of procegs We say that a system dmg-oriented
a silent configurationy; from which ps stops to read the iff for every procesp, there exists a functiorf, : S.p —
communication variables of one neighbor because the degreé®? and a subseSucc.p C I'.p such that:



- Vo, € S.p, fp(ap) = Suce.p, and
- The directed subgraplG’ (ILE'") where E' =
{(p,q),p € L A q € Succ.p} is a dag?

The next theorem shows that even assuminmgated and/

or dag-orientednetwork, it is impossible to desidg-stable
neighbor-completgrotocols fork < A. The theorem can
be proven using a constructive argument similar to the on
used in the proof of Theorem 1.

Theorem 2 Let k < A. There is nok-stable(even proba-
bilistic) neighbor-completgrotocol in any arbitrary rooted
and dag-oriented network.

5. Protocols

We now illustrate the notions ofl-efficiency and
0-(x, 1)-stability in self-stabilization with two protocols for
the maximal independent setnd the maximal matching

Proof: Assume, by the contradiction, that there is a
cyclepy .. .px in G'. Then, there is an oriented ed@e,, po)
which means that: (1py and p;, are neighbors and (2)
C.opr < C.pg. Now, Vi € [0...k — 1], Cp; < C.piy1.
So, by transitivity,C.py < C.p, and this contradicts (2)J

In MZS, any processp maintains the communication
é/ariable S.p that has two possible stateddominator
or dominated. S.p states if p is in the independent
set (Dominator) or not (dominated). Hence, in MZS,
the function inM1S.p just consists in testing ifS.p
Dominator. The legitimate configurations aMZS are
those satisfying:
1.Vp eIl (Sp
dominated).
2.Vp € 11, (Sp
Dominator).
The first condition states that the set Bbminators is an
independent set, while the second condition states that the

= Dominator) = (Vg € T'.p,S.q =

= dominated) = (3¢ € T'p,S.q =

respectively. These two protocols are designed for colorethdependent set is maximal.

network of arbitrary topology. By colored we mean that
every procesgp has a constanC.p such that for every

We now outline the principles aMZS. First, we use the
internal variable¢ur, to get the communication efficiency: a

neighborg, C.p # C.q. We also assume that the colors areproces® only reads the communication state of the neighbor
ordered following the relatior<. We prove the correctness pointed out bycur.p. Then, depending af.p, each process
and study the stabilization time of the two protocols. Hinal p adopts the following strategy:

we exhibit lower bounds on the number of processes thatare - |f S = Dominator, thenp checks one by one (in

eventually “1-stable”.

5.1. Maximal Independent Set

We first consider themaximal independent sgMIS)
problem. Anindependent sedf the network is a subset of

processes such that no two distinct processes of this set are

neighbors. An independent sgis saidmaximalif no proper
superset ofS is an independent set.

In the maximal independent sgroblem, each procegs
computes a local Boolean functiomM I.S.p that decides
if p is in the maximal independent set. TMIS predicate
is true if and only if the subset{q € II,inMI1S.q} is

a maximal independent set of the network. In any self-

stabilizing MIS protocol, the legitimate configurationsear
those satisfying thé1lS predicate

We propose in Figure 3 kefficientprotocol calledMZS
that stabilizes to th#IS predicate MZS works in arbitrary

networks assuming local coloring on processes. Using suc

colors is very usefull mainly because of the following
theorem:

Theorem 3 Let £’ be the set of oriented edges such that

(p,q) € E' if and only ifp and ¢ are neighborsand C.p <
C.q. The oriented graplG’ = (II, E’) is a directed acyclic
graph (dag.

2. Directed Acyclic Graph

a round robin manner) the communication states of
its neighbors until it points out a neighbar that is
also aDominator. In such a case, either or ¢ must
becomedominated to satisfy Condition 1. We then
use the colors to make a deterministic choice between
p andq. Note that in a legitimate configuration, every
Dominator process continues to check its neighbors
all the time.

If S.p = dominated, thenp must have the guarantee
that one of its neighbor is @ominator. Hence,p
switchesS.p from dominated to Dominator if the
neighbor it points out witheur.p is not a Dominator
(i.e, S.(cur.p) = dominated). Also, to have a faster
convergence timep switchesS.p from dominated to
Dominator if the neighbor it points out witleur.p has

a greater color (even if it is &ominator).

We now show the correctness oMZS (Theorem

. We then show in Theorem 5 thatMZS is
8-(L%J,1)-stab|ewhere£mm is the length (humber
of edges) of the longest elementary path in the network.

We show thatMZS stabilizes to theMIS predicatein
two steps: (1) We first show that any silent configuration
of MZS satisfies theMIS predicate (2) We then show
that MZS reaches a silent configuration starting from any
configuration inO(AfC) rounds wheré( is the number of
colors used in the network.



Communication Variable: Communication Constant: Internal Variable:

S.p € {Dominator,dominated} C.p: color cur.p € [1...4.p]
Actions:
(S.(cur.p) = Dominator A C.(cur.p) < C.p A S.p = Dominator) —  S.p < dominated
[(S.(cur.p) = dominated V C.p < C.(cur.p)) A (S.p = dominated)] —  S.p < Dominator; cur.p < (cur.p mod é.p) + 1
(S.p = Dominator) —  cur.p « (cur.p mod 8.p) + 1

Figure 3. Protocol MZS for any process p

Lemma 1 Any silent configuration ofMZS satisfies the 5.2. Maximal Matching
MIS predicate
We now consider themaximal matchingproblem. A
Proof: The silent configurations of\IZS are those matching of the network is a subset of edges in which no
from which all the S variables are fixed. So, in such a pair of edges has a common incident process. A matching
configurationy, any Dominator has no neighbor thatis also 1 js maximalif no proper superset af/ is also a matching.
a Dominator, otherwise at least one of thBominator In maximal matching problepeach procesp computes
process eventually becomesdaminated process follow- 8.p local Boolean functiongn M M [q].p (one for each neigh-
ing the first action of the protocol. Hence, the set Ofborq) that decide if the edgép, ¢} is in the maximal match-
Dominator processes ify is an independent set. Moreover, ing. Themaximal matching predicatis ¢rue if and only if
any dominated process has &ominator as neighbor in  the subset of edgdsp, ¢} € E,inMM|q].pVinMM]p).q}
7. Actually the neighbor pointed out by their-pointer is s amaximal matchingf the network. In any self-stabilizing
a Dominator. Hence the independent setjnis maximal.  maximal matching protocol, the legitimate configuratiore a
L) those satisfying thenaximal matching predicate
We propose in Figure 4 d-efficient protocol called
Let CSET = {C.p,p € 11}, #C = |CSET|, andVc € MATCHING that stabilizes to themaximal matching
CSET, Rank(c) = |{c € CSET,c < c}|. predicate. The proposed protocol works in arbitrary nelesor
still assuming the (local) coloring on processes.
Lemma 2 Starting from any configuration, any computation ~MATCHING derives from the protocol in [14], but
of MZS reaches a silent configuration in at moAt x #C with some adaptations to get theefficiency As previously,
rounds. each proces® has the communication constant colGrp
and uses the internatur-pointer to designate the current
Proof: This lemma can be deduced by proving the neighbor from which it reads the communication variables.

following induction: Vp € II,Rank(C.p) = 1, the variable The basic principle of the protocol is to create pairs of
S.p is fixed after at most\ x (i + 1) rounds. [J  married neighboring processes, the edges linking such pairs

being in the maximal matching. To that goal, every process
By Lemmas 1 and 2, follows: p maintains the variable®R.p. Either PR.p points out a

neighbor or is equal to 0. Two neighboring processes are
Theorem 4 MZS is a 1-efficient protocol that stabilizes to married if and only if their PR-values point out to each
the MIS predicatein any colored network. other. A process that is not married is saitmarried The
predicateP Rmarried(p) states if the procegsis currently
married, or not. Hence, for every processand everyp's
The following theorem shows a lower bound on the numbefneighborg, inM M|q].p = (PRmarried(p) A PR.p = q).
of processes that are eventua"y “1-stable”. If PR.p =0, then this means that is unmarried and does
not currently try to get married. In this cagejs saidfree

Theorem 5 MZS is <>_(|_£,,Law+1j’ 1)-stable whereL, . If PR.p # 0, thenp is either married or tries to get married

2 . . -
is the length (number of edges) of the longest elementary//th the neighbor pointed out by’ R.p. Hence, the value
path in the network. of PR.p is not sufficient to allow all neighbors of to

determine its current status (married or unmarried). We use
Proof: Let £,,.. be the length (number of edges) of the Boolean variablél/.p to let neighboring processes of
the longest elementary path in the network. Once stabilized> know if p is married or not. Using these variables, the
at most[%] processes in this path af@ominators, protocol is composed of 6 actions (ordered from the highest
otherwise at least twaDominators are neighbors and to the lowest priority). Using these actions, each progess
the system is not stabilized. As a consequense, at leagpplies the following strategies:
| £meztl | processes ardominated in a silent configuration - p is only allowed to be (or try to get) married with

2
and MZS is Q-([%Ll)-stable O the neighbor pointed out byur.p. So, if PR.p ¢



Communication Variables: Internal Variable:
M.p € {true,false} cur.p € [1...4.p]

PR.pe{0...8.p} Predicate:

P = (PR.p = cur.p A PR.(cur.p) =
Communication Constant: Rmarried(p) = (PR.p = cur.p A PR.(cur.p) = p)

C'.p: color

Actions:
(PR.p ¢ {0, cur.p})
(M.p # PRmarried(p))
(PR.p =0A PR.(cur.p) = p)
(PR.p = cur.p A PR.(cur.p) # p A (M.(cur.p) V C.(cur.p) < C.p))
(PR.p =0A PR.(cur.p) =0A C.p < C.(cur.p) A =M.(cur.p))
(PR.p =0A (PR.(cur.p) # 0V C.(cur.p) < C.pV M.(cur.p)))

PR.p < cur.p

M.p < PRmarried(p)
PR.p < cur.p

PR.p < 0

PR.p < cur.p

cur.p < (cur.p mod é.p) + 1

Figure 4. Protocol MATCHING For any process p

Lidldd

{0, cur.p} then PR.p is set to cur.p. Actually, if the worst casep; incrementscur.p; until cur.p; = py and
PR.p = ¢q such thatg ¢ {0, cur.p}, thenPR.p = ¢  then setsPR.p; to py). To sum up,p; is a neighbor ofpg
since the initial configuration. such thatC.py < C.p; and that is neithefree nor married

p must inform its neighbors of its current status. Repeating the same argument fgras we just did fompy,
married or unmarried, usiny/.p. To compute the value it follows thatp, has a neighbop, such thatC.p; < C.p,

of M.p we use the predicatB Rmarried(p): if M.p # and that is neithefree nor married, and so on.
PRmarried(p), thenM.p is set toP Rmarried(p). However, the sequence of processgspi, ps...cannot

If pis free andp is pointed out by thePR-variable  be extended indefinitely since each process must have a
of a neighborg, this means thag proposes tgp to get  lower color than its preceding one. Hence, this contradicts
married. In this casey accepts by settind®R.p to q. the initial assumption. O

p resetsPR.p to 0 when the neighbor pointed out by

PR.p (i) is married with another process @f) has a Lemma 4 Any silent configuration oM ATCHING sat-
lower color thanp (w.r.t., <). Condition (i) preventsp isfies themaximal matching predicate

to wait for an already married process. Conditi@n) _ ) . -
is used to break the initial cycles étR-values. Proof: We show this lemma in two step) First we

If p is free, then it must try to get married. The two last ShOW that, in a silent configuration, the seof edges{p, ¢}
rules achieve this goap tries to find a neighbor that SUch that(P Rmarried(p) A PR.p = q) is @ matching(ii)
is free and having a higher color than itself (to preventTheN: We show that this matching is a maximal. U
cycle creation). Sap incrementscur.p until finding an
neighbor that matches this condition. In this latter case
p setsPR.p to cur.p in order to propose a marriage.
We now show the correctness 8l ATCHING (Theorem

6). We then show in Theorem 7 thal ATCHING is
O-([ 5321, 1)-stable

The next lemma can be trivially deduce from the fact that if
a proces initially satisfiesPR.p ¢ {0, cur.p}, then it sets
PR.p to cur.p during the first round using the first action

of the protocol.

Lemma 5 After the first round, every procegs satisfies
PR.p € {0, cur.p} forever.

Lemma 3 In any silent configuration ofMATCHING,

every process is eithdree or married Lemma 6 Let A € II be a maximal connected subset of
unmarried processes in some configuration after the first
round. If |[A] > 2, then after at mosRA + 2 rounds the
size of A decreases by at least 2.

Proof: Assume, by the contradiction, that there is

a silent configuration of MATCHING where there is
a processp, that is neitherfree nor married Then, by
definition, PR.py = p; such thaip; # 0 (pg is notfree) and Proof: Let S be the suffix of the computation that starts
PR.p1 # po (po is unmarried. Also, cur.pp = p; otherwise  after the end of the first round. LE{ A) be the set of process
po is enabled to sePR.py t0 cur.py, this contradicts the p such thatp ¢ A andp has a neighboy € A.
facts that the configuration is silent. Similarly, the facatt First the size ofd cannot increase because omearried,
po is unmarriedimplies thatM.py = false. a process remainmarried forever. Assume now, by the

As PR.p1 # po andcur.pg = p1, we haveM.p; = false contradiction, thatd does not decrease of at least 2 during
and C.pg < C.p; otherwisep, is enabled to setPR.pg 2A + 2 rounds inS. This implies that no two process df
to 0 and the configuration is not silent, a contradiction. Inget married during this period.
addition, M.p; = false implies thatp, is unmarried Also, Let S’ be the prefix ofS containing2A + 2 rounds. We
p1 cannot bdree otherwisep, eventually modifyPR.p; (in show the contradiction using the following four steps:



. After one round inS’, every procesy satisfies:(p €
I'A) = Mp)A(pe A= -~M.p).

. After two rounds inS’, for every process, if PR.p #

0, then PR.p # 0 holds until the end of5’.

After A + 2 rounds inS’, for every procesp in A, we

have either (1)PR.p =¢q,q € A or (2) PR.p =0 and

every neighboi € A satisfiesPR.q € A.

In at most2A + 2 rounds, at least two neighboring

processes il get married, which contradicts the initial

assumption.

O

Lemma 7 Starting from any configuration, any computation
of MATCHING reaches a silent configuration in at most
(A +1)n + 2 rounds.

Proof: First, the number ofmarried processes cannot

decrease. Then, after the first round and until there is a

maximal matching in the system, the number mérried
processes increases by at least 2 evefy + 2 rounds
by Lemma 6. Hence, there is a maximal matching into
the networks after at mostA + 1)n + 1 rounds. Once
maximal matching is available in the network, one more
round is necessary so that evenarried processp satisfies
M.p = true and everyummarried processp satisfies
PR.p = 0. Hence, starting from any initial configuration, the
system reaches a silent configuration in at n{dst-1)n+2
rounds. O

By Lemmas 4 and 7, follows:
Theorem 6 MATCHING is a 1-efficient protocol that

stabilizes to thenaximal matching predicate any locally-
identified network.

The following theorem shows a lower bound on the number

of processes that are eventually “1-stable”.

Theorem 7 MATCHING is O-(2[ 532+, 1)-stable.

Proof: From [15], we know that any maximal matching
in a graph has a size at ledsfg™ | edges. So, as a process
belongs to at most one matched edge, we can conclude th

some global improvement can be achieved over the least-
overhead solutions known so far, the so-caltezhl checking
self-stabilizing protocols.

While we demonstrated the effectiveness of our scheme
to reduce communication need on several local checking
examples, the possibility of designing an efficient gen-
eral transformer for protocols matching the local checking
paradigm remains an open question. This transformer would
allow to easily get more efficient communication in the
stabilized phase or in absence of faults, but the effectisgn
of the transformed protocol in the stabilizing phase is get t
be known.
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