
Communication Efficiency in Self-Stabilizing Silent Protocols

St́ephane Devismes
VERIMAG UMR 5104

Universit́e Joseph Fourier
Grenoble, France

stephane.devismes@imag.fr

Toshimitsu Masuzawa
Graduate School of Information Science and Technology

Osaka University
Osaka, Japan

masuzawa@ist.osaka-u.ac.jp

Sébastien Tixeuil
LIP6 UMR 7606

Universit́e Pierre et Marie Curie
Paris, France

sebastien.tixeuil@lip6.fr

Abstract

In this paper, our focus is to lower the communication
complexity of self-stabilizing protocolsbelow the need of
checking every neighbor forever. Our contribution is three-
fold: (i) We provide new complexity measures for commu-
nication efficiency of self-stabilizing protocols, especially in
the stabilized phase or when there are no faults,(ii) On the
negative side, we show that for non-trivial problems such as
coloring, maximal matching, and maximal independent set,
it is impossible to get (deterministic or probabilistic) self-
stabilizing solutions whereevery participant communicates
with less than every neighbor in the stabilized phase, and
(iii) On the positive side, we present protocols for maximal
matching and maximal independent set such that a fraction
of the participants communicates withexactly oneneighbor
in the stabilized phase.

1. Introduction

Self-stabilization[1] is a general paradigm to provide
forward recovery capabilities to distributed systems and net-
works. Intuitively, a protocol is self-stabilizing if it isable to
recover without external intervention from any catastrophic
transient failure. Among the many self-stabilizing solutions
available today [2], the most useful ones for real networks
are those that admit efficient implementations.

Most of the literature is dedicated to improving efficiency
after failures occur,i.e., minimizing the stabilization time —
the maximum amount of time one has to wait before failure
recovery. While this metric is meaningful to evaluate the
efficiency in the presence of failures, it fails at capturingthe
overhead of self-stabilization when there are no faults, or
after stabilization. In order to take forward recovery actions
in case of failures, a self-stabilizing protocol has to gather
information from other nodes in order to detect inconsis-
tencies. Of course, aglobal communication mechanism will
lead to a large coverage of anomaly detection [3] at the
expense of an extremely expensive solution when there are

This work was supported by ANR SHAMAN and EGIDE SAKURA projects.
This work was also supported in part by MEXT: Global COE Program and
JSPS: Grant-in-Aid for Scientific Research ((B)19300017).

no faults, since information about every participant has tobe
repetitively sent to every otherparticipant. As pointed out
in [4], the amount of information that has to be gathered
highly depends on the task to be solved if only the output
of the protocol is to be used for such anomaly detection.
The paper also points out that more efficient schemes could
be available for some particular implementations. However,
to the best of our knowledge, the minimal amount of
communicated information in self-stabilizing systems is still
fully local [4]–[6]: when there are no faults, every participant
has to communicate with every otherneighborrepetitively.

In this paper, our focus is to lower the communication
complexity of self-stabilizing protocolsbelow the need of
checking every neighbor. A quick observation shows that
non-existent communication is impossible in the context of
self-stabilization: the initial configuration of the network
could be such that the specification is violated while no
participant is sending nor getting neighboring information,
resulting in a deadlock. On the other side, there exist
problems (such as coloring, maximal matching, maximal
independent set) that admit solutions where participants
only have to communicate with their full set of neighbors.
We investigate the possibility of intermediate solutions (i.e.
where participants communicate repetitively only with a
strict subsetof their neighbors) that would lead to more
efficient implementations in stabilized phase or when there
are no faults. Good candidates for admitting such interest-
ing complexity solutions aresilent protocols [7]: a silent
protocol is a self-stabilizing protocol that exhibits the ad-
ditional property that after stabilization, communication is
fixed between every pair of neighbors (that is, neighbors
repetitively communicate the same information forever). We
thus concentrate on lowering communication complexity
requirements for silent self-stabilizing protocols.

In more details, the contribution of the paper is threefold:
1) We provide new complexity measures for communica-

tion efficiency of self-stabilizing protocols, especially
in the stabilized phase or when there are no faults. Our
notion of communication efficiency differs from the
one introduced in [8] (that was subsequently used for
fault-tolerant non-self-stabilizing systems [8]–[10] and
then extented to fault-tolerant self-stabilizing systems

– a.k.a. ftss– [11]). The essential difference is that
the efficiency criterion of [8] isglobal (eventually
only n − 1 communication channels are used) while
our notion is local (eventually processes only comm-
nunicate with a strict subset of their neighbors). As
noted in [8]–[11], global communication efficiency
often leads to solutions where one process needs to
periodically send messages to every other process. In
contrast, with our notion, the communication load is
entirely distributed and balanced.

2) On the negative side, we show two impossibility
results holding for a wide class of problems. This class
includes many classical distributed problems,e.g., col-
oring, maximal matching, and maximal independent
set. We first show that there is no (deterministic or
probabilistic) self-stabilizing solutions for such prob-
lems in arbitrary anonymous networks whereevery
participant has to communicate with a strict subset
of its neighbors once the system is stabilized. We
then show that it is even more difficult to self-stabilize
these problems if the communication constraint must
always hold. Indeed, even with symmetry-breaking
mechanisms such as a leader or acyclic orientation of
the network, those tasks remain impossible to solve.

3) On the positive side, we present two protocols such
that a fraction of the participants communicates with
exactly oneneighbor in the stabilized phase.

The remaining of the paper is organized as follows. Section 2
presents the computational model we use in this paper. We
introduce in Section 3 new complexity measures for commu-
nication efficiency. Sections 4 and 5 describe our negative
and positive results. Section 6 provides some concluding
remarks and open questions.

2. Model

A distributed systemis a setΠ of n communicating state
machines calledprocesses. Each processp can directly com-
municate usingbidirectional media with a restricted subset
of processes calledneighbors. We denote byΓ.p the set of
p’s neighbors and byδ.p the degree ofp. We consider here
distributed systems having anarbitrary connected topology,
modelized by an undirected connected graphG = (Π, E)
whereE is a set ofm edges representing the bidirectional
media between neighboring processes. In the sequel,∆
denotes the degree ofG andD its diameter.

We assume that each processp can distinguish any two
neighbors usinglocal indices, that are numbered from 1 to
δ.p. We indifferently use thelabel q to designate the process
q or the local index ofq in the code of some processp. We
will often use theanonymousassumption which states that
the processes may only differ by their degrees.

Communications are carried out using a finite number
of communication variablesthat are maintained by each

process. Communication variables maintained by process
p can be read and written byp, but only read byp’s
neighbors. Each processp also maintains a finite set of
internal variables that may only be accessed byp. Each
variable ranges over a fixed domain. We use uppercase letters
to denote communication variables and lowercase ones to
denote internal variables. Some variables can beconstant.
We refer to a variablev of the processp as v.p. The state
of a process is defined by the values of its variables. A
configurationis an instance of the states of all processes. The
communication stateof a process is its state restricted to its
communication variables. Acommunication configurationis
an instance of the communication states of all processes.

A protocol is a collection ofn sequentiallocal algorithms,
each process executing one local algorithm. A process
updates its state by executing its local algorithm. A local
algorithm consists of a finite set of guarded actions of the
form 〈guard〉 → 〈action〉. A guard is a Boolean predicate
over the variables of the process and the communication
variables of its neighbors. Anaction is a sequence of
statements assigning new values to its variables. An action
can be executed only if its guard istrue. We assume that
the execution of any action isatomic. An action is said
enabled in some configuration if its guard istrue in this
configuration. By extention, we say that a process is enabled
if at least one of its actions is enabled.

A computation C is an infinite sequence(γ0s0γ1),
. . . (γisiγi+1), . . . such that for anyi ≥ 0: (i) γi is a
configuration, (ii) si is a non-empty subset of processes
chosen according to ascheduler, and(iii) each configuration
γi+1 is obtained after all processes insi execute fromγi
one of their enabled actions, if any.1 Any triplet (γisiγi+1)
is called astep. Any finite sequence of consecutive steps
of C starting fromγ0 is a prefix of C. A suffix of C is
any computation obtained by removing a finite sequence
(γ0s0γ1), . . . , (γkskγk+1) from C. The suffix associated
to the prefix(γ0s0γ1) . . . , (γi−1si−1γi) is the suffix ofC
starting fromγi. A configurationγ′ is saidreachablefrom
the configurationγ if and only if there exists a computation
starting fromγ that contains the configurationγ′.

A scheduleris a predicate that determines which are the
possible computations. We assume here adistributed fair
scheduler. Distributed means that any non-empty subset of
processes can be chosen in each step to execute an action.
Fair means that every process is selected infinitely many
times to execute an action. We assume priority on the
guarded actions that are induced by the order of appearance
of the actions in the code of the protocols. Actions appearing
first have higher priority than those appearing last.

To evaluate the time complexity, we use the notion of
round [12]. This notion captures the execution rate of the
slowest process in any computation. The firstround of an

1. If all processes insi are disabled inγi, thenγi+1 = γi

computationC, notedC ′, is the minimal prefix ofC where
every process has been activated by the scheduler. LetC ′′

be the suffix associated toC ′. The secondround of C is the
first round ofC ′′, and so on.

A configurationconformsto a predicate if this predicate
is satisfied in this configuration; otherwise the configuration
violatesthe predicate. By this definition every configuration
conforms to the predicatetrue and none conforms to the
predicatefalse. LetR andS be predicates on configurations.
PredicateR is closedwith respect to the protocol actions if
every configuration of any computation that starts in a con-
figuration conforming toR also conforms toR. PredicateR
convergesto S if R andS are closed and every computation
starting from a configuration conforming toR contains a
configuration conforming toS.

Self-Stabilization [13] can be defined as follows:A proto-
col stabilizes to a predicateR if and only if true converges to
R. In any protocol that stabilizes to the predicateR, any con-
figuration that conforms toR is saidlegitimate. Conversely,
any configuration that violatesR is said illegitimate.

All protocols presented in this paper aresilent [7]: A
protocol is silent if and only if starting from any configura-
tion, it converges to a configuration after which the values
of its communication variables are fixed.We call silent
configurationany configuration from which the values of
all communication variables are fixed.

3. Measures for Communication Efficiency

3.1. k-efficiency

We are interested in designing self-stabilizing protocols
where processes do not communicate with all their neighbors
during each step. Thek-efficiencydefined below allows to
compare protocols following this criterion.

Definition 1 (k-efficient) A protocol is said to bek-efficient
if in every step of its possible computations, every process
reads communication variables of at mostk neighbors.

3.2. Space Complexity

To compare the space complexity of distributed algo-
rithms, we distinguish two complexity criteria.

Definition 2 (Communication Complexity) The commu-
nication complexityof a processp is the maximal amount
of memoryp reads from its neighbors in any given step.

Definition 3 (Space complexity)The space complexityof
a processp is the sum of the local memory space (that is,
the space needed for communication and internal variables)
and the communication complexity ofp.

3.3. Communication Stability

In our protocols, some processes may read the communi-
cation variables of every neighbor forever, while other pro-
cesses may eventually read the communication variable of a
single neighbor. We emphasize this behavior by introducing
the k-stability and two weakened forms: the♦-k-stability
and the♦-(x, k)-stability.

LetC = (γ0s0γ1), . . . (γi−1si−1γi), . . . be a computation.
Let Ri

p(C) be the set of neighbors from whichp reads some
communication variables in step(γisiγi+1). Let ♯Rp(C) =
|R0

p(C) ∪ · · · ∪Ri
p(C) ∪ . . . |.

Definition 4 (k-Stable) A protocol is k-stable if in every
computationC, every processp satisfies♯Rp(C) ≤ k.

Definition 5 (♦-k-Stable) A protocol is ♦-k-stable if in
every computationC, there is a suffixC ′ such that every
processp satisfies♯Rp(C

′) ≤ k.

Definition 6 (♦-(x,k)-Stable) A protocol is♦-(x, k)-stable
if in every computationC, there are a subsetS of x
processes and a suffixC ′ such that every processp ∈ S
satisfies♯Rp(C

′) ≤ k.

4. Impossibility Results

We now provide a general condition on the output of
communication variables that prevents the existence of some
communication stable solutions. Informally, if the commu-
nication variables of two neighboring processesp andq can
be in two statesαp andαq that are legitimate separately but
not simultaneously, there exists no♦-k-stable solution for
k < ∆. This condition, that we refer to by the notion of
neighbor-completenessis actually satisfied by every silent
self-stabilizing solution to the problems we consider in the
paper: maximal independent set, maximal matching.

Definition 7 (neighbor-completeness)A protocolA is said
neighbor-completefor predicateP if and only ifA is silent,
self-stabilizes toP , and for every processp, there exists a
communication state ofp, sayαp, such that:

1. There exists a silent configuration where the communi-
cation state ofp is αp.

2. For every neighbor ofp, sayq, there exists a commu-
nication state ofq, sayαq, such that:

(a) Every configuration where the communication state
of p is αp and the communication state ofq is αq

violatesP .
(b) There exists a silent configuration where the commu-

nication state ofq is αq.

Theorem 1 There is no ♦-k-stable (even probabilistic)
neighbor-completeprotocol working in arbitrary anonymous
networks of degree∆ > k.

Proof: Assume, by the contradiction, that there exists
a ♦-k-stable protocol that is (deterministically or proba-
bilistically) neighbor-completefor a predicateP in any
anonymous network of degree∆ > k.

To show the contradiction, we prove that for any∆ > 0,
there exist topologies of degree∆ for which there is no
♦-k-stable protocol that isneighbor-completefor P with
k = ∆ − 1. This result implies the contradiction for any
k < ∆.

We first consider the case∆ = 2. (The case∆ = 1
can be easily deduce using a network of two processes and
following the same construction as the one for∆ = 2.) We
will then explain how to generalize the case∆ = 2 for any
∆ ≥ 2.

Case∆ = 2 and k = ∆ − 1: Consider an anonymous
chain of five processesp1, p2, p3, p4, andp5. (Figure 1 may
help the reader.)

(a)

(b)

(c)

(d)

p1 p2 p3 p4 p5

p1 p2 p3 p4 p5

p1' p2' p3' p4' p5' p6' p7'

p1' p2' p3' p4' p5'

Figure 1. The black crosses indicate that the communi-
cation variable of a process is not read by a neighbor

By Definition, there exists a communication state ofp3,
sayα3 such that:

1. There exists a silent configurationγ3 where the com-
munication state ofp3 is α3.

2. For every neighbor ofp3, pi (i ∈ {2, 4}), there exists
a communication state ofpi, sayαi, such that:

(a) Any configuration where the communication state of
p3 is α3 and the communication state ofpi is αi

violatesP .
(b) There exists a silent configurationγi where the

communication state ofpi is αi.

From the configurationγ3, the system eventually reaches
a silent configurationγ′3 from which p3 stops to read the
communication variables of one neighbor because the degree

of p3 is equal to∆. Without loss of generality, assume that
this neighbor isp4. (As in the configuration (a) in Figure
1.) As γ3 is silent, the communication state ofp3 in γ′3 is
the same as inγ3: α3.

Similarly, from γ4 (γi with i = 4), the system eventually
reaches a silent configurationγ′4 from which p4 stops to
read the communication variables of one neighborpj with
j ∈ {3,5} and where the communication state ofp4 is α4.

Consider the following two cases:

- pj = p5. (As in the configuration (b) in Figure 1).
Consider a new network of seven processes:p′1, . . . ,
p′7. Assume the following initial configurationγ: Any
processp′i with i ∈ {1, 2, 3} has the same state aspi
in γ′3, p′4 has the state ofp4 in γ′4, p′5 has the state of
p3 in γ′4, p′6 has the state ofp2 in γ′4, andp′7 has the
state ofp1 in γ′4. (This configuration corresponds to the
configuration (c) of Figure 1.) We can then remark that
p′3 is in the same situation thatp3 in the configuration
γ′3, so p′3 does not read the communication variables
of p′4. Similarly, p′4 does not read the communication
variables of p′3. Moreover, no process modifies the
content of its communication variable, otherwise they
can do the same inγ′3 or γ′4 and this contradicts the
fact thatγ′3 and γ′4 are silent. Hence,γ is silent and,
as p′3 and p′4 have the same communication state in
γ as p3 in γ3 and p4 in γ4, γ violates P . Thus,
any computation starting fromγ never converges to a
configuration satisfyingP , i.e., protocolA is not self-
stabilizing forP , a contradiction.

- pj = p3. This case is similar to the previous one: By
constructing a configuration such as the configuration
(d) in Figure 1, we also obtain a contradiction.

Figure 2. Generalization for ∆ = 3

The previous proof can be generalizated fork = ∆ − 1
and∆ > 2 using a graph of∆2 + 1 nodes where there is a
node of degree∆ (the role of this node is the same as node
p3 in the casek = ∆ − 1 and∆ = 2) that is linked to∆
nodes of degree∆. Each of these last∆ nodes being linked
to ∆− 1 pendent nodes. Figure 2 depicts the generalization
for ∆ = 3.

Definition 8 (Dag-orientation) Let S.p be the set of possi-
ble states of processp. We say that a system isdag-oriented
iff for every processp, there exists a functionfp : S.p 7→
2Γ.p and a subsetSucc.p ⊆ Γ.p such that:

- ∀αp ∈ S.p, fp(αp) = Succ.p, and
- The directed subgraphG′ = (Π,E′) where E′ =
{(p, q), p ∈ Π ∧ q ∈ Succ.p} is a dag.2

The next theorem shows that even assuming arooted and/
or dag-orientednetwork, it is impossible to designk-stable
neighbor-completeprotocols fork < ∆. The theorem can
be proven using a constructive argument similar to the one
used in the proof of Theorem 1.

Theorem 2 Let k < ∆. There is nok-stable(even proba-
bilistic) neighbor-completeprotocol in any arbitrary rooted
and dag-oriented network.

5. Protocols

We now illustrate the notions of1-efficiency and
♦-(x, 1)-stability in self-stabilization with two protocols for
the maximal independent setand themaximal matching,
respectively. These two protocols are designed for colored
network of arbitrary topology. By colored we mean that
every processp has a constantC.p such that for every
neighborq, C.p 6= C.q. We also assume that the colors are
ordered following the relation≺. We prove the correctness
and study the stabilization time of the two protocols. Finally,
we exhibit lower bounds on the number of processes that are
eventually “1-stable”.

5.1. Maximal Independent Set

We first consider themaximal independent set(MIS)
problem. An independent setof the network is a subset of
processes such that no two distinct processes of this set are
neighbors. An independent setS is saidmaximalif no proper
superset ofS is an independent set.

In the maximal independent setproblem, each processp
computes a local Boolean functioninMIS.p that decides
if p is in the maximal independent set. TheMIS predicate
is true if and only if the subset{q ∈ Π, inMIS.q} is
a maximal independent set of the network. In any self-
stabilizing MIS protocol, the legitimate configurations are
those satisfying theMIS predicate.

We propose in Figure 3 a1-efficientprotocol calledMIS
that stabilizes to theMIS predicate. MIS works in arbitrary
networks assuming local coloring on processes. Using such
colors is very usefull mainly because of the following
theorem:

Theorem 3 Let E′ be the set of oriented edges such that
(p, q) ∈ E′ if and only if p and q are neighborsandC.p ≺
C.q. The oriented graphG′ = (Π, E′) is a directed acyclic
graph (dag).

2. Directed Acyclic Graph

Proof: Assume, by the contradiction, that there is a
cyclep0 . . . pk in G′. Then, there is an oriented edge(pk, p0)
which means that: (1)p0 and pk are neighbors and (2)
C.pk ≺ C.p0. Now, ∀i ∈ [0 . . . k − 1], C.pi ≺ C.pi+1.
So, by transitivity,C.p0 ≺ C.pk and this contradicts (2).

In MIS, any processp maintains the communication
variable S.p that has two possible states:Dominator
or dominated. S.p states if p is in the independent
set (Dominator) or not (dominated). Hence, inMIS,
the function inMIS.p just consists in testing ifS.p =
Dominator. The legitimate configurations ofMIS are
those satisfying:

1. ∀p ∈ Π, (S.p = Dominator) ⇒ (∀q ∈ Γ.p, S.q =
dominated).

2. ∀p ∈ Π, (S.p = dominated) ⇒ (∃q ∈ Γ.p, S.q =
Dominator).

The first condition states that the set ofDominators is an
independent set, while the second condition states that the
independent set is maximal.

We now outline the principles ofMIS. First, we use the
internal variable,cur, to get the communication efficiency: a
processp only reads the communication state of the neighbor
pointed out bycur.p. Then, depending ofS.p, each process
p adopts the following strategy:

- If S.p = Dominator, then p checks one by one (in
a round robin manner) the communication states of
its neighbors until it points out a neighborq that is
also aDominator. In such a case, eitherp or q must
becomedominated to satisfy Condition 1. We then
use the colors to make a deterministic choice between
p and q. Note that in a legitimate configuration, every
Dominator process continues to check its neighbors
all the time.

- If S.p = dominated, thenp must have the guarantee
that one of its neighbor is aDominator. Hence,p
switchesS.p from dominated to Dominator if the
neighbor it points out withcur.p is not aDominator
(i.e., S.(cur.p) = dominated). Also, to have a faster
convergence time,p switchesS.p from dominated to
Dominator if the neighbor it points out withcur.p has
a greater color (even if it is aDominator).

We now show the correctness ofMIS (Theorem
4). We then show in Theorem 5 thatMIS is
♦-(⌊Lmax+1

2 ⌋, 1)-stablewhereLmax is the length (number
of edges) of the longest elementary path in the network.

We show thatMIS stabilizes to theMIS predicatein
two steps: (1) We first show that any silent configuration
of MIS satisfies theMIS predicate. (2) We then show
that MIS reaches a silent configuration starting from any
configuration inO(∆♯C) rounds where♯C is the number of
colors used in the network.

Communication Variable:
S.p ∈ {Dominator,dominated}

Communication Constant:
C.p: color

Internal Variable:
cur.p ∈ [1 . . . δ.p]

Actions:
(S.(cur.p) = Dominator ∧ C.(cur.p) ≺ C.p ∧ S.p = Dominator) → S.p← dominated
[(S.(cur.p) = dominated ∨ C.p ≺ C.(cur.p)) ∧ (S.p = dominated)] → S.p← Dominator; cur.p← (cur.p mod δ.p) + 1
(S.p = Dominator) → cur.p← (cur.p mod δ.p) + 1

Figure 3. Protocol MIS for any process p

Lemma 1 Any silent configuration ofMIS satisfies the
MIS predicate.

Proof: The silent configurations ofMIS are those
from which all theS variables are fixed. So, in such a
configurationγ, anyDominator has no neighbor that is also
a Dominator, otherwise at least one of theDominator
process eventually becomes adominated process follow-
ing the first action of the protocol. Hence, the set of
Dominator processes inγ is an independent set. Moreover,
any dominated process has aDominator as neighbor in
γ. Actually the neighbor pointed out by thecur-pointer is
a Dominator. Hence the independent set inγ is maximal.

Let CSET = {C.p, p ∈ Π}, ♯C = |CSET |, and ∀c ∈
CSET , Rank(c) = |{c′ ∈ CSET, c′ ≺ c}|.

Lemma 2 Starting from any configuration, any computation
of MIS reaches a silent configuration in at most∆ × ♯C
rounds.

Proof: This lemma can be deduced by proving the
following induction: ∀p ∈ Π, Rank(C.p) = i, the variable
S.p is fixed after at most∆× (i+ 1) rounds.

By Lemmas 1 and 2, follows:

Theorem 4 MIS is a 1-efficient protocol that stabilizes to
the MIS predicatein any colored network.

The following theorem shows a lower bound on the number
of processes that are eventually “1-stable”.

Theorem 5 MIS is ♦-(⌊Lmax+1
2 ⌋, 1)-stable whereLmax

is the length (number of edges) of the longest elementary
path in the network.

Proof: Let Lmax be the length (number of edges) of
the longest elementary path in the network. Once stabilized,
at most⌈Lmax+1

2 ⌉ processes in this path areDominators,
otherwise at least twoDominators are neighbors and
the system is not stabilized. As a consequense, at least
⌊Lmax+1

2 ⌋ processes aredominated in a silent configuration
andMIS is ♦-(⌊Lmax+1

2 ⌋, 1)-stable.

5.2. Maximal Matching

We now consider themaximal matchingproblem. A
matching of the network is a subset of edges in which no
pair of edges has a common incident process. A matching
M is maximalif no proper superset ofM is also a matching.

In maximal matching problem, each processp computes
δ.p local Boolean functionsinMM [q].p (one for each neigh-
bor q) that decide if the edge{p, q} is in the maximal match-
ing. Themaximal matching predicateis true if and only if
the subset of edges{{p, q} ∈ E, inMM [q].p∨inMM [p].q}
is amaximal matchingof the network. In any self-stabilizing
maximal matching protocol, the legitimate configurations are
those satisfying themaximal matching predicate.

We propose in Figure 4 a1-efficient protocol called
MAT CHING that stabilizes to themaximal matching
predicate. The proposed protocol works in arbitrary networks
still assuming the (local) coloring on processes.
MAT CHING derives from the protocol in [14], but

with some adaptations to get the1-efficiency. As previously,
each processp has the communication constant colorC.p
and uses the internalcur-pointer to designate the current
neighbor from which it reads the communication variables.

The basic principle of the protocol is to create pairs of
married neighboring processes, the edges linking such pairs
being in the maximal matching. To that goal, every process
p maintains the variablePR.p. Either PR.p points out a
neighbor or is equal to 0. Two neighboring processes are
married if and only if their PR-values point out to each
other. A process that is not married is saidunmarried. The
predicatePRmarried(p) states if the processp is currently
married, or not. Hence, for every processp and everyp’s
neighborq, inMM [q].p ≡ (PRmarried(p) ∧ PR.p = q).
If PR.p = 0, then this means thatp is unmarried and does
not currently try to get married. In this case,p is saidfree.
If PR.p 6= 0, thenp is either married or tries to get married
with the neighbor pointed out byPR.p. Hence, the value
of PR.p is not sufficient to allow all neighbors ofp to
determine its current status (married or unmarried). We use
the Boolean variableM.p to let neighboring processes of
p know if p is married or not. Using these variables, the
protocol is composed of 6 actions (ordered from the highest
to the lowest priority). Using these actions, each processp
applies the following strategies:

- p is only allowed to be (or try to get) married with
the neighbor pointed out bycur.p. So, if PR.p /∈

Communication Variables:
M.p ∈ {true,false}

PR.p ∈ {0 . . . δ.p}

Communication Constant:
C.p: color

Internal Variable:
cur.p ∈ [1 . . . δ.p]

Predicate:
PRmarried(p) ≡ (PR.p = cur.p ∧ PR.(cur.p) = p)

Actions:
(PR.p /∈ {0, cur.p}) → PR.p← cur.p
(M.p 6= PRmarried(p)) → M.p← PRmarried(p)
(PR.p = 0 ∧ PR.(cur.p) = p) → PR.p← cur.p
(PR.p = cur.p ∧ PR.(cur.p) 6= p ∧ (M.(cur.p) ∨ C.(cur.p) ≺ C.p)) → PR.p← 0
(PR.p = 0 ∧ PR.(cur.p) = 0 ∧ C.p ≺ C.(cur.p) ∧ ¬M.(cur.p)) → PR.p← cur.p
(PR.p = 0 ∧ (PR.(cur.p) 6= 0 ∨ C.(cur.p) ≺ C.p ∨M.(cur.p))) → cur.p← (cur.p mod δ.p) + 1

Figure 4. Protocol MAT CHING For any process p

{0, cur.p} then PR.p is set to cur.p. Actually, if
PR.p = q such thatq /∈ {0, cur.p}, thenPR.p = q
since the initial configuration.

- p must inform its neighbors of its current status,i.e.
married or unmarried, usingM.p. To compute the value
of M.p we use the predicatePRmarried(p): if M.p 6=
PRmarried(p), thenM.p is set toPRmarried(p).

- If p is free andp is pointed out by thePR-variable
of a neighborq, this means thatq proposes top to get
married. In this case,p accepts by settingPR.p to q.

- p resetsPR.p to 0 when the neighbor pointed out by
PR.p (i) is married with another process or(ii) has a
lower color thanp (w.r.t., ≺). Condition(i) preventsp
to wait for an already married process. Condition(ii)
is used to break the initial cycles ofPR-values.

- If p is free, then it must try to get married. The two last
rules achieve this goal.p tries to find a neighbor that
is free and having a higher color than itself (to prevent
cycle creation). So,p incrementscur.p until finding an
neighbor that matches this condition. In this latter case,
p setsPR.p to cur.p in order to propose a marriage.

We now show the correctness ofMAT CHING (Theorem
6). We then show in Theorem 7 thatMAT CHING is
♦-(⌈ 2m

2∆−1⌉, 1)-stable.

Lemma 3 In any silent configuration ofMAT CHING,
every process is eitherfree or married.

Proof: Assume, by the contradiction, that there is
a silent configuration ofMAT CHING where there is
a processp0 that is neitherfree nor married. Then, by
definition,PR.p0 = p1 such thatp1 6= 0 (p0 is not free) and
PR.p1 6= p0 (p0 is unmarried). Also, cur.p0 = p1 otherwise
p0 is enabled to setPR.p0 to cur.p0, this contradicts the
facts that the configuration is silent. Similarly, the fact that
p0 is unmarried implies thatM.p0 = false.

As PR.p1 6= p0 andcur.p0 = p1, we haveM.p1 = false
and C.p0 ≺ C.p1 otherwisep0 is enabled to setPR.p0
to 0 and the configuration is not silent, a contradiction. In
addition,M.p1 = false implies thatp1 is unmarried. Also,
p1 cannot befreeotherwisep1 eventually modifyPR.p1 (in

the worst case,p1 incrementscur.p1 until cur.p1 = p0 and
then setsPR.p1 to p0). To sum up,p1 is a neighbor ofp0
such thatC.p0 ≺ C.p1 and that is neitherfree nor married.

Repeating the same argument forp1 as we just did forp0,
it follows that p1 has a neighborp2 such thatC.p1 ≺ C.p2
and that is neitherfree nor married, and so on.

However, the sequence of processesp0, p1, p2. . . cannot
be extended indefinitely since each process must have a
lower color than its preceding one. Hence, this contradicts
the initial assumption.

Lemma 4 Any silent configuration ofMAT CHING sat-
isfies themaximal matching predicate.

Proof: We show this lemma in two steps:(i) First we
show that, in a silent configuration, the setA of edges{p, q}
such that(PRmarried(p)∧ PR.p = q) is a matching.(ii)
Then, we show that this matching is a maximal.

The next lemma can be trivially deduce from the fact that if
a processp initially satisfiesPR.p /∈ {0, cur.p}, then it sets
PR.p to cur.p during the first round using the first action
of the protocol.

Lemma 5 After the first round, every processp satisfies
PR.p ∈ {0, cur.p} forever.

Lemma 6 Let A ∈ Π be a maximal connected subset of
unmarriedprocesses in some configuration after the first
round. If |A| ≥ 2, then after at most2∆ + 2 rounds the
size ofA decreases by at least 2.

Proof: Let S be the suffix of the computation that starts
after the end of the first round. LetΓ(A) be the set of process
p such thatp /∈ A andp has a neighborq ∈ A.

First the size ofA cannot increase because oncemarried,
a process remainsmarried forever. Assume now, by the
contradiction, thatA does not decrease of at least 2 during
2∆+ 2 rounds inS. This implies that no two process ofA
get married during this period.

Let S′ be the prefix ofS containing2∆ + 2 rounds. We
show the contradiction using the following four steps:

1. After one round inS′, every processp satisfies:(p ∈
Γ(A) ⇒ M.p) ∧ (p ∈ A ⇒ ¬M.p).

2. After two rounds inS′, for every processp, if PR.p 6=
0, thenPR.p 6= 0 holds until the end ofS′.

3. After ∆+2 rounds inS′, for every processp in A, we
have either (1)PR.p = q, q ∈ A or (2) PR.p = 0 and
every neighborq ∈ A satisfiesPR.q ∈ A.

4. In at most2∆ + 2 rounds, at least two neighboring
processes inA get married, which contradicts the initial
assumption.

Lemma 7 Starting from any configuration, any computation
of MAT CHING reaches a silent configuration in at most
(∆ + 1)n+ 2 rounds.

Proof: First, the number ofmarried processes cannot
decrease. Then, after the first round and until there is a
maximal matching in the system, the number ofmarried
processes increases by at least 2 every2∆ + 2 rounds
by Lemma 6. Hence, there is a maximal matching into
the networks after at most(∆ + 1)n + 1 rounds. Once
maximal matching is available in the network, one more
round is necessary so that everymarried processp satisfies
M.p = true and every ummarried processp satisfies
PR.p = 0. Hence, starting from any initial configuration, the
system reaches a silent configuration in at most(∆+1)n+2
rounds.

By Lemmas 4 and 7, follows:

Theorem 6 MAT CHING is a 1-efficient protocol that
stabilizes to themaximal matching predicatein any locally-
identified network.

The following theorem shows a lower bound on the number
of processes that are eventually “1-stable”.

Theorem 7 MAT CHING is ♦-(2⌈ m
2∆−1⌉, 1)-stable.

Proof: From [15], we know that any maximal matching
in a graph has a size at least⌈ m

2∆−1⌉ edges. So, as a process
belongs to at most one matched edge, we can conclude that
at least2⌈ m

2∆−1⌉ processes are eventually matched. As a
consequence,MAT CHING is ♦-(2⌈ m

2∆−1⌉, 1)-stable.

6. Concluding Remarks

We focused on improving communication efficiency of
self-stabilizing protocols that eventually reach a globalfixed
point, and devised how much gain can be expected when
implementing those protocols in a realistic model. Our
results demonstrate the task difficulty, as most systematic
improvements are impossible to get, yet also shows that

some global improvement can be achieved over the least-
overhead solutions known so far, the so-calledlocal checking
self-stabilizing protocols.

While we demonstrated the effectiveness of our scheme
to reduce communication need on several local checking
examples, the possibility of designing an efficient gen-
eral transformer for protocols matching the local checking
paradigm remains an open question. This transformer would
allow to easily get more efficient communication in the
stabilized phase or in absence of faults, but the effectiveness
of the transformed protocol in the stabilizing phase is yet to
be known.

References

[1] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed
control.” Commun. ACM, vol. 17, no. 11, pp. 643–644, 1974.

[2] S. Dolev,Self-stabilization. MIT Press, March 2000.

[3] S. Katz and K. J. Perry, “Self-stabilizing extensions for
message-passing systems.”Distributed Computing, vol. 7,
no. 1, pp. 17–26, 1993.

[4] J. Beauquier, S. Delaët, S. Dolev, and S. Tixeuil,
“Transient fault detectors,”Distributed Computing, vol. 20,
no. 1, pp. 39–51, June 2007. [Online]. Available: http:
//www.springerlink.com/content/m267v22224127575/

[5] B. Awerbuch, B. Patt-Shamir, and G. Varghese, “Self-
stabilization by local checking and correction (extended ab-
stract),” in FOCS. IEEE, 1991, pp. 268–277.

[6] B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev,
“Self-stabilization by local checking and global reset (ex-
tended abstract).” inDistributed Algorithms, 8th International
Workshop, WDAG ’94, ser. Lecture Notes in Computer Sci-
ence, G. Tel and P. M. B. Vitányi, Eds., vol. 857. Springer,
1994, pp. 326–339.

[7] S. Dolev, M. G. Gouda, and M. Schneider, “Memory require-
ments for silent stabilization,”Acta Inf., vol. 36, no. 6, pp.
447–462, 1999.

[8] M. Larrea, A. Ferńandez, and S. Arévalo, “Optimal imple-
mentation of the weakest failure detector for solving consen-
sus.” in SRDS, 2000, pp. 52–59.

[9] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg, “On implementing omega with weak reliability and
synchrony assumptions,” inPODC, 2003, pp. 306–314.

[10] M. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg,
“Communication-efficient leader election and consensus with
limited link synchrony.” inPODC, 2004, pp. 328–337.

[11] C. Delporte-Gallet, S. Devismes, and H. Fauconnier, “Robust
stabilizing leader election,” inSSS, ser. Lecture Notes in
Computer Science, T. Masuzawa and S. Tixeuil, Eds., vol.
4838. Springer, 2007, pp. 219–233.

[12] S. Dolev, A. Israeli, and S. Moran, “Resource bounds for
self-stabilizing message-driven protocols,”SIAM J. Comput.,
vol. 26, no. 1, pp. 273–290, 1997.

[13] A. Israeli and M. Jalfon, “Token management schemes and
random walks yield self-stabilizing mutual exclusion.” inPro-
ceedings of the Ninth Annual ACM Symposium on Principles
of Distributed Computing, 1990, pp. 119–131.

[14] F. Manne, M. Mjelde, L. Pilard, and S. Tixeuil, “A new self-
stabilizing maximal matching algorithm,” inProceedings of
the 14th International Colloquium on Structural Information
and Communication Complexity (Sirocco 2007), vol. 4474.
Springer Verlag, June 2007, pp. 96–108. [Online]. Available:
http://www.springerlink.com/content/u723x36620p80066/

[15] T. C. Biedl, E. D. Demaine, C. A. Duncan, R. Fleischer, and
S. G. Kobourov, “Tight bounds on maximal and maximum
matchings,”Discrete Mathematics, vol. 285, no. 1-3, pp. 7–
15, 2004.

