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1 Problem

Given a network of processes G, where each process has a fixed input bit ,
Input(x), the disjunction problem is for each process to compute Output =∨

x∈G Input(x), the disjunction of all input bits in the network.
A distributed solution to the disjunction problem is a distributed algorithm

which computes an output bit for each process, such that all output bits are
equal to Output. The solution given in this paper, the distributed algorithm
DISJ, correctly solves the disjunction problem if the network is connected. DISJ
is self-stabilizing [1,2], meaning that a correct output configuration is reached in
finite time after arbitrary initialization, and is silent, meaning that eventually the
computation of DISJ will halt. DISJ works under the unfair scheduler (daemon).
DISJ is uniform, meaning that every process has the same program, and is
anonymous, meaning that processes are not required to have distinguished IDs.
The round complexity of DISJ is O(n), where n is the size of the network. We
use the composite model of computation [2]. We are not aware of any closely
related work in the literature. Although we use some of the same techniques
in this paper that are used for leader election, the disjunction problem in an
anonymous network cannot be solved by using a leader election algorithm, nor
by using an algorithm to construct a spanning tree. In fact, there is no distributed
algorithm which elects a leader or which constructs a spanning tree for general
anonymous networks.

2 DISJ

Our algorithm, DISJ, solves the disjunction problem in an anonymous connected
network, G. The fundamental idea of DISJ is to build a local BFS tree rooted at
every process whose input bit is 1. Each process will join the tree rooted at the
nearest process with input bit 1; ties will be broken arbitrarily. The construction
of the BFS trees is by flooding.

The main difficulty with this method is the possibility that, in the initial
configuration (which is arbitrary) there could be “fictitious” BFS trees. It is
necessary to delete all such fictitious trees. This is an easy task if Output = 1,
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but is difficult if Output = 0, where there is a danger that the algorithm will
never eliminate all fictitious trees. Fictitious trees continually delete themselves
from the root end; our problem is to ensure that the tree does not grow as fast
at the leaf end as it deletes itself from the root end.

The method we use to ensure deletion of fictitious trees is derived from the
color wave method of [3]. Each process in a tree, whether true or fictitious, has
a color , either 0 or 1. A process can only recruit a new process to the tree if
its color is 1, and the recruited process will initially have color 0. Colors change
in pipelined convergecast waves. These rules guarantee that fictitious trees will
lose processes from the root end approximately twice as fast as they recruit new
leaves.

In our algorithm, colors change in convergecast waves which cannot pass each
other. Each wave is behind its predecessor by some positive amount. In order
for a wave to reach the root of a tree, all preceding waves must be absorbed by
the root. Only a process whose input bit is 1 can absorb waves. A fictitious tree
will not be rooted at a process with input bit 1, and thus color waves will not be
absorbed. “Color lock,” the situation where the waves are maximally crowded
and cannot move up, will eventually stop the growth of any fictitious tree.

We are able to prove, using fairly straightforward methods, that DISJ con-
verges in O(d) rounds if Output = 1, where d is the diameter of the network.
On the other hand, DISJ requires O(n) rounds to delete all fictitious trees if
Output = 0. The worst case round complexity for DISJ is thus O(n).

We use the concept of energy introduced in [3] to prove that DISJ is self-
stabilizing and has time complexity O(n). Energy(x) is a positive integer for
each process x whose output bit is 1. If Output = 0, Energy(x) ≤ 2n for all x,
and the maximum value of Energy decreases by at least 1 during every round,
and must eventually reach zero. At that point, every process has output bit 0.

In the case that Output = 1, all BFS trees will be in their final form within
O(d) rounds, where d is the diameter of the network. All color waves will then
stop within O(d) additional rounds, after which DISJ will be silent.

In DISJ, each process x has the following variables.
x.out , Boolean, the output bit of x. When DISJ converges, all values of x.out

are equal to Output. During execution of DISJ, each process has output bit 1 if
and only if it is currently a member of a tree.

x.level , which is either a non-negative integer or ∞. If Outpt = 1, x.level
converges to the distance from x to the nearest process whose input bit is 1. If
Output = 0, x.level = ∞ for all x after convergence.

x.parent ∈ N(x)∪{⊥}, the parent of x in its BFS tree, where N(x) is the set
of neighbors of x. If Input(x) = 1 or Output = 0, then x.parent = ⊥ when DISJ
converges.

x.color ∈ {0, 1}, the color of x.
x.done , Boolean, used to indicate that DISJ is finished and the color waves

should stop.



48 A.K. Datta et al.

DISJ has five actions, as follows.

Reset: A process which detects that it is an erroneous state, or needs to decrease
its level, executes this action, setting x.out to 0 and x.parent to ⊥, becoming a
free process.

Initialize: A free process whose output bit is zero becomes the root of a new
BFS tree.

Join: A free process x whose output bit and input bits are both 0, but which
has a neighbor whose output bit is 1, joins a BFS tree by linking to a neighbor.

Change Color: A process x which is a member of a BFS tree changes color,
from 0 to 1 or from 1 to 0. In order to change color, all children of x (in its BFS
tree) must have color opposite to x, while either the color of x.parent equals
x.color , or x is the root of a BFS tree. When a root changes color, a color wave
is deleted, as we explain below.

Finish: In the case that Output = 1, the network eventually consists of the
disjoint union of one or more BFS trees, one rooted at each process whose input
bit is 1. In order for DISJ to be silent, we must freeze the color waves. This
action enables a convergecast finishing wave to move up each BFS tree; when
that wave reaches the root, that root will no longer execute the change color
action. Eventually, DISJ will halt.

Normal Growth. A true tree grows by processes executing the Join action.
Only a process of color 1 can recruit a neighbor, and the new recruit is given
the color 0. That new recruit may wait two rounds before it can recruit new
processes itself. If there are no fictitious trees, color waves move up the tree, and
the new recruit will eventually be enabled to be the recruiter.

Fictitious Trees. A fictitious tree recruits as a true tree, but the color waves
are unable to move up indefinitely; thus its growth eventually stops. After a
fictitious tree becomes “color locked,” it deletes itself by repeated execution of
the Reset action. Within O(n) rounds, there will be no more fictitious trees;
within O(d) additional rounds, a legitimate configuration will be reached.

References

1. Dijkstra, E.: Self stabilizing systems in spite of distributed control. Communications
of the Association of Computing Machinery 17, 643–644 (1974)

2. Dolev, S.: Self-Stabilization. The MIT Press (2000)
3. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in optimal

space under an arbitrary scheduler. Theoretical Computer Science 412(40), 5541–
5561 (2011)


	Brief Announcement: Self-stabilizing Silent Disjunction in an Anonymous Network
	Problem
	DISJ
	References




