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Abstract

In the committee coordination problem, a committee consists of a set of professors and committee meetings are
synchronized, so that each professor participates in at most one committee meeting at a time. In this paper, we
propose two snap-stabilizing distributed algorithms for the committee coordination. Snap-stabilization is a versatile
property which requires a distributed algorithm to efficiently tolerate transient faults. Indeed, after a finite number of
such faults, a snap-stabilizing algorithm immediately operates correctly, without any external intervention. We design
snap-stabilizing committee coordination algorithms enriched with some desirable properties related to concurrency,
(weak) fairness, and a stronger synchronization mechanism called 2-Phase Discussion. In our setting, all processes
are identical and each process has a unique identifier. The existing work in the literature has shown that (1) in general,
fairness cannot be achieved in committee coordination, and (2) it becomes feasible if each professor waits for meetings
infinitely often. Nevertheless, we show that even under this latter assumption, it is impossible to implement a fair
solution that allows maximal concurrency. Hence, we propose two orthogonal snap-stabilizing algorithms, each
satisfying 2-phase discussion, and either maximal concurrency or fairness. The algorithm that implements fairness
requires that every professor waits for meetings infinitely often. Moreover, for this algorithm, we introduce and
evaluate a new efficiency criterion called the degree of fair concurrency. This criterion shows that even if it does not
satisfy maximal concurrency, our snap-stabilizing fair algorithm still allows a high level of concurrency.

Keywords: Distributed algorithms, snap-stabilization, self-stabilization, committee coordination.

1 Introduction
Distributed systems are often constructed based on an asynchrony assumption. This assumption is quite realistic,
given the principle that distributed systems must be conveniently expandable in terms of size and geographical scale.
It is, nonetheless, inevitable that processes running across a distributed system often need to synchronize for various
reasons, such as exclusive access to a shared resource, termination, agreement, rendezvous, etc. Implementing syn-
chronization in an asynchronous distributed system has always been a challenge, because of obvious complexity and
significant cost; if synchronization is handled in a centralized fashion using traditional shared-memory constructs such
as barriers, it may turn into a major bottleneck, and, if it is handled in a fully distributed manner, it may introduce
significant communication overhead, unfair behavior, and be vulnerable to numerous types of faults.

The classic committee coordination problem [2] characterizes a general type of synchronization called n-ary ren-
dezvous as follows:

“Professors in a certain university have organized themselves into committees. Each committee has an
unchanging membership roster of one or more professors. From time to time a professor may decide
to attend a committee meeting; he starts waiting and remains waiting until a meeting of a committee of
which he is a member is started. All meetings terminate in finite time. The restrictions on convening a
meeting are as follows: (1) meeting of a committee may be started only if all members of that committee
are waiting, and (2) no two committees can meet simultaneously, if they have a common member. The
problem is to ensure that (3) if all members of a committee are waiting, then a meeting involving some
member of this committee is convened.”

*A preliminary version of this paper has been published in IPDPS’2011 [1].
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In the context of a distributed system, professors and committees can be mapped onto processes and synchronization
events (e.g., rendezvous) respectively. Moreover, the three properties identified in this definition are known as (1)
Synchronization, (2) Exclusion, and (3) Progress, respectively.

Most of the existing algorithms that solve the committee coordination problem [2, 3, 4, 5, 6, 7] overlook properties
that are vital in practice. Examples include satisfying fairness or reaching maximum concurrency among convened
committees and/or professors in a meeting. Moreover, to our knowledge, none of the existing algorithms is resilient
to the occurrence of faults. These features are significantly important when a committee coordination algorithm is
implemented to ensure distributed mutual exclusion in code generation frameworks, such as process algebras, e.g.,
CSP, Ada, and BIP [8].

With this motivation, in this paper, we propose snap-stabilizing [9, 10] distributed algorithms for the committee
coordination problem, where all processes are identical and each process has a unique identifier. Snap-stabilization is
a versatile property which requires a distributed algorithm to efficiently tolerate transient faults. Indeed, after a finite
number of such faults (e.g., memory corruptions, message losses, etc.), a snap-stabilizing algorithm immediately op-
erates correctly, without any external (e.g., human) intervention. A snap-stabilizing algorithm is also a self-stabilizing
[11] algorithm that stabilizes in 0 steps. In other words, our algorithms are optimal in terms of stabilization time, i.e.,
every meeting convened after the last fault satisfies every requirement of the committee coordination. By contrast,
an algorithm that would be only self (but not snap) stabilizing only recovers a correct behavior in finite time after
the occurrence of the last fault. Nevertheless, to the best of our knowledge, the committee coordination problem was
never addressed in the area of self-stabilization. Therefore, the algorithms proposed in this paper are also the first
self-stabilizing committee coordination protocols.

Our snap-stabilizing committee coordination algorithms are enriched with other desirable properties. These prop-
erties include Professor Fairness, Maximal Concurrency, and 2-Phase Discussion. The former property means that
every professor which requests to participate in a committee meeting that he is a member of, eventually does. Roughly
speaking, the second of the aforementioned properties consists in allowing as many committees as possible to meet
simultaneously. The latter (2-Phase Discussion) requires professors to collaborate for a minimum amount of time
before leaving a meeting.

We first consider Maximal Concurrency and Professor Fairness. As in [7], to circumvent the impossibility of
satisfying fairness [5], each time we consider professor fairness in the sequel of the paper, we assume that every
professor waits for a meeting infinitely often. Under this assumption, we show that Maximal Concurrency and Professor
Fairness are two mutually exclusive properties, i.e., it is impossible to design a committee coordination algorithm (even
non-stabilizing) that satisfies both features simultaneously.

Consequently, we focus on the aforementioned contradictory properties independently by providing the two snap-
stabilizing algorithms. The former maximizes concurrency at the cost of not ensuring professor fairness. On the
contrary, the second algorithm maintains professor fairness, but maximal concurrency cannot be guaranteed. Both
algorithms are based on the straightforward idea that coordination of the various meetings must be driven by a priority
mechanism that helps each professor to know whether or not he can participate in a meeting. Such a mechanism can
be implemented using a token circulating among the professors. To ensure fairness, when a professor holds a token, he
has the higher priority to convene a meeting. He then retains the token until he joined the meeting. In that case, some
neighbors of the token holder can be prevented from participating in other meetings so that the token holder eventually
does. This results in decreasing the level of concurrency. In order to guarantee maximal concurrency (but at the risk
of being unfair), a waiting professor must release the token if he is not yet able to convene a meeting to give a chance
to other committees in which all members are already waiting.

Thus, in the first algorithm, we show the implementability of committee coordination with Maximal Concurrency
even if professors are not required to wait for meetings infinitely often. To the best of our knowledge this is the first
committee coordination algorithm that implements maximal concurrency. Moreover, the algorithm is snap-stabilizing
and satisfies 2-Phase Discussion.

We also propose a snap-stabilizing algorithm that satisfies Fairness on professors (respectively, committees) and
respects 2-Phase Discussion. As mentioned earlier, this algorithm assumes that every professor waits for a meeting
infinitely often. Following our impossibility result, the algorithm does not satisfy Maximal Concurrency. However, we
show that it still allows a high level of concurrency. We analyze this level of concurrency according to a newly defined
criterion called the degree of fair concurrency. We also study the waiting time of our algorithm.
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(a) Hypergraph H = (V, E),
where V = {1, 2, 3, 4, 5, 6} and
E = {{1, 2}, {1, 2, 3, 4}, {2, 4, 5},
{3, 6}, {4, 6}}.
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(b) Graph GH = (V,EE), where EE =
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {2,
5}, {3, 4}, {3, 6}, {4, 5}, {4, 6}}

Figure 1: An example of a hypergraph and its underlying communication network.

Organization The rest of the paper is organized as follows. In Section 2, we present the preliminary concepts.
Section 3 is dedicated to definitions of Maximal Concurrency and Fairness in committee coordination. Then, in Section
4, we propose our first snap-stabilizing algorithm that satisfies both Maximal Concurrency and 2-phase Discussion. In
Section 5, we present our snap-stabilizing algorithm that satisfies Fairness and 2-phase Discussion. Our analysis on
level of concurrency and waiting time is also presented in this section. Related work is discussed in Section 6. Finally,
we present concluding remarks and discuss future work in Section 7.

2 Background

2.1 Distributed Systems as Hypergraphs
Considering the committee coordination problem in the context of distributed systems, professors and committees are
mapped onto processes and synchronization events (e.g., rendezvous) respectively. We assume that each process has a
unique identifier and the set of all identifiers is a total order. We simply denote the identifier of a process p by p.

For the sake of simplicity, we assume that each committee has at least two members.1 Hence, we model a dis-
tributed system as a simple self-loopless hypergraph H = (V, E) where V is a finite set of vertices representing
processes and E is a finite set of hyperedges representing synchronization events, such that for all ε ∈ E , we have
ε ∈ 2V , i.e., each hyperedge is formed by a subset of vertices.

Let v be a vertex in V and ε be a hyperedge in E . We denote by v ∈ ε the fact that vertex v is incident to hyperedge
ε. We denote the set of hyperedges incident to vertex v by Ev . We say that two distinct vertices u and v are neighbors
if and only if u and v are incident to some hyperedge ε; i.e., there exists ε ∈ E , such that u, v ∈ ε. The set of all
neighbors of v is denoted by N(v).

In the committee coordination problem, professors in the same committee need to communicate with each other.
We assume that two processes can directly communicate with each other if and only if they are neighbors. This induces
what we call an underlying communication network defined as follows: the underlying communication network of a
distributed systemH = (V, E) is an undirected simple connected graph GH = (V,EE), where EE = {{p1, p2} | p1 ∈
V ∧ p2 ∈ V ∧ p1 ∈ N(p2)}. Figure 1(b) shows the underlying communication network of the hypergraph given in
Figure 1(a).

1Adapting our results to take singleton committees into account is straightforward.
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2.2 Computational Model
The communication between processes are carried out using locally shared variables. Each process owns a set of
locally shared variables, henceforth referred to as variables. Each variable ranges over a fixed domain and the process
can read and write them. Moreover, a process can also read variables of its neighbors.2 The state of a process is defined
by the value of its variables. A process can change its state by executing its local algorithm. The local algorithm of a
process p is described using a finite ordered list of guarded actions of the form:

〈label〉 :: 〈guard〉 7→ 〈statement〉.

The label of an action is only used to identify the action in discussions and proofs. The guard of an action of p is a
Boolean expression involving a subset of variables of p and its neighbors. The statement of an action of p updates a
subset of variables of p. The order of the list follows the order of appearance of the actions in the code of the local
algorithm and give priorities to actions: action A has higher priority than action B if and only if A appears after B in
the code.

A configuration γ in a distributed system is an instance of the state of its processes. We denote the set of all
configurations of a distributed system H by ΓH. The concurrent execution of the set of all local algorithms defines a
distributed algorithm. We say that an action of a process p is enabled in a configuration γ if and only if its guard is
true in γ. By extension, process p is said to be enabled in γ if and only if at least one of its actions is enabled in γ. An
action can be executed only if its guard is enabled. We denote by Enabled(γ) the subset of processes that are enabled
in configuration γ.

When the configuration is γ and Enabled(γ) 6= ∅, a daemon (or scheduler) selects a non-empty set X ⊆
Enabled(γ); then every process of X atomically executes its priority enabled action, leading to a new configura-
tion γ′, and so on. The transition from γ to γ′ is called a step (of A). The possible steps induce a binary relation over
configurations of A, denoted by 7→.

A computation of a distributed system is a maximal sequence of configurations γ0, γ1, . . . such that (1) γ0 is an
arbitrary configuration, and (2) for each configuration γi, with i ≥ 0, γi 7→ γi+1. Maximality of a computation means
that the computation is either infinite or eventually reaches a terminal configuration (i.e., a configuration where no
action is enabled).

A daemon is defined as a predicate over computations. There exist several kinds of daemons. Here, we consider
a distributed weakly fair daemon. Distributed means that, at each step, if one or more processes are enabled, then the
daemon selects at least one (maybe more) of these processes. Weak fairness means that every continuously enabled
process is eventually selected by the daemon.

We say that a process p is neutralized in γi 7→ γi+1, if p is enabled in γi and not enabled in γi+1, but did not execute
any action in γi 7→ γi+1. To compute the time complexity, we use the notion of round [12]. This notion captures the
execution rate of the slowest process in any computation. The first round of a computation e is the minimal prefix of
e, γ0 . . . γi, containing the activation or the neutralization of every process that is enabled in the initial configuration.
Let eγi be the suffix of e starting from γi (the last configuration of the first round of e). The second round of e is the
first round of eγi , and so on.

The fair composition [13] of two algorithms P1 and P2 consists in running P1 and P2 in alternation in such a way
that there is no computation suffix, where a process is continuously enabled w.r.t. Pi (i ∈ {1, 2}) without executing
any of its enabled actions w.r.t. Pi.

2.3 The Committee Coordination Problem
The original committee coordination problem is as follows [2]. LetH = (V, E) be a distributed system. Each process
in V represents a professor and each hyperedge in E represents a committee. We say that two committees ε1 and ε2
are conflicting if and only if ε1 ∩ ε2 6= ∅. A professor can be in anyone of the following three states: (1) idle, (2)
waiting, and (3) meeting. A professor may remain in the idle state for an arbitrary (even infinite) period of time. An
idle professor may start waiting for a committee meeting. A professor remains waiting until all participating professors
of a committee, which he is a member of, agree on meeting. Moreover, a professor may leave a meeting, become idle,
and subsequently be waiting for a new committee meeting.

2In particular, a process can read the identifiers of its neighbors.
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Chandy, Misra [2], and Bagrodia [4] require that any solution to the problem must satisfy the following specifica-
tion:

• (Exclusion) No two conflicting committees may meet simultaneously.

• (Synchronization) A committee meeting may convene only if all members of that committee are waiting.

• (Progress) If all members of a committee ε are waiting, then some professor in ε eventually goes to the meeting
state.

2.4 2-Phase Discussion
The original Committee Coordination problem specification does not constrain professors with respect to their time
spent in a committee meeting in any ways. Thus, distributed algorithms for committee coordination have been devel-
oped regardless this issue. For instance, solutions proposed in [2, 4] that employ the dining philosophers problem [14]
in order to resolve committee conflicts satisfy the specification presented in Subsection 2.3, but have the following
shortcoming. Since a philosopher acquires and releases forks all at once, members of the corresponding committee
have to leave the meeting all together.3 There are two problems with such a restriction: (1) an implicit strong synchro-
nization is assumed on terminating a committee meeting, and (2) fast professors have to wait for slow professors to
finish the task for which they setup a rendezvous.

We constrain the specification such that upon agreement on a meeting, the meeting takes place until a professor
unilaterally leaves (that is, without waiting for other professors) the meeting. The reason for this requirement is due
to the fact that in practical settings, based upon the speed of processes (professors), the type of local computation,
and required resources, each process may spend a different time period to utilize resources or execute a critical sec-
tion. Nevertheless, we also require that each professor must spend a minimum amount of time to discuss issues in
the meeting. The intuition for this constraint is that processes participate in a rendezvous to share resources or do
some minimal computation and, hence, they should not be allowed to leave the meeting immediately after it convenes.
Another reason for requiring this minimal discussion by all professors is inspired by the fact that in the recent applica-
tions of using rendezvous interactions to generate correct distributed and multi-core code, such interactions normally
involve data transmission and even code execution at interaction level [15, 16]. The following definition elegantly
captures this requirement.

Definition 1 (2-Phase Discussion) We define the 2-phase discussion by the following two properties:

• Phase 1. (Essential Discussion) Upon a meeting convenes, a first session of discussion should take place
until each participating professor has the opportunity to execute a task involving information from all or part of
the participants.

• Phase 2. (Voluntary Discussion) Upon a meeting convenes and after fulfilling the essential discussion, the
discussion (and consequently the meeting) continues until a professor voluntarily terminates his/her discussion
(and consequently the meeting).

In the following, we call 2-phase committee coordination problem the committee coordination problem enriched
with the essential and voluntary discussions.

2.5 Snap-stabilization
Snap-stabilization [9, 10] is a versatile property which requires a distributed algorithm to efficiently tolerate tran-
sient faults. Indeed, after a finite number of such faults (e.g., memory corruptions), a snap-stabilizing algorithm
immediately operates correctly, without any external (e.g. human) intervention. By contrast, the related concept of
self-stabilization [11] only guarantees that the system eventually recovers to a correct behavior.

3The same argument holds for solutions based on the drinking philosophers [14] and tokens.
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In (self- or snap-) stabilizing systems, we consider the system immediately after the occurrence of the last fault.
That is, we study the system starting from an arbitrary configuration reached due to the occurrence of transient faults,
but from which no fault will ever occur. By abuse of language, this configuration is referred to as initial configuration
of the system in the literature. A snap-stabilizing algorithm then guarantees that starting from any arbitrary initial
configuration, any of its computations always satisfies the specification of the problem.

This means, in particular, that in (self- or snap-) stabilizing systems there is no fault model in the literal sense. As
we study the system after the last fault, we do not treat the faults but their consequences. The result of a finite number
of transient faults being the arbitrary perturbation of the system configuration, we consider any computation started
in any arbitrary initialized configuration, but in which there is no fault. So, for example, to show that our algorithms
are snap-stabilizing w.r.t the committee coordination problem, we have to show that the specification of the committee
coordination problem (e.g., exclusion, progress, synchronization, etc) is always satisfied in all possible (fault-free)
computations starting from all possible (arbitrary) configurations.

It is important to note that snap-stabilizing algorithms are not insensitive to transient faults. Actually, a snap-
stabilizing algorithm guarantees that any task execution started after the end of the faults operates correctly. However,
there is no guarantees for tasks executed completely or in part during faults. By contrast, self- but not snap- stabilizing
algorithms require to start task execution several times (yet a finite number of time) before correctly performing them
(that is, w.r.t. their specification). Hence, snap-stabilization is a specialization of self-stabilization that offers stronger
safety guarantees. For example, in the committee coordination problem, snap-stabilization ensures that every meeting
convened after the last transient faults satisfies every requirement of the committee coordination problem. However,
there is no guarantees for the meetings started during the transient faults, except that they do not interfere with the
execution of the meetings that convened after the last fault.

3 Maximal Concurrency versus Fairness in Committee Coordination

3.1 Definitions
In practical applications, it is crucial to allow as many processes as possible to execute simultaneously without vi-
olating other correctness constraints. Although the level of concurrency has significant impact on performance and
resource utilization, it does not appear as a constraint in the original committee coordination problem. Moreover, the
solutions proposed by Chandy and Misra [2] and Bagrodia [3, 4] result in decreasing the level of concurrency drasti-
cally, making them less appealing for practical purposes. Examples include the circulating token mechanism among
conflicting committees [3], and reduction to the dining philosophers problems, where a “manager” handles multiple
committees. Reduction to the drinking philosophers problem such as those in [2, 4, 17] results in more concurrency,
but not maximal. This is due to the fact that existing solutions to the drinking philosophers problem try to achieve
concurrency and fairness simultaneously, which we will show is impossible in committee coordination.

We formulate the issue of concurrency, so that as many committees as possible meet simultaneously. Our defi-
nition of maximal concurrency is inspired by the efficiency property given in [18]. Informally, we define maximal
concurrency as follows: if there is at least one committee, such that all its members are waiting, then eventually a
new meeting convenes even if no other meeting terminates in the meantime. In other words, while it is possible, new
meetings should be able to convene, regardless the duration of meetings that already hold. Now, to formally define
maximal concurrency we need, in particular, to express the constraint “regardless of the duration of meetings that
already hold”. For that purpose, we borrow the ideas of Datta et al [18] by using the following artefact: we let a
professor (process) remains in the meeting state forever. We emphasize that we make this assumption only to define
our constraint; our results in this paper do assume finite-time meetings as mentioned earlier.

Definition 2 (Maximal Concurrency) Assume that there is a set of professors P1 that are all in infinite-time meetings.
Let P2 be a set of professors waiting to enter a committee meeting (Obviously, P1 ∩ P2 = ∅ and idle processes are in
neither P1 nor P2). Let Π be the set of hyperedges having all their incident professors in P2. If Π 6= ∅, then a meeting
between every professor incident to some hyperedge ε ∈ Π eventually convenes.

We note that in Definition 2, we use the term “maximal”, because our intention is not to enforce the largest number
of committees (i.e., maximum) to meet simultaneously, this latter problem is clearly NP-hard! In other words,
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Figure 2: Impossibility of Maximal Concurrency and Professor Fairness.

committees convene until the systems is exhausted. This greedy approach does not always result in obtaining the
maximum number of committees that can meet at the same time.

Following the results in [5], if a professor’s status does not become waiting infinitely often, achieving fairness is
impossible. Thus, we consider fairness assuming professors always eventually switch to the waiting status. In this
context, we define fairness on professors (also called weak fairness, [6]) as follows.

Definition 3 (Professor Fairness) Every professor participates infinitely often in a committee meeting that he is a
member of.

3.2 Negative Result
The next theorem shows that Maximal Concurrency and Professor Fairness are incompatible. Its proof follows ideas
similar to the impossibility results of Joung [19] as well as Tsay and Bagrodia [5].

The idea behind this result is rather simple: Consider any process p. To satisfy professor fairness, a meeting having
p as member must eventually convene. To have such a guarantee, the algorithm may eventually have to prevent some
neighbors of p from participating in meetings until a meeting including them and p can convene. These blockings may
happen while no meeting including p can be yet convened. This constraint then prevents some meetings from holding
concurrently. That is, making maximal concurrency impossible.

Theorem 1 Assuming that every professor waits for meetings infinitely often, it is impossible to design an algorithm
(even non-stabilizing) for an arbitrary distributed system that solves the committee coordination problem and simul-
taneously satisfies Maximal Concurrency and Professor Fairness.

Proof. Suppose by contradiction that there exists an algorithmA (be it stabilizing or not) working in any topology that
satisfies both Maximal Concurrency and Professor Fairness. Now, consider a computation of A on hypergraph H =
(V, E) where V = {1, 2, 3, 4, 5} and E = {{1, 2}, {1, 3, 5}, {3, 4}}). Figure 2 shows three possible configurations
A, B, and C obtained by executing algorithm A on H. In the figure, solid bold lines represent meetings that are
currently being held. Also, a process that is not in a meeting is supposed to be waiting. For example, in configuration
A, professors 1 and 2 are meeting and professors 3, 4, and 5 are waiting.

We first show that there are computations of A that eventually reach configuration A. As professors 1 and 2 wait
for meetings infinitely often, by Professor Fairness, a meeting between professors 1 and 2 eventually convenes. When
this happens, if professors 3 and 4 are meeting, then their meeting can terminate before the one between 1 and 2. So,
the system may reach a configuration where only 1 and 2 are meeting. After that, assuming that professors 3, 4, and 5
immediately go to the waiting state, then the system reaches configuration A.

From configuration A, if the committee {1, 2} takes an arbitrary long (but finite) time, then a meeting of the com-
mittee {3, 4} must eventually convene in order to satisfy Maximal Concurrency and the system reaches configuration
B. Now, suppose meeting {1, 2} terminates first and professors 1 and 2 immediately go to waiting state again. So,
1, 2, and 5 are waiting and 3 and 4 are in a meeting (configuration C). Following a similar reasoning, configuration
B can be reached from configuration C, and configuration A can be reached from configuration B. By repeating
this pattern infinitely many times, we obtain a possible computation of A, where professor 5 never participates in any
meeting while being continuously waiting, which contradicts with Professor Fairness. �
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Note that Maximal Concurrency and Professor Fairness can be simultaneously achieved in some particular net-
works, e.g., networks where no committees are in conflict, or networks where some professor belongs to all commit-
tees (e.g., a complete hypergraph, or a star topology). In the latter case, note that all committees are conflicting and so
at most one can meet at a time.

We note that every algorithm that satisfies Professor Fairness also satisfies Progress. Also, observe that Professor
Fairness does not imply that particular committees eventually convene. We define such a property as follows.

Definition 4 (Committee Fairness) Every committee meeting convenes infinitely often.

Notice that since Committee Fairness implies Professor Fairness, impossibility of satisfying both Maximal Con-
currency and Committee Fairness trivially follows.

Corollary 1 Assuming that every professor waits for meetings infinitely often, it is impossible to design an algo-
rithm (even non-stabilizing) for an arbitrary distributed system that solves the committee coordination problem and
simultaneously satisfies Maximal Concurrency and Committee Fairness.

Theorem 1 shows that Professor Fairness and Maximal Concurrency are contradictory properties to satisfy. Thus,
in order to satisfy one property, we have to omit the other. Omitting fairness results in an algorithm such as the one
presented in Section 4. Omitting maximal concurrency results in an algorithm such as the one presented in Section 5.

Note that both algorithms use a single token circulation that ensures the progress in the former case and the fairness
in the latter. As a matter of fact, they mainly differ in the way they handle the token. Concerning the second algorithm,
one can suggest that the use of several tokens (e.g., the local mutual exclusion mechanism in [20]) instead of a single
one would enhance the fairness guarantee. However, increasing the number of tokens results in decreasing the degree
of (fair) concurrency,4 which is the target metric here. The key idea is that the token is used to give priority to convene
a meeting. However, the token is not mandatory to join a meeting, unless a process is starved to join a meeting. Then,
to guarantee fairness, it is mandatory that the token holder selects a committee and sticks with that committee until it
meets, even if some members of that committee are currently participating in another meeting. In this case, every other
waiting member of that committee has to wait until the meeting convenes while they may participate in a meeting of
another committee. This results in decreasing the degree of concurrency (that is why our second algorithm does not
satisfy Maximal Concurrency): every waiting member of the committee selected by the token holder is blocked until
the committee is able to convene. Hence, increasing the number of tokens increases the number of blocked processes
which in turn decreases the degree of concurrency. In other word, enforcing the fairness decreases concurrency.

3.3 Complexity Analysis of Fair Solutions
We now introduce and study two complexity measures: degree of fair concurrency and waiting time. First, in order
to characterize the impact of fairness on reducing the number of processes that can run concurrently, we introduce the
notion of Degree of Fair Concurrency. Roughly speaking, this degree is the minimum number of committees that can
meet concurrently without compromising Professor Fairness.

Definition 5 (Degree of Fair Concurrency) Let A be a committee coordination algorithm that satisfies Professor
Fairness. Let professors remain in a meeting for infinite time.5 Under such an assumption the system reaches a
quiescent state where the status of all professors do not change any more. The Degree of Fair Concurrency ofA is then
the minimum number of meetings held in a quiescent state.

When considering fair solutions, it is of practical interest to evaluate the Waiting Time. In our context where
processes are either waiting or meeting, we define waiting time as follows:

Definition 6 (Waiting Time) The maximum time before a process participates in a committee meeting is waiting time.
4The term “degree of fair concurrency” is formally explained in Subsection 3.3
5As in Definition 2, infinite meetings are used only for formalization.
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4 Snap-stabilizing 2-Phase Committee Coordination with Maximal Concur-
rency

In this section, we propose a Snap-stabilizing algorithm that satisfies Maximal Concurrency as well as the 2-Phase
Discussion. We present our algorithm in Subsection 4.1. The correctness proof appears in Subsection 4.2.

4.1 Algorithm
Our algorithm is a composition of two modules: (1) a Snap-stabilizing algorithm – denoted CC1 – that ensures Ex-
clusion, Synchronization, Maximal Concurrency, and 2-Phase Discussion, and (2) a self-stabilizing module – denoted
T C – that manages a circulating token for ensuring Progress. Each process p runs this algorithm, where the inten-
tion of p in participating or leaving a committee are declared by truthfulness of input predicates RequestIn(p) and
RequestOut(p), respectively.

Remark 1 We emphasize that this composition is snap-stabilizing, as the self-stabilizing token circulation is not used
to ensure any safety property.

Token Circulation Module. We assume that the token circulation module is a black box with the following property:

Property 1

• T C contains one action to pass the token from neighbor to neighbor:

T :: Token(p) 7→ ReleaseTokenp

• Once stabilized, every process executes action T infinitely often, but when T is enabled in a process, it is not
enabled in any other process.

• T C stabilizes independently of the activations of action T .

To obtain such a token circulation, one can compose a self-stabilizing leader election algorithm (e.g., in [21, 22, 23])
with one of the self-stabilizing token circulation algorithms in [24, 25, 26, 27] for arbitrary rooted networks. The
composition only consists of two algorithms running concurrently with the following rule: if a process decides that it
is the leader, it executes the root code of the token circulation. Otherwise, it executes the code of the non-root process.

Composition. The composition of CC1 and T C is denoted by CC1 ◦ T C. Actually, CC1 ◦ T C is a fair composition
of CC1 and T C that does not explicitly contain action T : in CC1 ◦ T C, action T is emulated by CC1, where predicate
Token(p) and the statement ReleaseTokenp are given as inputs in CC1.

Committee Coordination Module Algorithm CC1 is identical for all processes in the distributed system. Its code is
given in Algorithm 1. Interactions between each professor p and his local algorithm are managed using two input pred-
icates: RequestIn(p) and RequestOut(p). These predicates express the fact that a professor autonomously decides to
wait and leave a meeting, respectively. The predicate RequestIn(p) holds when professor p requests participation in
a committee meeting. The predicate RequestOut(p) holds when p desires to stop discussing in a meeting. Thus, p
eventually satisfies RequestOut(p) during the meeting or after some members left it. So, once p has done its essential
discussion, it can voluntary leave the meeting when it satisfies RequestOut(p).

Each process p maintains a status variable Sp ∈ {idle, looking,waiting, done}, a Boolean variable Tp, and an edge
pointer Pp. We explain the goal of these variables below:

1. When process p is idle (that is Sp = idle) but desires to participate in a committee meeting (that is, if RequestIn(p)
is true), it changes its status from idle to looking and initializes its edge pointer Pp to ⊥ (action Step1).
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Algorithm 1 Pseudo-code of CC1 for process p.
Inputs:
RequestIn(p) : Predicate: input from the system indicating desire for participating in a committee
RequestOut(p) : Predicate: input from the system indicating desire for leaving a committee
Token(p) : Predicate: input from T C indicating process p owns the token
ReleaseToken(p) : Statement: output to T C indicating process p releases the token

Constants:
Ep : Set of hyperedges incident to process p

Variables:
Sp ∈ {idle, looking,waiting, done} : Status
Pp ∈ Ep ∪ {⊥} : Edge pointer
Tp : Boolean

Macros:
FreeEdgesp = {ε ∈ Ep | ∀q ∈ ε : Sq = looking}
FreeNodesp = {q | ∃ε ∈ FreeEdgesp : q ∈ ε}
TFreeNodesp = {q ∈ FreeNodesp | Tq}
Candsp = if (TFreeNodesp 6= ∅) then TFreeNodesp else FreeNodesp fi

Predicates:
Ready(p) ≡ ∃ε ∈ Ep : ∀q ∈ ε : ((Pq = ε) ∧ (Sq ∈ {looking,waiting}))
LocalMax(p) ≡ p = max(Candsp)
MaxToFreeEdge(p) ≡ (FreeEdgesp 6= ∅) ∧ LocalMax(p) ∧ ¬Ready(p) ∧ (Pp /∈ FreeEdgesp)
JoinLocalMax(p) ≡ (FreeEdgesp 6= ∅) ∧ ¬LocalMax(p) ∧ ¬Ready(p) ∧

(∃ε ∈ FreeEdgesp : (Pmax(Candsp) = ε ∧ Pp 6= ε))

Meeting(p) ≡ ∃ε ∈ Ep : ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {waiting, done})
LeaveMeeting(p) ≡ ∃ε ∈ Ep : ((Pp = ε) ∧ (∀q ∈ ε : ((Pq = ε) ⇒ (Sq = done))))
Useless(p) ≡ Token(p) ∧ [(Sp = idle) ∨ (Sp = looking ∧ FreeEdgesp = ∅)]
Correct(p) ≡ [(Sp = idle) ⇒ (Pp =⊥)] ∧

[(Sp = waiting) ⇒ Ready(p) ∨ Meeting(p)] ∧
[(Sp = done) ⇒ Meeting(p) ∨ LeaveMeeting(p)]

Actions:
Step1 :: RequestIn(p) ∧ (Sp = idle) 7→ Sp := looking;Pp :=⊥;

Step21 :: MaxToFreeEdge(p) 7→ Pp := ε, such that ε ∈ FreeEdgesp;
Step22 :: JoinLocalMax(p) 7→ Pp := ε, such that (ε ∈ Ep ∧ ε = Pmax(Candsp));

Token1 :: Token(p) 6= Tp 7→ Tp := Token(p);
Token2 :: Useless(p) 7→ ReleaseToken(p);Tp := false;

Step31 :: Ready(p) ∧ (Sp = looking) 7→ Sp := waiting;
Step32 :: Meeting(p) ∧ (Sp = waiting) 7→ 〈EssentialDiscussion〉;Sp := done;

Step4 :: LeaveMeeting(p) ∧ RequestOut(p) 7→ Sp := idle;Pp :=⊥; if Token(p) then ReleaseToken(p) fi; Tp := false;

Stab1 :: ¬Correct(p) ∧ (Sp = idle) 7→ Pp :=⊥;
Stab2 :: ¬Correct(p) ∧ (Sp 6= idle) 7→ Sp := looking;Pp :=⊥;
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2. Next, process p starts looking for an available committee to join. Process p shows interest in joining a com-
mittee whose processes are all looking by setting its edge pointer Pp to the corresponding hyperedge, if such a
hyperedge exists (actions Step21 and Step22).

To obtain agreement on the committees to convene, we implement token-based priorities. When a looking
process p is the one with highest priority in its neighborhood, it points to an edge corresponding to a committee
whose processes are all looking (if any) and sticks with it. Looking processes with low priorities select the
committee chosen by their looking neighbor of highest priority, described next.

Each process p maintains a Boolean variable Tp which shows whether or not it owns a token. A token holder
has a higher priority than its neighbors to convene a committee. In case of several token holders (only during
the stabilization of token circulation), we give priority to the looking token holder with the maximum identifier.

A token holder releases its token in two cases: (1) when it leaves a meeting or (2) when it is currently not
guaranteed to eventually convene a committee (that is, in each of its incident committees, at least one member
is not looking). Note that the algorithm does not guarantee fairness because of this latter case.

In order to guarantee Maximal Concurrency, we have to authorize committees to meet when all members are
looking and if there is no looking token holder in the neighborhood. In this case, among the looking processes we
give priority to the looking process with the maximum identifier.

3. Once all processes of a hyperedge are looking and agree on that hyperedge, they are all ready to start their
discussion. To this end, a process changes its status from looking to waiting6 to show that it is waiting for the
committee to convene (action Step31). A meeting of the committee convenes when all its members change their
status to waiting. Then, each process executes its essential discussion and then switches its status to done (action
Step32).

4. Finally, a process is allowed to leave the committee meeting when all processes of that committee have fulfilled
their essential discussion, i.e., they are all in the done status. In this case, the meeting takes place until a process p
unilaterally decides to leave it (that is, until RequestOut(p) is true) after a finite period of voluntary discussion.
To leave the committee meeting, it switches its status to idle again, resets its hyperedge pointer, and releases
the token if it owns it (action Step4). Then, the committee meeting is terminated, and every other member q
switches to idle since it satisfies RequestOut(q).

The rest of actions of the algorithm deal with token circulation and snap-stabilization. In particular, action Token1

deals with setting variable Tp to true , so that neighboring processes realize that p owns the token. If p owns the
token and has no desire to take part in a committee meeting, or, there does not exist an available committee for p to
participate, then it releases the token (action Token2). Finally, actions Stab1 and Stab2 correct the state of a process,
if faults perturb the state of the process to a state where predicate Correct does not hold. Predicate Correct holds at
states where (1) the process is idle and it has no interest in participating in a committee meeting, (2) it is waiting and
interested in a committee whose processes are gathering to convene a meeting, and (3) it has fulfilled its essential
discussion and other processes in the corresponding committee are either in {waiting, done} status, or, the meeting is
terminated, that is some processes have left the meeting and the others are done in the meeting.

Example In this paragraph, we illustrate the need of the token to ensure progress. Figure 3 provides an example of
computation that starts from a configuration where each professor state is correct. In the figure, each circle represents
a professor and arrows inside the circle represent the P -pointers (if a circle contains no arrow, this means that the
corresponding professor p satisfies Pp =⊥). Numbers represent identifiers. The status of the professors is given below
the circles. The token holder is represented by a bold circle. A boxed “T” near a circle means that the corresponding
professor p satisfies Tp = true.

In this example, professors in the committee {5, 6} desire to participate in a meeting. So, at least one of them
should eventually does, according to the progress property. Because they have low identifiers, we can prevent them
from convening a meeting until at least one of them get the token.

6Note that both looking and waiting status form the waiting state of the original problem specification [2].
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Figure 3: Example

In 3(a), two meetings are almost done: {9, 10} and {1, 2, 3}, that is, all involved professors are doing their vol-
untary discussion. Notice that Professor 1 holds the token and T1 = true. Professor 4 is currently not interesting in
convening any meeting. All other professors are looking for convening a meeting and point to their highest priority
all-looking committee. Now, Professors 7 and 8 are agreeing to convene a meeting: they are both enabled to switch to
the waiting status.

In Step 3(a) 7→3(b), all members of meetings {1, 2, 3} and {9, 10} simultaneously leave the meeting by executing
Step4. Moreover, Professor 8 switches to the waiting status by executing Step31. Note in particular that Professor 1
releases the token and resets T1 to false. Professor 2 is now the token holder. Since his status is idle, he is enabled to
release the token. Professor 2 will release the token without setting T2 to true in the meantime.

In Step 3(b)7→3(c), Professor 7 switches to status waiting. So, the meeting {7, 8} convenes. In the meantime, both
Professors 9 and 10 start again to look for a meeting by executing Step1. Moreover, Professor 2 releases the token. So,
in configuration 3(c), Professor 3 is the token holder and Professor 6 should look for another meeting. For Professor 6,
the committee of highest priority is {6, 9}. Similarly, Professor 9 (resp. Professor 10) considers {9, 10} as the one of
highest priority.

In Step 3(c)7→3(d), Professor 3 releases the token, Professors 7 and 8 perform their essential discussion (Step32),
Professors 10 (Step21) and 9 (Step22) agree to convene a meeting, and Professor 6 points to Committee {6, 9}. Note
that Professor 4 is the token holder in configuration 3(d), but he has no interest in convening any meeting so his action
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Token2 is enabled.
In Step 3(d)7→3(e), Professor 4 releases the token, Professors 8 and 9 leave their meeting (Step4), and Professor 10

switches to the waiting status by executing Step31. In configuration 3(e), Professor 6 is the token holder, consequently
he has highest priority. However, meeting {8, 9} is ready to convene, so Professor 9, in particular, will not change his
pointer P9.

In Step 3(e)7→3(f), Professor 9 switches to status waiting, so the meeting of Committee {9, 10} convenes. In the
meantime, Professors 8 and 9 start again to look for a meeting by executing Step1. Finally, Professor 6 executes
T6 ← true (Token1) to inform all its neighbors that he is the token holder. In configuration 3(f), Professors 5, 6, 7,
and 8 are all looking for a meeting like in configuration 3(a), but this time Committee {6, 7} has the highest priority.

In Step 3(f)7→3(g), Professors 9 and 10 perform their essential discussion (Step32) and Professors 6 (Step21) and 7
(Step22) agree to convene a meeting (Professor 8 also executes Step22).

In Step 3(g) 7→3(h), the meeting of Committee {9, 10} ends because Professors 9 and 10 simultaneously leave it,
and a meeting of Committee {6, 7} convenes because Processors 6 and 7 both execute Step31.

In Step 3(h) 7→3(i), Professors 6 and 7 perform their essential discussion (Step32). Moreover, Professors 10 and 9
start again to look for a meeting by executing Step1.

4.2 Correctness of Algorithm CC1 ◦ T C
We recall that in the following proofs, we assume that computations of CC1 ◦ T C start from arbitrary configurations.
First, we define the terminology used in the proofs.

We map the state of a professor defined in Section 2.3 to the status of a process defined in Algorithm 1 as follows.
We say that a process p is idle if and only if Sp = idle. A process p is waiting if and only if Sp ∈ {looking,waiting}. If
p is waiting and Pp = ε, where ε ∈ Ep, then we say that p attends the committee ε. A committee ε meets, if and only
if for every process p ∈ ε, we have Pp = ε and Sp ∈ {waiting, done}. When a committee ε meets, every process p ∈ ε
is participating in ε. Let γ0γ1 . . . be a computation. We say that a committee meeting ε convenes in γi, where i > 0,
if and only if ε does not meet in γi−1, but it meets in γi. For all i > 0, we say that a committee meeting ε terminates
in γi, if and only if ε meets in γi−1, but does not meets in γi. If a committee meeting ε terminates in γi, where i > 0,
then there exists a process p, such that (i) (Pp = ε ∧ Sp = done) in γi−1, and (ii) (Pp =⊥ ∧ Sp = idle) in γi. In
this case, we say that p leaves the committee meeting ε on transition γi−1 7→ γi.

For every process p, we assume the existence of two predicates: RequestIn(p) and RequestOut(p). The predicate
RequestIn(p) holds when p (or an application at p) requests the participation of p in a committee meeting. When
a committee involving p meets or p is still involved in a meeting that is terminated (in this latter case the predicate
LeaveMeeting(p) holds), the predicate RequestOut(p) eventually holds, meaning that p wants to voluntarily stop
discussing. Once RequestOut(p) is true , it remains true until p becomes idle. Note also that, when necessary, we
materialize the assumption on infinite meetings by assuming that, for all processes p:

• If p satisfies Sp = done but ¬Meeting(p) holds, then the predicate RequestOut(p) eventually holds. Indeed, in
this case, the meeting involving p is already terminated.

• However, if p is involved in a meeting, then the meeting never ends. Consequently, Meeting(p)⇒¬RequestOut(p)
forever.

Remark 2 Guards of actions Step1,Step21,Step22,Step31,Step32, and Step4 are mutually exclusive at each pro-
fessor.

Lemma 1 Every computation of CC1 ◦ T C satisfies Exclusion.

Proof. Let ε and ε′ be two conflicting committees, i.e., ε ∩ ε′ 6= ∅. Let p be a process in ε ∩ ε′. By definition, if ε
(respectively, ε′) meets, then Pp = ε (respectively, Pp = ε′). Hence, ε and ε′ cannot meet simultaneously. �

Lemma 2 When committee meeting ε convenes, every process p ∈ ε satisfies (Pp = ε ∧ Sp = waiting).
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Proof. Consider a committee ε that convenes in γi. By definition, the committee ε meets in γi, but not in γi−1.
Moreover, for every p ∈ ε, we have (Pp = ε ∧ Sp ∈ {waiting, done}) in γi. Also, there must exist a process q in
committee ε, such that Sq ∈ {idle, looking} or Pq 6= ε in γi−1. We now prove the lemma by contradiction. Assume
that there exists process r ∈ ε, such that Sr = done in γi. Then, either (1) Sr = done in γi−1, or (2) r executes action
Step32 on transition γi−1 7→ γi. In case (1), during γi−1 → γi, process q cannot set (Sq ,Pq) to:

• (waiting,ε), because of the state of r; or

• (done,ε), because otherwise Sq = waiting and Pq = ε in γi−1.

In case (2), ε already meets in γi−1 (see Predicate Meeting(r)), which is a contradiction. Thus, for every p ∈ ε, we
have (Pp = ε ∧ Sp = waiting) in γi and, hence, the lemma holds. �

Corollary 2 Every computation of CC1 ◦ T C satisfies Synchronization.

Lemma 3 For every process p, if Correct(p) holds, then Correct(p) continues to hold forever.

Proof. We prove this lemma by showing that if a process p satisfies Correct(p) in some configuration γ, then p
satisfies Correct(p) in configuration γ′ where γ 7→ γ′ is a transition.

According to the definition of Correct , we distinguish the following four cases in γ:

(a) Sp = idle ∧ Pp =⊥. Obviously, if p does not modify Sp or Pp in the next step, then Correct(p) holds in the
next configuration step as well. Now, the only action modifying Sp and/or Pp that may be enabled in p is Step1.
If p executes action Step1, then Pp := looking and Correct(p) still holds in γ′.

(b) Sp = looking. Obviously, if p does not modify Sp in the next step, then Correct(p) holds in the next con-
figuration step as well. Now, suppose that p modifies Sp on transition γ 7→ γ′. In this case, p has to execute
Step31. Consequently, in γ we have Pp = ε, where ε ∈ Ep, and, ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {looking,waiting}).
Now, in this case, every process q ∈ ε satisfies Ready(q) and ¬Meeting(q). So, no process q ∈ ε can modify
Pq on transition γ 7→ γ′. Moreover, every process q ∈ ε can only execute Step31 to modify Sq on transition
γ 7→ γ′. Thus, in configuration γ′, the predicate ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {looking,waiting}) still holds and, as
a consequence, Correct(p) holds as well.

(c) Sp = waiting ∧ Pp = ε, where ε ∈ Ep. In this case, Correct(p) implies the following possible subcases in γ:

(1) ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {looking,waiting}) ∧ ∃r ∈ ε : Sr = looking. In this subcase, every process
q ∈ ε satisfies Ready(q) and ¬Meeting(q). So, no process q ∈ ε can modify Pq on transition γ 7→ γ′.
Moreover, every process q ∈ ε can only execute Step31 to modify Sq on transition γ 7→ γ′. Thus, the
predicate (∀q ∈ ε : (Pq = ε ∧ Sq ∈ {looking,waiting}) holds in γ′ and, as a consequence, Correct(p)
holds in γ′ as well.

(2) ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {waiting, done}). In this subcase, because of the state of p, every process q ∈ ε
satisfies Meeting(q) and ¬LeaveMeeting(q). So, no process q ∈ ε can modify Pq on transition γ 7→ γ′.
Moreover, every process q ∈ ε can only execute Step32 to modify Sq on transition γ 7→ γ′. Thus, the
predicate (∀q ∈ ε : (Pq = ε ∧ Sq ∈ {waiting, done} still holds in γ′ and, as a consequence, Correct(p)
holds as well.

(d) Sp = done ∧ Pp = ε, where ε ∈ Ep. In this case, Correct(p) implies the following possible subcases in γ:

(1) ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {waiting, done}) ∧ ∃r ∈ ε : Sr = waiting). This subcase has been already
considered in case (c).(2), so Correct(p) holds in γ′.

(2) ∀q ∈ ε : (Pq = ε ⇒ Sq = done). In this case, no process q that satisfies Pq 6= ε can execute Pq := ε,
because ε /∈ FreeEdgesq . Also, a process q that satisfies Pq = ε in γ (e.g., p) can only modify Pq and/or Sq
by executing action Step4 on transition γ 7→ γ′. In this case, Sq := idle and Pq :=⊥. As a consequence,
in γ′ either Sp := idle and Pp :=⊥, or Pp = ε∧∀q ∈ ε : (Pq = ε⇒ Sq = done). Thus, Correct(p) holds
in γ′ as well.
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Since in all possible cases, Correct(p) is preserved by the algorithm’s actions, the lemma holds. �

It is straightforward to see that a process that satisfies ¬Correct is enabled for either action Stab1 or action Stab2
(the priority actions). Moreover, since the daemon is weakly fair, Lemma 3 implies the following corollary:

Corollary 3 After at most one round, every process p satisfies Correct(p) forever.

Lemma 4 After committee ε convenes, the predicate (∀p ∈ ε : (Pp = ε ∧ Sp = done)) eventually holds.

Proof. Consider a configuration γ where every process p ∈ ε satisfies (Pp = ε ∧ Sp ∈ {waiting, done}), and, there
exists a process q ∈ ε, such that (Pq = ε ∧ Sq = waiting). Then, every process p ∈ ε satisfies Correct(p) in γ and, by
Lemma 3, (*) actions Stab1 and Stab2 are disabled forever at every p ∈ ε from γ. Now, in configuration γ, a process
p ∈ ε, where Sp = done, cannot modify Pp or Sp. Moreover, in γ, a process q ∈ ε, where (Pq = ε ∧ Sq = waiting)
cannot modify Pq and can only set Sq to done by executing action Step32, which is continuously enabled. Since we
assume a weakly fair daemon, q eventually executes action Step32 by (*) and Remark 2. Hence, the lemma holds. �

Corollary 4 Every computation of CC1 ◦ T C satisfies the Essential Discussion.

Proof. The proof is trivial by Lemmas 2, 4, and action Step32. �

Lemma 5 Every computation of CC1 ◦ T C satisfies the Voluntary Discussion.

Proof. Let a committee ε convene in configuration γi. By Lemmas 2, every process p ∈ ε satisfies Correct(p) in
γi and, by Lemma 3, (*) actions Stab1 and Stab2 are disabled forever at every p ∈ ε. By Corollary 4, every process
of committee ε eventually executes its essential discussion. Thus, following Lemmas 2 and 4, the system reaches a
configuration γj (j > i), where every process p ∈ ε satisfies (Pp = ε ∧ Sp = done). In such a configuration, a
process p in ε can update its Pp and/or Sp only if it satisfies the predicate RequestOut(p). Now, by hypothesis it will
happen, and in this case, Step4 will be the priority enabled action at p (by (*)) meaning that it voluntarily decides
to leave the meeting. Moreover, by definition, since a process eventually satisfies RequestOut continuously and the
daemon is weakly fair, the meeting eventually terminates due to execution of action Step4 by some process. Therefore,
the lemma holds. �

Observe that in the algorithm, a process that does not satisfy Correct can only execute either action Stab1 or action
Stab2. Thus:

Remark 3 If a process p is waiting and satisfies¬Correct(p), it remains waiting (at least) until it satisfies Correct(p).

Lemma 6 Every computation of CC1 ◦ T C satisfies Progress.

Proof. We prove this lemma by contradiction. Suppose there exists a computation c of CC1◦T C that does not satisfy
Progress.

Let E∞γ be the subset of E such that ∀ε ∈ E , ε ∈ E∞γ if and only if for all processes p ∈ ε, p is waiting in γ, but
will never more participate in a meeting during c. By definition, ∀γi, γj such that γj occurs after γi in c, we have
E∞γi ⊆ E

∞
γj . Moreover, the number of processes being finite, there exist configurations γi in c such that E∞γi = E∞γj , for

every configuration γj that occurs after γi in c.
Let now consider such a configuration, say γ1, and let V∞ be the subset of all processes that are incident to a

hyperedge in E∞γ1 . We distinguish the following two cases in γ1:

(a) There is a process p ∈ V∞ that eventually satisfies Ready(p). This case implies that Pp = ε, where ε ∈ Ep.
By definition of Ready , every process q ∈ ε satisfies (Pq = ε∧Sq ∈ {looking,waiting}), which in turns, implies
Correct(q). So, by Lemma 3, (*) actions Stab1 and Stab2 are disabled forever at every q ∈ ε from γ1.

Now, observe that in configuration γ1 a process p in ε, where Sp = waiting, cannot modify Pp or Sp. Also,
every process q ∈ ε such that (Pq = ε ∧ Sq = looking) cannot modify Pq and can only modify Sq by action
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Step31, which is its priority enabled action in γ1 (by (*) and Remark 2). Hence, as the daemon is weakly fair,
the committee meeting ε eventually convenes, which is a contradiction.

(b) No process p of V∞ eventually satisfies Ready(p). By Remark 3,

(1) Every p of V∞ remains waiting forever.

(Indeed, the only way to lose the waiting status is to switch to the meeting status.)

Observe that by definition, we have

(2) FreeEdgesp 6= ∅.

Again, following Remark 3,

(3) FreeEdgesp is fixed.

By Corollary 3, there exists a configuration γ2 in c after γ1 where:

(4) All processes satisfy Correct forever.

By Property 1, eventually there exists a unique token in the network. If a process in V∞ eventually get the
token, then it never releases it by (1), (2), and (3).

Assume now, by the contradiction, that no process in V∞ eventually gets this token (from γ2). Assume first that
a token holder participates in a meeting. Then it eventually releases the token by Lemma 5. In contrast, if it never
more participates in any meeting, then it has status idle forever, so its action Token2 is continuously enabled. As
the daemon being weakly fair and Token2 is its priority enabled action (by (4)), the process eventually releases
the token. Hence, there exists a configuration γ3 in c after γ2 where:

(5) There exists a unique process ` ∈ V∞ that satisfies Token(`) forever.

(6) Every process p ∈ V \ {`} satisfies ¬Token(p) forever.

Every process p having status idle forever and that never gets the token has action Token1 that is continuously
enabled (its priority enabled action by (4))) if Tp = true. The daemon being weakly fair, eventually satisfies
Tp = false forever. Moreover, by definition every other process q in V \V∞ convenes and terminates meetings
infinitely often, and each time q executes Step4, Tq is reset to false. Hence, from (5), we can deduce that there
exists a configuration γ4 in c after γ3 where:

(7) Every process q in V \ V∞ satisfies ¬Tq forever.

By (4) and the fact that no process in V∞ satisfies Ready , we have (in particular, from γ4):

(8) all processes in V∞ are in looking status.

Consider then a process q in V∞ such that Tq 6= Token(q) (from γ4). Then, q is continuously enabled, by
(5) and (6). So, it is eventually selected by the weakly fair daemon. Now, when selected, its actions Stab1 and
Stab2 are disabled by (4). Moreover, Step31, Step32, and Step4 are also disabled at q, otherwise q will lose its
looking status, a contradiction to (8). So, q necessarily executes Token1 (n.b., Token2 is disabled at q by (2),
(3), and (8)) and there exists a configuration γ5 in c after γ4 where:

(9) ` satisfies T` forever.

(10) Every process q ∈ V \ {`} satisfies ¬Tq forever.
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In particular, (8), (9), and (10) hold for all processes incident to a hyperedge of FreeEdges`. So, LocalMax (`) =
` and LocalMax (r) = `, where r is any process incident to a hyperedge of FreeEdges`. So, if P` /∈ FreeEdges`,
then action Step21 is its priority enabled action (by (4) and Remark 2). ` remains enabled until it executes it.
So, ` eventually does, because the daemon is weakly fair. Hence, eventually P` = ε forever, where ε ∈
FreeEdges`. Then, every process r ∈ ε, such that Pr = ε is disabled forever, because ` never satisfies Ready(`),
by hypothesis. Finally, action Step22 is continuously enabled action at every process s ∈ ε such that Ps 6= ε,
moreover it is their priority enabled action by (4) and Remark 2. Again, because the daemon is weakly fair,
every process s eventually executes it. Hence, eventually ` satisfies Ready(`), which is a contradiction.

�

Lemma 7 Every computation of CC1 ◦ T C satisfies Maximal Concurrency.

Proof. Assume there is a set P1 of processes that are all in infinite-time meetings. Let P2 be a set of processes waiting.
Let Π be the set of hyperedges whose all incident processes are in P2. We now prove the lemma by contradiction.
Suppose that Π 6= ∅ and no meeting between processes incident to an hyperedge in Π eventually convenes. We
distinguish the following two cases:

(a) There exists a process p ∈ P2 that eventually satisfies Ready(p). In this case, using the same reasoning as in
case (a) in the proof of Lemma 6, we obtain a contradiction.

(b) No process in P2 eventually satisfies Ready(p). Let p be a process in P2. In this case, following Remark
3, p must remain waiting forever (the only way to leave the waiting status is to switch to the meeting status).
Observe that by definition, FreeEdgesp 6= ∅. Using the same reasoning as in case (b) of the proof of Lemma 6,
there exists a configuration γ in which:

(1) There exists a process ` that satisfies T` forever.

(2) Every process q ∈ V \ {`} satisfies ¬Tq forever.

(3) Every process in V satisfies Correct forever.

Now, if ` ∈ P2, then using the same reasoning as in case (b) of the proof of Lemma 6, we reach a contradiction.
If ` /∈ P2, then, let pmax be the process of P2 having the greatest identifier. Then using the reasoning similar
to the case (b) in the proof of Lemma 6 (pmax has the same role as ` in the proof of Lemma 6), we reach a
contradiction.

�

Theorem 2 The composition CC1◦T C is a snap-stabilizing algorithm that solves the 2-phase committee coordination
problem and satisfies Maximal Concurrency.

Proof. Given Lemmas 1-7, the proof of the theorem trivially follows. �

5 Snap-Stabilizing 2-Phase Committee Coordination with Fairness
We now consider the 2-phase committee coordination problem in systems where processes are waiting for meetings
infinitely often. In such a setting, an idle process always eventually becomes waiting. Hence, for simplicity (and
without loss of generality), we assume that processes are always requesting when they are not in a meeting. As a
consequence, the predicate RequestIn(p) and the state idle are implicit in the actions of the next algorithm. In Sub-
section 5.1, we present a snap-stabilizing algorithm that guarantees the properties of 2-phase committee coordination
and Professor Fairness. The proof of correctness of the algorithm is presented in Subsection 5.2. Then, in Subsection
5.3, we analyze the complexity of our algorithm. Finally, we discuss Committee Fairness in Subsection 5.4.
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5.1 Algorithm
Our algorithm is the composite algorithm CC2 ◦ T C, where (1) CC2 is a Snap-stabilizing algorithm that ensures
Exclusion, Synchronization, and 2-Phase Discussion, and (2) T C is the same self-stabilizing module that manages
a circulating token as in Section 4. It ensures Fairness, and consequently Progress.

Algorithm CC2 is identical for all processes in the distributed system. Its code is given in Algorithm 2. Similar to
Algorithm CC1, each process p maintains Sp, Pp, and Tp with the same meaning. Also, the token defines priorities to
convene committees. However, to guarantee fairness, in this algorithm, a token is released only when its holder leaves
a meeting.

After receiving a token, a looking process p selects a smallest (in terms of members) incident committee ε (this
constraint is used only to slightly enhance the concurrency) using its edge pointer Pp (Step11). Note that unlike the
previous algorithm, the members of the chosen committee are not necessarily all looking. Then, process p sticks with
committee ε until ε convenes. By assumption, other members of committee ε are eventually looking and, hence, ε is
selected by action Step12.

In order to obtain the best concurrency as possible (recall that maximal concurrency is impossible in this case), a
process that is not in a committee ε must not wait for a process involved in ε. To that goal, we introduce the Boolean
variable L, which shows whether or not a process is locked. A locked process is one that is incident to a hyperedge
that contains a process that (1) owns the token, (2) has set its pointer to that hyperedge, and (3) is looking to start a
committee meeting. The locks are maintained using action Lock . Hence, processes that are not in ε try to convene
committees that do not involve locked processes (Step13 and Step14). As in Algorithm CC1, we use the process
identifiers to define priorities among the looking processes not in ε. The rest of actions of the algorithm are similar to
those of Algorithm CC1.

Figure 4 illustrates the need of the Boolean L. In this configuration, Professor 8 chooses the committee {1, 2, 5, 8}
because Professor 1 has the token. Moreover, this committee cannot meet before the meeting of committee {3, 4, 5}
terminates. Now, to ensure fairness, Professors 1, 2, and 8 should not change their P -pointers so that eventually a
meeting of {1, 2, 5, 8} convenes. Furthermore, to obtain a better concurrency, Committee {6, 7, 9} should be allowed
to meet. Now, for Professor 9, Committee {8, 9} has higher priority than Committee {6, 7, 9}. By definition, all
members of Committee {1, 2, 5, 8} are locked. So, thank to the Boolean L8, Professor 9 realizes that he should not
give priority to {8, 9}. Consequently, he will select {6, 7, 9} by action Step13, improving concurrency.

looking

lookinglooking
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looking
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waiting
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Figure 4: Example of locked professors.

5.2 Correctness of CC2 ◦ T C
We recall that in the following proofs, we assume that computations of CC2 ◦T C start from an arbitrary configuration.
In the proofs below we use some notions and terminology already defined in Subsection 4.2.

Following a similar approach to the one used in Subsection 4.2, we have the following technical results:

Remark 4 Guards of actions Step11,Step12,Step13,Step14,Step2,Step3, and Step4 are mutually exclusive at each
professor.
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Algorithm 2 Pseudo-code of CC2 for process p.
Inputs:
RequestOut(p) : Predicate: input from the system indicating desire for leaving a committee
Token(p) : Predicate: input from T C indicating process p owns the token
ReleaseTokenp : Statement: output to T C indicating process p releases the token

Constant:
Ep : Set of hyperedges incident to p

Variables:
Tp, Lp : Booleans
Pp ∈ Ep ∪ {⊥} : Edge pointer
Sp ∈ {looking,waiting, done} : Status

Macros:
FreeEdgesp = {ε ∈ Ep | ∀q ∈ ε : (Sq = looking ∧ ¬Lq ∧ ¬Tq)}
FreeNodesp = {q | ∃ε ∈ FreeEdgesp : q ∈ ε}
TPointingEdgesp = {ε ∈ Ep | ∃q ∈ ε : (Pq = ε ∧ Tq ∧ Sq = looking)}
TPointingNodesp = {q | ∃ε ∈ TPointingEdgesp : q ∈ ε}
MinSizep = minε∈Ep |ε|
MinEdgesp = {ε ∈ Ep | |ε| = MinSizep}

Predicates:
Locked(p) ≡ TPointingEdgesp 6= ∅
Ready(p) ≡ ∃ε ∈ Ep : ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {looking,waiting})
Meeting(p) ≡ ∃ε ∈ Ep : ∀q ∈ ε : (Pq = ε ∧ Sq ∈ {waiting, done})
LeaveMeeting(p) ≡ ∃ε ∈ Ep : (Pp = ε ∧ Sp = done ∧ (∀q ∈ ε : (Pq = ε ⇒ Sq 6= waiting)))
LocalMax(p) ≡ p = max(FreeNodesp)
MaxToFreeEdge(p) ≡ ¬Token(p) ∧ ¬Locked(p) ∧ FreeEdgesp 6= ∅ ∧ LocalMax(p) ∧ ¬Ready(p) ∧

Pp /∈ FreeEdgesp
JoinLocalMax(p) ≡ ¬Token(p) ∧ ¬Locked(p) ∧ FreeEdgesp 6= ∅ ∧ ¬LocalMax(p) ∧ ¬Ready(p) ∧

∃ε ∈ FreeEdgesp : (Pmax(FreeNodesp) = ε ∧ Pp 6= ε)

TokenHolderToEdge(p) ≡ Token(p) ∧ (Sp = looking) ∧ ¬Ready(p) ∧ (Pp /∈ MinEdgesp)
JoinTokenHolder(p) ≡ ¬Token(p) ∧ (Sp = looking) ∧ ¬Ready(p) ∧ Locked(p) ∧ (Pp /∈ TPointingEdgesp)
Correct(p) ≡ [(Sp = waiting) ⇒ Ready(p) ∨ Meeting(p)] ∧

[(Sp = done) ⇒ Meeting(p) ∨ LeaveMeeting(p)]
Actions:
Lock :: Locked(p) 6= Lp 7→ Lp := Locked(p);

Step11 :: TokenHolderToEdge(p) 7→ Pp := ε such that ε ∈ MinEdgesp;
Step12 :: JoinTokenHolder(p) 7→ Pp := ε such that ε ∈ Ep, where Pmax(TPointingNodesp)

= ε;

Step13 :: MaxToFreeEdge(p) 7→ Pp := ε such that ε ∈ FreeEdgesp;
Step14 :: JoinLocalMax(p) 7→ Pp := ε such that ε ∈ Ep, where Pmax(FreeNodesp) = ε;

Token :: Token(p) 6= Tp 7→ Tp := Token(p);

Step2 :: Ready(p) ∧ (Sp = looking) 7→ Sp := waiting;
Step3 :: Meeting(p) ∧ (Sp = waiting) 7→ 〈EssentialDiscussion〉;Sp := done;
Step4 :: LeaveMeeting(p) ∧ RequestOut(p) 7→ Sp := looking;Pp :=⊥;Tp := false;

if Token(p) then ReleaseTokenp fi;

Stab :: ¬Correct(p) 7→ Sp := looking;Pp :=⊥;
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Lemma 8 For every process p, if Correct(p) holds, then Correct(p) holds forever.

Corollary 5 After at most one round, every process p satisfies Correct(p) forever.

From these technical results, we can deduce the following lemma using the same reasoning as in Subsection 4.2.

Lemma 9 Every computation of CC2 ◦ T C satisfies:

1. Exclusion,

2. Synchronization,

3. Essential Discussion, and

4. Voluntary Discussion.

We now focus on the Professor Fairness.

Lemma 10 From any configuration where every process q satisfies Correct(q), we have: if a process p that satisfies
Ready(p), Meeting(p), or Sp = done, then p eventually executes action Step4.

Proof. Observe that from such a configuration, (*) every process q satisfies Correct(q) forever by Lemma 8. As a
consequence, from that point every process p that satisfies Ready(p), Meeting(p), or Sp = done satisfies one of the
following cases:

• LeaveMeeting(p) holds. In this case, Sp = done and Pp 6=⊥. Let ε be the value of Pp. Sp = done implies
¬Ready(p). So, while Sp = done, no process q can execute Step2 to then satisfy Pq = ε ∧ Sq = waiting. Also,
every process q that satisfies Pq = ε∧Sq = done can only update Sq and/or Pq by executing action Step4 by (*),
that is Sq := looking and Pq :=⊥. As a consequence, while p does not execute action Step4, LeaveMeeting(p)
holds. Now RequestOut(p) eventually continuously holds, and, thus, action Step4 is eventually continuously
enabled at p. As the daemon is weakly fair, p is eventually selected to execute an action, and this action is Step4

by (*), which proves the lemma in this case.

• Meeting(p) ∧ ¬LeaveMeeting(p) holds. Then, Meeting(p) implies that Pp 6=⊥. Let ε be the value of Pp. No
process r ∈ ε can update Pr. Moreover, for every process r ∈ ε, r can modify its status Sr only if Sr = waiting.
Now, Step3 is enabled at every of those processes, and this action is their priority enabled action by (*) and
Remark 4. Observe that (Meeting(p) ∧ ¬LeaveMeeting(p)) holds until all these processes have moved and,
as the daemon is weakly fair, they eventually move. At this point this case can be reduced to the previous case,
which proves the lemma in this case.

• Ready(p) ∧ ¬Meeting(p) holds. Then, Ready(p) implies that Pp 6=⊥. Let ε be the value of Pp. No process
r ∈ ε can update Pr. Moreover, for every process r ∈ ε, r can modify its status Sr only if Sr = looking. Now,
Step2 is enabled at every of those processes, and this action is their priority enabled action by (*) and Remark
4. Observe that Ready(p) ∧ ¬Meeting(p) holds until all these processes have moved and, as the daemon is
weakly fair, they eventually move. At this point this case can be reduced to the previous case, which proves the
lemma in this case.

Thus, in any case, p eventually executes Step4 and the lemma holds. �

Lemma 11 In every computation of CC2 ◦ T C, no process can hold a token forever.

Proof. By Property 1, the system eventually reaches a configuration from which there is a unique token forever.
Assume, by the contradiction, that after such a configuration, some process ` holds the unique token forever, i.e.
Token(`) holds forever and for every process p 6= `, ¬Token(p) holds forever.

Then, using the same reasoning as in case (b) of the proof of Lemma 6, we can deduce that the system reaches a
configuration γ from which:
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(1) ` satisfies Token(`) ∧ T` forever.

(2) Every process p 6= ` satisfies ¬Token(p) ∧ ¬Tp forever.

(3) Every process satisfies Correct forever.

Let us study the following two cases:

(a) From γ, S` = done, Ready(`), or Meeting(`) eventually holds. In this case, we obtain a contradiction by
Lemma 10.

(b) From γ, S` 6= done, ¬Ready(`), and ¬Meeting(`) hold forever. We study the following two subcases:

– P` ∈ MinEdges`. In this subcase, by (3), we deduce that S` = looking and P` ∈ MinEdges` hold forever.
Then, let ε be the hyperedge pointed by P`. By (1) and (2), we have (TPointingEdgesp, Locked(p)) that
is equal to ({ε}, true) forever for every process p ∈ ε such that p 6= `.
If p satisfies (Sp = looking ∧ ¬Ready(p)), eventually Pp = ε because of the weakly fair daemon and
action Step12 (by (3) and Remark 4, p executes Step12 when selected by the daemon). Then, p becomes
disable forever because ¬Ready(`) holds forever.
If p satisfies (Sp 6= looking ∨ Ready(p)), then (Sp = done ∨ Ready(p) ∨ Meeting(p)) holds by (3).
By Lemma 10, p eventually satisfies (Sp = looking ∧ ¬Ready(p)), and we retrieve the previous case. So
eventually Pp = ε and p becomes disabled forever.
Hence, we can conclude that eventually Pp = ε holds for every process p ∈ ε, that is Ready(`), which is a
contradiction.

– P` /∈ MinEdges`. In this subcase, by (3) and the fact that S` = done ∨ Ready(`) ∨Meeting(`) never
holds, we can deduce that S` = looking holds forever. Hence, by (1), action Step11 is continuously enabled
at `, as the daemon is weakly fair, ` eventually executes an enabled action. This action is Step11 by (3)
and Remark 4, and we retrieve the previous case, which leads to a contradiction.

�

We now deduce the next corollary from Property 1 and Lemma 11:

Corollary 6 In every computation of CC2 ◦ T C, every process holds a token infinitely many times.

Lemma 12 Every computation of CC2 ◦ T C satisfies Professor Fairness.

Proof. Assume by contradiction that eventually some process p stops participating in any meeting. In this case, it
no more executes action Step3. This means, in particular, that the process no more executes Sp := done. As a con-
sequence, it eventually no more executes action Step4. In particular, it eventually no more executes ReleaseTokenp,
which contradicts Property 1 and Corollary 6. �

By Lemma 9, 12, and the fact that fairness implies progress, we have:

Theorem 3 The composition CC2◦T C is a snap-stabilizing algorithm that solves the 2-phase committee coordination
problem and satisfies Professor Fairness.

5.3 Complexity Analysis
We now analyze the degree of fair concurrency of Algorithm CC2 ◦ T C. To this end, we recall some concepts from
graph theory. A matching in a hypergraphH = (V, E) is a subset S of hyperedges ofH, such that no two hyperedges
in S have a vertex in common. We denote byMH the set of all possible matchings of a hypergraph H. The size of
a matching is the number of hyperedges that it contains. A maximal matching of H is a matching of H that has no
superset which is a matching of H. We denote byMMH the set of all maximal matchings of a hypergraph H. As H
is clear from the context, we omit it fromM andMM. Obviously,MM⊆M.
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Observe that by definition, the degree of fair concurrency d satisfies 1 ≤ d ≤ minMM, where minMM is the size
of the smallest maximal matching. The length of a hyperedge ε (denoted by |ε|) is the number of nodes incident to ε.
For every process p, we denote by Emin

p the subset of hyperedges incident to p of minimum length, i.e., ε ∈ Emin
p if

and only if ε ∈ Ep and ∀ε′ ∈ Ep, |ε| ≤ |ε′|. Let minEp denote the minimum length of a hyperedge incident to p. Let
MaxMin = maxp∈V (Emin

p ).
We denote by HY the subhypergraph induced by V \ Y . Given a hyperedge ε and a vertex p, we define Yε,p =

{y ∈ 2ε | p ∈ y ∧ |y| < |ε|}. Let Almost(ε,X), where ε is a hyperedge and X is a set of vertices, be the set
{m ∈MMHX | ∀q ∈ ε\X : q is incident to a hyperedge of m}. LetAMM(p) =

⋃
ε∈Emin

p

⋃
y∈Yε,p Almost(ε, y),

where p is a vertex. Let AMM =
⋃
p∈V AMM(p). Observe that AMM may be equal to the emptyset, e.g., when

there is only one hyperedge inH.
The set AMM as defined above characterizes the cases where Professor Fairness and Maximal Concurrency

exhibit their conflicting natures. Consider the case where a process p is the token holder and cannot participate in
a meeting. In this case, there exists a neighbor of p, say q, in a smallest hyperedge ε incident to p, such that q is
participating in another committee meeting. It follows that processes in ε (including p) that are currently not meeting
are blocked until ε convenes. This implies that the current setting does not form a maximal matching and, hence,
maximal concurrency cannot be achieved. Thus, in order to analyze the Degree of Fair Concurrency, one needs to
consider the set of all maximal matchings of the subhypergraph induced by removing those blocked processes.

We formally characterize the degree of fair concurrency of our algorithm in Theorem 4. We obtain this theorem
thanks to several technical results proven below.

Lemma 13 If committee meetings never terminate, the system eventually reaches a configuration from which some
process p is the unique token holder forever.

Proof. First, the system eventually reaches a configuration from which there is a unique token forever, by Property
1. Assume, by contradiction, that this token moves infinitely many times. Then, infinitely many actions Step4 are
executed. The number of processes being finite, there is a process q that executes infinitely many actions Step4. After
executing Step4, Sq = looking. Now, before executing Step4 again, q must execute Step2 followed by Step3 to go
through status done. Now, in that case, a meeting of a committee whose q is member convenes and that meeting
never terminates, by hypothesis. So, q cannot execute Step4 ever in that case, because otherwise it would cause the
termination of a meeting, and we obtain a contradiction. �

Lemma 14 If committee meetings never terminate, the system eventually reaches a configuration γ from which for
every process p, Sp = done⇒ Meeting(p).

Proof. Let c = γ0, ... be a computation. The number of processes being finite, assume, by contradiction, that there
is a process p such that p satisfies Sp = done ∧ ¬Meeting(p) in infinitely many configurations of c, while committee
meetings never terminate. Consider the following two cases:

• There exists i such that ∀j ≥ i, Sp = done ∧ ¬Meeting(p) in γj . Then, by Corollary 5, p eventually satisfies
Correct(p) forever, which implies that p eventually satisfies LeaveMeeting(p) forever. Moreover, p eventu-
ally satisfies RequestOut(p) continuously. Hence, as the daemon is weakly fair, p eventually executes Step4,
and we obtain a contradiction.

• There exists infinitely many steps γi 7→ γi+1 of c where Sp = done ∧ ¬Meeting(p) in γi and Sp 6= done ∨
Meeting(p) in γi+1. In this case, p participates infinitely many times in meetings that convene and then termi-
nate, a contradiction.

�

Following a similar reasoning, we have:

Lemma 15 If committee meetings never terminate, the system eventually reaches a configuration γ from which for
every process p, Sp 6= waiting.
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From Lemmas 14 and 15, we have the following corollary:

Corollary 7 If committee meetings never terminate, the system eventually reaches a configuration γ from which for
every process p, either Sp = looking forever, or Sp = done forever.

Lemma 16 If committee meetings never terminate, then the system eventually reaches a configuration γ from which
there is some process ` such that:

1. ` is the only token holder forever.

2. T` = true forever.

3. Every process p 6= ` satisfies Tp = false forever.

4. There exists ε ∈ E` such that:

(a) P` = ε forever.

(b) ∀p ∈ ε, Lp = true forever.

(c) ∀p ∈ V \ ε, Lp = false forever.

Proof. Case 1 follows from Lemma 13.
Consider Cases 2 and 3. From case 1, we know that for every process p, the value of Token(p) does not change

anymore. So, if p satisfies Tp 6= Token(p), then this remains true until p executes action Token . Now, eventually
actions Stab, Step2, Step3, and Step4 are disabled forever at p by Corollaries 5, 7, and Remark 4. So, eventually, p
is selected by the daemon to execute action Token . Hence, eventually, the value of Tp is fixed and Tp = Token(p)
forever.

Consider now case 4a. Eventually the system reaches a configuration from which (*) every process p satisfies
Correct(p) forever (by Corollary 5), Sp = done ⇒ Meeting(p) (by Lemma 14), and either Sp = looking forever, or
Sp = done forever (by Corollary 7).

From such a configuration:

• If S` = done, then ` is in an infinite meeting and consequently, there exists ε ∈ E` such that P` = ε forever.

• Otherwise, S` = looking and Token(`) holds forever by 1. If ` eventually satisfies Ready(`), p can execute
Step2 by (*) and Remark 4, a contradiction to Corollary 7. So, ¬Ready(`) forever and we have either P` ∈
MinEdgesp and P` is fixed to that value forever; or, action Step11 is continuously enabled. In this latter case, the
daemon being weakly fair, ` eventually executes Step11 (by (*), 2, and Remark 4) and we retrieve the previous
case.

Hence case 4a holds in both cases.
Finally, consider Cases 4b and 4c. Let p be process. From γ, if eventually Lp = Locked(p) holds, then Lp is fixed

forever by 2, 4a, and Corollary 7. In this case, p satisfies Cases 4b and 4c.
Otherwise, eventually actions Stab, Step2, Step3, and Step4 are eventually disabled forever at p by Corollary 5

and Corollary 7. By 2 and 3, action Token is also eventually disabled forever. From that point, p can execute actions
Step11 to Step14 at most once before some neighboring process executes action Lock to definitely fix the value of its
variable L. So, as the number of neighbors is finite, action Lock is eventually the only action that p can execute. Thus,
as the daemon is weakly fair, p eventually execute action Lock and we retrieve the previous case. �

Lemma 17 If committee meetings never terminate, the system eventually reaches a configuration γ where FreeEdgesp =
∅ forever for all processes p.

23



Proof. Consider a computation c = γ0 . . . where committee meetings never terminate.
Then, the system eventually reaches configuration from which: for every process p, the value of FreeEdgesp is

fixed and Correct(p) = true forever by Lemma 16, Corollaries 5, and 7.
Assume that, from such a configuration, FreeEdges 6= ∅ for some processes. Let q be the one among those

processes with the highest identity. ∀ε ∈ FreeEdgesq , ∀s ∈ ε, LocalMax (s) = q (in particular LocalMax (q) = q)
holds continuously until a meeting involving q convenes, by Lemma 16. Then, by definition of action Step13, Remark
4, and the fact that the daemon is weakly fair, q eventually sticks its pointer on some hyperedge ε of FreeEdgesq and
then eventually satisfies Ready(q) by definition of action Step14. Then, again by definition of action Step2, Remark
4, and the fact that the daemon is weakly fair, some process of ε eventually executes action Step2, a contradiction to
Corollary 7.

Hence, eventually every process r satisfies FreeEdgesr = ∅ forever. �

Theorem 4 Degree of Fair Concurrency of Algorithm CC2 ◦ T C is at least minMM∪AMM.

Proof. If committee meetings never terminate, the system eventually reaches a configuration γ where:

1. Every process s satisfies:

(a) FreeEdgess = ∅ (Lemma 17).

(b) Ss = looking if and only if s is not in any meeting (Corollary 5 and Lemma 14).

2. By Lemma 16, there is a unique process ` such that:

(a) ` is the only token holder forever.

(b) T` = true forever.

(c) Every process p 6= ` satisfies T` = false forever.

(d) There exists ε ∈ E` such that:

i. P` = ε forever.
ii. ∀p ∈ ε, Lp = true forever.

iii. ∀p ∈ V \ ε, Lp = false forever.

Consider the following two cases in γ:

• ` participates in a meeting ε. Let r be a process that does not participate in a meeting in γ. Then, eventually
FreeEdgesr = ∅ by case 1a. In this case, for each hyperedge ε′ incident to r, there a process t ∈ ε′, such that
Tt, Lt, or St 6= looking holds. In the two first cases, t participates in the meeting ε by case 2. In the latter case,
t participates in another meeting by case 1b.

It follows that for all processes r that is not in a meeting in γ and for all hyperedges ε′ incident to r, there exists
a process in ε′ that participates in a meeting in γ. Hence, the meetings that hold in γ form a maximal matching
of the underlying hypergraphH.

• ` does not participate in any meeting. In γ, P` = ε such that ε ∈ Emin
` (see action Step13). Also, there is at least

one neighbor of ` that participates in a meeting in γ. Let X be the subset of processes in ε that do not participate
in a meeting in γ. Then, X ⊂ ε and ` ∈ X . Following a reasoning similar to the previous case, we can deduce
that for all processes s that is not in a meeting in γ and for all hyperedges ε′ incident to s, there exists a process
in ε′ that either participates in a meeting in γ or is a process of X . Hence, the meetings that hold in γ form a
maximal matching of Almost(ε,X).

Hence, the meetings that hold in γ form a matching ofMM∪AMM. �

In the next theorem, we present a lower bound for minMM∪AMM.

Theorem 5 minMM∪AMM ≥ (minMM−MaxMin + 1).
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Proof.

• By definition MaxMin > 0. So, minMM ≥ minMM−MaxMin + 1.

• Let x be the size of the smallest matching in AMM. By definition, there exists a process p, a hyperedge
ε ∈ Emin

p , and a set of processes X where X ⊂ ε and p ∈ X , such that there exists a maximal matching S
of Almost(ε,X) of size x. By definition, S is a matching of H. Moreover, there exists a maximal matching
S′ of H such that S ⊂ S′. By definition there exists at most one hyperedge of S′ incident to some process in
X . Hence, |S| ≥ |S′| − |X|, i.e., |S| ≥ |S′| − |ε| + 1, which in turn implies that |S| ≥ minMM−|ε| + 1.
It follows that |S| ≥ minMM−MaxMin + 1. Hence, the size of the smallest matching in AMM is at least
minMM−MaxMin + 1.

�

To evaluate Waiting Time of CC2 ◦ T C, we need to introduce maxDisc which is the maximum amount of rounds a
process discusses in a meeting. We assume that T C is a fair composition of the token circulation algorithm in [27] and
the leader election algorithm in [23]. It follows that the following properties hold: (1) starting from any configuration,
there is a unique token in the distributed system in O(n) rounds, and (2) once there is a unique token, O(n) processes
can receive the token before a process receives the token.

Theorem 6 In Algorithm CC2 ◦ T C, the worst case Waiting Time is O(maxDisc ×n) rounds, where n is the number
of processes.

Proof. First, from [27, 23], Corollary 5, and Property 1, we know that starting from any arbitrary configuration, the
system reaches a configuration γ from where every process satisfies Correct and there is one token forever in O(n)
rounds. Now, consider a token holder p in any configuration that follows γ, where p satisfies one of the following three
cases:

• Sp = done. In this case, in at most one round, p satisfies LeaveMeeting(p) and at most maxDisc rounds later,
it is enabled to execute Step4. Hence, p releases the token in O(maxDisc) rounds.

• Sp = waiting. In this case, in at most one round, p satisfies Meeting(p) and after one more round, it satisfies
Sp = done. Hence, from the previous case, we can deduce that p releases the token in O(maxDisc) rounds.

• Sp = looking. In this case, in one round p sets Tp to true. One another round later, p sets Pp to ε where
ε ∈ Emin

p . After this round and similarly to the previous case, every other process in ε that was in a meeting,
leaves its meeting and joins meeting ε in O(maxDisc) rounds, which leads to the status Sp = waiting in the next
round. Hence, from the previous cases, we can deduce that p releases the token in O(maxDisc) rounds.

It follows that after O(n) rounds, a process can keep the token for O(maxDisc) consecutive rounds before releases
it. Now, from [27, 23], we know that O(n) processes can hold the token before a given process receives it. Hence,
the Waiting Time is O(maxDisc ×n) rounds.

�

5.4 Committee Fairness
Algorithm CC2◦T C can be easily modified to satisfy the Committee Fairness as follows. Every time a process acquires
the token, it sequentially selects a new incident committee. This way, we obtain an algorithm, called Algorithm
CC3◦T C that satisfies Committee Fairness. Waiting Time of this algorithm remains the same as that of Theorem 6, but
Degree of Fair Concurrency will be slightly degraded. Recall that Yε,p = {y ∈ 2ε | p ∈ y ∧ |y| < |ε|}. Now, we let
AMM′(p) =

⋃
ε∈Ep

⋃
y∈Yε,p Almost(ε, y) and AMM′ =

⋃
p∈V AMM′(p). Also, let MaxHEdge = maxε∈E |ε|.

Following a proof similar to the one of Theorem 4, we trivially obtain the proof of the following theorem.

Theorem 7 The degree of fair concurrency of Algorithm CC3 ◦ T C is at least minMM∪AMM′ .
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In the next theorem, we present a lower bound for minMM∪AMM′ . Its proof is similar to the one used in the
proof of Theorem 5.

Theorem 8 minMM∪AMM′ ≥ minMM−MaxHEdge + 1.

6 Related Work
Solutions to the committee coordination problem mostly focus on the three properties of the original problem described
in Subsection 2.3 [2, 3, 4, 5, 6, 7]. In the seminal work by Chandy and Misra [2], the committee coordination problem is
reduced to the dining or drinking philosophers problems [14]. Each philosopher represents a committee, neighboring
philosophers have a common member, and a meeting is held only when the corresponding philosopher is eating.
Bagrodia [3] solves the problem by introducing the notion of managers. Each manager handles a set of committees and
two managers may have intersecting sets of assigned committees. Each committee member notifies its corresponding
committee managers that it desires to participate. Conflicts between two committees (i.e., committees that share a
member) managed by the same manager are resolved locally within the manager. Conflicts between two committees
managed by different managers are resolved using a circulating token. In a later work [4], Bagrodia combines a
message count mechanism (to ensure Synchronization) with a reduction to dining/drinking philosophers (to ensure
Exclusion).

Joung [19] extends the original committee coordination problem by considering fairness properties. One such
property, called weak fairness in [19] or professor fairness in this paper, requires that if a professor is waiting to
participate in some committee meeting, then he must eventually participate in a committee meeting (not necessarily
the same). The main result is the impossibility of implementing a fair committee coordination algorithm if one of the
following conditions hold:

• One process’s readiness to participate in a committee can be known by another only through communication,
and the time it takes two processes to communicate is not negligible.

• A process decides autonomously when it will attempt participating in a committee, and at a time that cannot be
predicted in advance.

Joung’s result holds for fairness on multi-party committees as well. Tsay and Bagrodia [5] reach the same result with
respect to the second condition identified by Joung [19].

In [7], Kumar circumvents the impossibility result of Tsay and Bagrodia by making the following additional
assumption: every professor waits for meetings infinitely often. In this model, Kumar proposes an algorithm that solves
the committee coordination problem with professor fairness using multiple tokens, each representing one committee.
Based on the same assumption, several other committee coordination algorithms that satisfy fairness can be found in
[6].

7 Conclusion
In this paper, we proposed two Snap-stabilizing distributed algorithms for the committee coordination problem. The
first algorithm satisfies 2-Phase Discussion as well as Maximal Concurrency. The second algorithm satisfies 2-Phase
Discussion as well as Professor Fairness assuming that every professor waits for meetings infinitely often. As we
showed, even under this latter assumption, satisfaction of both Maximal Concurrency and Professor Fairness is impos-
sible.

For the second algorithm, we introduced and analyzed the degree of fair concurrency to show that it still allows
high level of concurrency. We also evaluated an upper bound on waiting time. Finally, with a slight modification, we
obtained another algorithm that respects Committee Fairness.

For future work, several interesting research directions are open. One can consider other combinations of proper-
ties. For instance, we conjecture that providing both Maximal Concurrency and bounded waiting time is impossible.
Another problem is to design a fault-tolerant committee coordination algorithm in the message-passing model. An
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important issue is to address dynamic hypergraphs, where professors (processes) can enter or leave the hypergraph,
and, new committees may be created or some committees may be dissolved or merged. Optimality is also an open
question in that one can study the optimal bound on the degree of fair concurrency. Another interesting line of research
is enforcing priorities on convening committees. Finally, we are planning to implement the algorithms presented in
this paper in distributed code generation frameworks such as the one in [8]. Our algorithms will allow generating fully
distributed code from high-level component-based models.
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