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1. INTRODUCTION

A distributed system is a network where processors execute
local computations according to their state and the messages
from their neighbors. In such systems, a wave protocol [1]
is a protocol which performs distributed computations called
waves. These waves are initiated by at least one processor,
called initiator, and require the participation of each processor
of the network before a particular event called decision.

In an arbitrary rooted network, a Depth-First Search (DFS)
wave is initiated by a particular processor called root. In this
wave, all the processors are sequentially visited in DFS order.
This scheme has many applications in distributed systems.
For example, the solution of this problem can be used to
solve mutual exclusion, spanning tree computation, constraint
programmation, routing or synchronization.

The concept of self-stabilization [2] is the most general
technique to design a system tolerating arbitrary transient faults.
A self-stabilizing system, regardless of the initial states of the
processors and messages initially in the links, is guaranteed
to converge to the intended behavior in finite time. Snap-
stabilization was introduced in [3]. A snap-stabilizing protocol
guaranteed that it always behaves according to its specification.
In other words, a snap-stabilizing protocol is also a self-
stabilizing protocol which stabilizes in 0 time unit. Obviously,
a snap-stabilizing protocol is optimal in stabilization time.

Related works. There exist several (non-self-stabilizing)
distributed algorithms solving this problem, e.g. [4, 5, 6].
In the area of self-stabilizing systems, silent algorithms (i.e.
algorithms converging to a fixed point) computing a DFS
spanning tree for arbitrary rooted networks are given in

[7, 8, 9]. Several self-stabilizing (but not snap-stabilizing)
wave algorithms based on the depth-first token circulation
(DFTC) have been proposed for arbitrary rooted networks, e.g.
[10, 11, 12, 13]. All these papers have a stabilization time in
O(N × D) rounds where N is the number of processors and
D is the diameter of the network. The algorithms proposed
in [11, 12, 13] attempted to reduce the memory requirement
from O(log(N)+log(�)) [10] to O(log(�)) bits per processor
where � is the degree of the network. However, the correctness
of all above algorithms is proven assuming a (weakly) fair
daemon. Roughly speaking, a daemon is considered an
adversary which tries to prevent the protocol from behaving as
expected, and fairness means that the daemon cannot prevent
forever a processor from executing an enabled action.

The first snap-stabilizing DFTC has been proposed in
[14] for tree networks. In arbitrary networks, a universal
transformer providing a snap-stabilizing version of any (neither
self- nor snap-) protocol is given in [15]. Obviously,
combining this protocol with any DFTC algorithm (e.g.
[4, 5, 6]), we obtain a snap-stabilizing DFTC algorithm for
arbitrary networks. However, the resulting protocol works
assuming a weakly fair daemon only. Indeed, it generates
an infinite number of snapshots, independent of the token
progress. Therefore, the number of steps per wave cannot be
bounded.

Contributions. In this paper, we present the first snap-
stabilizing DFS wave protocol for arbitrary rooted networks
assuming an unfair daemon i.e. assuming the weakest schedul-
ing assumption. Using this protocol, a DFS wave is bounded
by O(N2) steps. In contrast, for the previous solutions, the
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step complexity of the DFS waves cannot be bounded. Our
protocol does not use any pre-computed spanning tree. How-
ever, it requires identities on processors and has a memory
requirement of O(N × log(N) + log(�)) bits per processor.
The snap-stabilizing property guarantees that as soon as a DFS
wave is initiated by the root, every processor of the network
will be visited in DFS order and, after the end of the visit, the
root will detect the termination of the process.

Outline of the paper. The rest of the paper is organized as
follows: in Section 2, we describe the model in which our
protocol is written. In the same section, we give a formal
statement of the DFS Wave Problem solved in this paper. In
Section 3, we present our DFS Wave Protocol. In the following
section (Section 4), we give the proof of snap-stabilization of
the protocol and some complexity results. Finally, we make
concluding remarks in Section 5.

2. PRELIMINARIES

Network. We consider a network as an undirected connected
graph G = (V , E), where V is a set of processors (|V | = N)

and E is the set of bidirectional communication links. We con-
sider networks which are asynchronous and rooted, i.e. among
the processors, we distinguish a particular processor called
root. We denote the root processor by r. A communication
link (p, q) exists if and only if p and q are neighbors. Every
processor p can distinguish all its links. To simplify the pre-
sentation, we refer to a link (p, q) of a processor p by the label
q. We assume that the labels of p, stored in the set Neigp,1 are
locally ordered by ≺p. We assume that Neigp is a constant.
Neigp is shown as an input from the system. Moreover, we
assume that the network is identified, i.e. every processor has
exactly one identity which is unique in the network. We denote
the identity of a processor p by Idp. We assume that Idp is a
constant. Idp is also shown as an input from the system.

Computational model. Our protocols are semi-uniform, i.e.
each processor (of the network) executes the same program
except r. We consider the local shared memory model of
communication. The program of every processor consists of
a set of shared variables (henceforth, referred to as variables)
and a finite set of actions. A processor can only write to its own
variables, and read its own variables and the variables owned
by the neighboring processors. Each action is constituted as
follows:

<label> :: <guard> → <statement>.

The guard of an action in the program of p is a boolean
expression involving the variables of p and its neighbors. The
statement of an action of p updates one or more variables of
p. An action can be executed only if its guard is satisfied. We
assume that the actions are atomically executed, meaning, the

1Every variable or constant X of a processor p will be noted as Xp .

evaluation of a guard and the execution of the corresponding
statement of an action, if executed, are done in one atomic step.

The state of a processor is defined by the value of its variables.
The state of a system is the product of the states of all processors
(∈ V ). We will refer to the state of a processor and system as a
(local) state and (global) configuration respectively. Let C, be
the set of all possible configurations of the system. An action
A is said to be enabled in γ ∈ C at p if the guard of A is true
at p in γ . A processor p is said to be enabled in γ (γ ∈ C) if
there exists an enabled action in the program of p in γ .

Let a distributed protocol P be a collection of binary
transition relations denoted by �→, on C. A computation
of P is a maximal sequence of configurations e =
(γ0, γ1, . . . , γi, γi+1, . . .) such that, ∀i ≥ 0, γi �→ γi+1
(called a step) if γi+1 exists, else γi is a terminal configuration.
Maximality means that the sequence is either finite (and no
action of P is enabled in the terminal configuration) or infinite.
All computations considered in this paper are assumed to be
maximal. The set of all possible computations of P is denoted
by E .

In a step of computation, first, all processors check the guards
of their actions. Then, some enabled processors are chosen
by a daemon. Finally, the ‘elected’ processors execute one or
more of theirs enabled actions. There exists several kinds of
daemon. Here, we assume a distributed daemon, i.e. during
a computation step, if one or more processors are enabled,
the daemon chooses at least one of these enabled processors
to execute an action. Furthermore, a daemon can be weakly
fair, i.e. if a processor p is continuously enabled, p will be
eventually chosen by the daemon to execute an action. If the
daemon is unfair, it can forever prevent a processor execute an
action except if it is the only enabled processor.

We consider that any processor p executed a disabling action
in the computation step γi �→ γi+1 if p was enabled in γi

and is not enabled in γi+1, but did not execute any protocol
action in γi �→ γi+1. (The disabling action represents the
following situation: at least one neighbor of p changes its state
in γi �→ γi+1, and this change effectively made the guard of all
actions of p false.)

In order to compute the time complexity, we use the definition
of round [16]. This definition captures the execution rate of the
slowest processor in any computation. Given a computation
e (e ∈ E), the first round of e (let us call it e′) is the minimal
prefix of e containing the execution of one action (an action of
the protocol or the disabling action) of every enabled processor
from the first configuration. Let e′′ be the suffix of e such
that e = e′e′′. The second round of e is the first round of e′′,
and so on.

Snap-stabilizing systems. The concept of snap-stabilization
was introduced in [3]. In this paper, we restrict this concept to
the wave protocols only:

Definition 2.1. (Snap-stabilization for Wave Protocols).
Let T be a task, and SPT a specification of T . A wave protocol
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Algorithm 1. Algorithm snapDFS for p = r.

Input: Neigp: set of neighbors (locally ordered); Idp: identity of p;
Constant: Parp =⊥;
Variables: Sp ∈ Neigp ∪ {idle, done}; Visitedp: set of identities;
Macros:

Nextp = (q = min≺p {q ′ ∈ Neigp :: (Idq ′ /∈ Visitedp)}) if q exists, done otherwise;
ChildVisitedp = VisitedSp if (Sp /∈ {idle, done}), ∅ otherwise;

Predicates:
Forward(p) ≡ (Sp = idle)
Backward(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq = done))
Clean(p) ≡ (Sp = done)
SetError(p) ≡ (Sp �= idle) ∧ [(Idp /∈ Visitedp) ∨ (∃q ∈ Neigp :: (Sp = q) ∧ (Idq ∈ Visitedp))]
Error(p) ≡ SetError(p)

ChildError(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq �= idle) ∧ ¬(Visitedp � Visitedq ))
LockedF(p) ≡ (∃q ∈ Neigp :: (Sq �= idle))
LockedB(p) ≡ [∃q ∈ Neigp :: (Idq /∈ ChildVisitedp) ∧ (Sq �= idle)] ∨ Error(p) ∨ ChildError(p)

Actions:
F :: Forward(p) ∧ ¬LockedF(p) → Visitedp := {Idp}; Sp := Nextp;
B :: Backward(p) ∧ ¬LockedB(p) → Visitedp := ChildVisitedp; Sp := Nextp;
C :: Clean(p) ∨ Error(p) → Sp := idle;

P is snap-stabilizing for the specification SPT if and only
if:

(i) at least one processor (called initiator) eventually
executes a particular action of P (called initialization
action);

(ii) the result obtained with P from this initialization action
always satisfies SPT .

Specification of the DFS Wave Protocol. Before giving the
specification of the DFS Wave Protocol, we propose some
definitions.

Definition 2.2. (Path). The sequence of processors p1, . . . ,

pk(∀i ∈ [1 . . . k], pi ∈ V ) is a path of G = (V , E) if ∀i ∈
[1 . . . k − 1], (pi, pi+1) ∈ E. The path p1, . . . , pk is referred
to as an elementary path if ∀i, j such that 1 ≤ i < j ≤ k,
pi �= pj . The processors p1 and pk are termed as initial and
final extremities respectively.

Definition 2.3. (First Path). For each elementary path of G
from the root, P = (p1 = r), . . . , pi, . . . , pk , we associate a
word l1, . . . , li , lk−1 (noted word(P )) where, ∀i ∈ [1 . . . k−1],
pi is linked to pi+1 by the edge labeled li on pi . Let ≺lex be a
lexicographical order over these words. For each processor p,
we define the set of all elementary paths from r to p. The path
of this set with the minimal associated word by ≺lex is called
the first path of p (noted fp(p)).

Using this notion, we can define the first DFS order:

Definition 2.4. (First DFS Order). Let p, q ∈ V such that
p �= q. We can define the first DFS order ≺df s as follows:
p ≺df s q if and only if word(fp(p)) ≺lex word(fp(q)).

Definition 2.5. (Computation Wave). A computation e ∈ E
is called a wave if and only if the three following conditions
hold:

(i) e is finite;
(ii) e contains at least one decision event;

(iii) every processor in the network executes at least one
action during e.

Specification 1. ( fDFS Wave). A finite computation e ∈ E
is called a fDFS wave (i.e. first DFS wave) if and only if the
two following conditions hold:

(i) e is a wave with a unique initiator: r;
(ii) during e, all the processors are sequentially visited

following the first DFS order;
(iii) r decides when all the processors have been visited.2

Remark 1. In order to prove that our protocol is snap-
stabilizing for Specification 1, we must show that every
execution of the protocol satisfies both these conditions:

(i) r eventually initiates a fDFS wave;
(ii) from any configuration where r has initiated a fDFS wave,

the system always satisfies Specification 1.

3. ALGORITHM

In this section, we present a DFS wave protocol referred to as
Algorithm snapDFS (Algorithms 1 and 2). We first present the
principle of the protocol. Next, we describe the data structures
and the normal behavior of Algorithm snapDFS. Finally, we
give some details about the error correction.

2This implies that r detects when all the processors have been visited.
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Algorithm 2. Algorithm snapDFS for p �= r.

Input: Neigp: set of neighbors (locally ordered); Idp: identity of p;
Variables: Sp ∈ Neigp ∪ {idle, done}; Visitedp: set of identities; Parp ∈ Neigp;
Macros:

Nextp = (q = min≺p {q ′ ∈ Neigp :: (Idq ′ /∈ Visitedp)}) if q exists, done otherwise;
Predp = {q ∈ Neigp :: (Sq = p)};
PredVisitedp = Visitedq if (∃!q ∈ Neigp :: (Sq = p)), ∅ otherwise;
ChildVisitedp = VisitedSp if (Sp /∈ {idle, done}), ∅ otherwise;

Predicates:
Forward(p) ≡ (Sp = idle) ∧ (∃q ∈ Neigp :: (Sq = p))
Backward(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq = done))
Clean(p) ≡ (Sp = done) ∧ (SParp �= p)
NoRealParent(p) ≡ (Sp /∈ {idle, done}) ∧ ¬(∃q ∈ Neigp :: (Sq = p) ∧ (Parp = q))
SetError(p) ≡ (Sp �= idle) ∧ [(Idp /∈ Visitedp) ∨ (∃q ∈ Neigp :: (Sp = q) ∧ (Idq ∈ Visitedp))

∨ (∃q ∈ Neigp :: (Sq = p) ∧ (Parp = q) ∧ ¬(Visitedq � Visitedp))]
Error(p) ≡ NoRealParent(p) ∨ SetError(p)

ChildError(p) ≡ (∃q ∈ Neigp :: (Sp = q) ∧ (Parq = p) ∧ (Sq �= idle) ∧ ¬(Visitedp � Visitedq ))
LockedF (p) ≡ (|Predp| �= 1) ∨ (∃q ∈ Neigp :: (Idq /∈ PredVisitedp) ∧ (Sq �= idle)) ∨ (Idp ∈ PredVisitedp)
LockedB(p) ≡ (|Predp| �= 1) ∨ (∃q ∈ Neigp :: (Idq /∈ ChildVisitedp) ∧ (Sq �= idle)) ∨ Error(p) ∨ ChildError(p)

Actions:
F :: Forward(p) ∧ ¬LockedF(p) → Visitedp := PredVisitedp ∪ {Idp}; Sp := Nextp; Parp := (q ∈ Predp);
B :: Backward(p) ∧ ¬LockedB(p) → Visitedp := ChildVisitedp; Sp := Nextp;
C :: Clean(p) ∨ Error(p) → Sp := idle;

Principle. The principle of the normal behavior of Algorithm
snapDFS consists in a DFTC split into two phases:

• the visiting phase where the token visits all the processors
of the network in the first DFS order;

• the cleaning phase which cleans the traces of the visiting
phase so that the root is eventually ready to initiate a new
token circulation.

Starting now from any arbitrary configuration, several tokens,
each one corresponding to a particular traversal, may co-exist
in the network. The problem for the token from the root is to
detect if a neighboring processor which seems to be visited has
really received this token or not. To avoid both deadlocks and
the non-visit of some processors of the network, we will use a
list storing the IDs of all processors visited by the token. Thus,
if the next processor to visit (according to the first DFS order) is
in an abnormal behavior, the token holder waits until the error
correction cleans the state of the ‘abnormal’ processor before
it sends it the token.

Normal behavior. In its normal behavior, Algorithm
snapDFS uses three variables for each processor p:

(i) Sp designates the successor of p in the visiting phase
(from r), i.e. the next processor to receive the token. If
there exists q ∈ Neigp such that Sp = q, then q (resp.
p) is said to be a successor of p (resp. a predecessor
of q),

(ii) Visitedp is the set of processors which have been visited
by the token during the visiting phase,

(iii) Parp designates the processor from which p receives
the token for the first time during the visiting phase (as
r creates the token, Parr is the constant ⊥).

In the following, we refer to Figure 1 in order to explain the
normal behavior. In this figure, we show variable values only
when they are considered in the protocol.

Consider now the configurations where [(Sr = idle) ∧
(∀p ∈ Neigr , Sp = idle) ∧ (∀q ∈ V \ (Neigr ∪ {r}),
Sq ∈ {idle, done})]. We refer to these configurations as normal
initial configurations. In such configurations, every processor
q �= r such that Sq = done is enabled to perform its cleaning
phase (see Predicate Clean(q)). Processor q performs its
cleaning phase by executing Action C, i.e. it assigns idle to
Sq (as Processor 3 in Step i �→ ii of Figure 1). Moreover, in
this configuration, the root (r) is enabled to initiate a visiting
phase by Action F (n.b. the visiting and cleaning phase works
in parallel). Processor r initiates a visiting phase (Step i �→ ii

in Figure 1) by initializing Visitedr with its identity (Idr ) and
pointing out (with Sr ) its minimal neighbor in the local order
≺r (see Macro Nextr ). In the worst case, every processor q

such that Sq = done executes its cleaning phase, then, r is the
only enabled processor and initiates a visiting phase. From this
point on, a token is created and held by r.

When a processor q �= r such that Sq = idle is pointed out
with Sp by a neighboring processor p, then q waits until all its
neighbors q ′ such that Sq ′ = done and Idq ′ /∈ PredVisitedq

(here, Visitedp) execute their cleaning phases (ii �→ iii in
Figure 1). Thereafter, q can execute Action F (as Processor 1 in
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FIGURE 1. An example showing the normal behavior of Algorithm snapDFS.
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iii �→ iv, Figure 1) in order to receive the token from p. Then,
q also designates p with Parq and assigns PredVisitedq ∪{Idq}
(here, Visitedp ∪ {Idq}) to Visitedq . Informally, the V isited

set of the last visited processor contains the identities of all
processors visited by the token. Finally, q chooses a new
successor, if any. For this earlier task, two cases are possible
(see Macro Nextq ):

(i) ∀q ′ ∈ Neigq , Idq ′ ∈ Visitedq , i.e. all neighbors of q have
been visited by the token; the visiting phase from q is
now terminated, so, Sq is set to done,

(ii) otherwise, q chooses the minimal processor by ≺q in
{q ′ :: q ′ ∈ Neigq ∧ Idq ′ /∈ Visitedq} as a successor in the
visit (i.e. the next processor to receive the token) .

In both cases, q is now the token holder.

When p is the predecessor of a processor q such that Sq =
done, p has previously sent the token to q and knows that the
visiting phase from q is now terminated. Thus, p must continue
the visiting phase using another neighboring processor which
is still not visited, if any: p executes Action B (e.g. Processor
3 in vii �→ viii and Processor 4 in viii �→ ix, Figure 1).
It assigns ChildVisitedp to Visitedp. Hence, it knows exactly
which processors have been visited by the token and it can
designate another successor, if any, as in Action F (see Macro
Nextp). By this action, p gets the token back and q is now
enabled to execute its cleaning phase (Action C).

Eventually Sr = done meaning that the visiting phase
is terminated: the token has visited all the processors
(Configuration xiii in Figure 1) and so, r can execute its
cleaning phase. Thus, the system eventually reaches a normal
initial configuration again (Configuration xiv). Note that, since
the cleaning phase does not erase parent pointers, the first DFS
spanning tree of the network (w.r.t. Par variables) is available
at the end of a single visiting phase.

Error correction. First, from the normal behavior, we can
remark that, if p �= r is in the visiting phase (i.e. Sp �= idle) and
the visiting phase fromp is still not terminated (i.e.Sp �= done),
then p must have a predecessor and must designate it with its
variable Parp, i.e. each processor p �= r must satisfy: (Sp /∈
{idle, done}) ⇒ (∃q ∈ Neigp :: Sq = p ∧ Parp = q). The
predicate NoRealParent(p) allows to determine if this condition
is not satisfied by p. Then, during the normal behavior,
each processor maintains properties based on the value of its
Visited set and that of its predecessors, if any. Thus, in any
configuration, p must respect the following conditions:

(i) (Sp �= idle) ⇒ (Idp ∈ Visitedp) because when p

receives a token for the first time, it includes its identity
in its Visited set (Action F );

(ii) (Sp ∈ Neigp) ⇒ (IdSp /∈ Visitedp), i.e. p must not point
out a previously visited processor;

(iii) ((p �= r) ∧ (Sp �= idle) ∧ (∃q ∈ Neigp :: (Sq = p) ∧
(Parp = q))) ⇒ (Visitedq � Visitedp) because while

p �= r is in the visiting phase, Visitedp must strictly
include the V isited set of its parent.

If one of these conditions is not satisfied by p, p satisfies
SetError(p). So, Algorithm snapDFS detects if p is in
an abnormal state, i.e. (((p �= r) ∧ NoRealParent(p)) ∨
SetError(p)) with the predicate Error(p). In the rest of the
paper, we call abnormal processor a processor p satisfying
Error(p). If p is an abnormal processor, then we must correct
p and all the processors visited from p. We simply correct p by
setting Sp to idle (Action C). So, if, before p executes Action
C, there exists a processor q such that (Sp = q ∧ Parq =
p ∧ Sq /∈ {idle, done} ∧ ¬Error(q)), then after p executes
Action C, q becomes an abnormal processor too (replacing p).
These corrections are propagated until the visiting phase from
p is completely corrected. However, during these corrections,
the visiting phase (i.e. the token) from p may progress by the
execution of Actions F and B. But, we can remark that the
Visited set of the last processor of a visiting phase (the token
holder) grows by the execution of Actions F and B and this
processor can only extend the propagation using processors
which are not in its Visited set. Hence, the visiting phase from
an abnormal processor cannot run indefinitely and this abnormal
visiting phase is eventually corrected.

Finally, we focus on the different ways to stop (or slow down)
the propagation of the erroneous behaviors. Actions F and B

allow a processor p to receive a token. However, by observing
its state and that of its neighbors, p can detect some fuzzy
behaviors and stop them: that is the goal of the predicates
LockedF(p) and LockedB(p) in Actions F and B respectively.
A processor p is locked (i.e. p cannot execute Action B or
Action F ) when it satisfies at least one of the five following
conditions:

(i) p has several predecessors;
(ii) p is an abnormal processor;

(iii) p has a successor q such that ((Sq �= idle) ∧ (Parq = p)
∧ ¬(Visitedp � Visitedq )), i.e. q is abnormal;

(iv) p (Sp = idle) is designated as a successor by q but Idp

is in Visitedq , i.e. q is abnormal;
(v) some non-visited neighbors q of p are not cleaned, i.e.

Sq �= idle (also used in a normal behavior).

4. CORRECTNESS AND COMPLEXITY ANALYSIS

Proving a protocol with an unfair daemon is generally quite
difficult. So, in the following, we will prove the protocol in
two steps: in the first assuming a weakly fair daemon and in the
second including the complement for the unfair daemon. This
split is motivated by the following theorem:

Theorem 4.1. Let T be a task and SPT be a specification
of T . Let P be a protocol such that, assuming a weakly fair
daemon, P is self-stabilizing for SPT . If, for every execution
of P assuming an unfair daemon, each round is finite, then P
is also self-stabilizing for SPT assuming an unfair daemon.
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Proof. Let e be an execution of P assuming an unfair daemon.
By assumption, every round of e is finite. Then, as every round
of e is finite, each enabled processor (in e) executes an action
(either a disabling action or an action of P) in a finite number
of steps. In particular, every continuously enabled processor
executes an action of P in a finite number of steps. So, e is
also an execution of P assuming a weakly fair daemon. Since
P is self-stabilizing for SPT assuming a weakly fair daemon,
e stabilizes to SPT . Hence, P is self-stabilizing for SPT even
if the daemon is unfair.

Before presenting the proof of snap-stabilization, let us define
some items and their characteristics.

4.1. Basic definitions and properties

Definition 4.1. (Idle Processor). p is an idle processor if
and only if (Sp = idle).

Definition 4.2. (Pre-clean Processor). p is pre-clean if
and only if (Clean(p) ∨ (Sp = done ∧ Error(p))).

Definition 4.3. (Abnormal Processor). p is abnormal if
and only if Error(p).

Definition 4.4. (Linked Processors). A processor p is
linked to a processor q if and only if (Sp = q) ∧ (Parq =
p) ∧ ¬SetError(q) ∧ (Sq �= idle). p is called the parent of q.
Respectively, q is called the child of p.

Remark 2. Let p, q ∈ V such that p is linked to q. Variable
Sp (resp. Parq ) guarantees that q (resp. p) is the only child
(resp. parent) of p (resp. q). As Parr =⊥, by Definition 4.4,
r never has any parent.

Definition 4.5. (Linked Path). A linked path of G is a
path P = p1, . . . , pk such that Sp1 /∈ {idle, done} and ∀ i,
1 ≤ i ≤ k − 1, pi is linked to pi+1. We will note IE(P ) the
initial extremity of P (i.e. p1) and FE(P ) the final extremity
of P (i.e. pk). Moreover, the length of P (noted length(P )) is
equal to k.

For the next proof, we recall that a cycle is a path C satisfying
IE(C) = FE(C).

Lemma 4.1. In any configuration, every linked path of G is
elementary.

Proof. Assume that there exists a non-elementary linked path
P in an arbitrary configuration. Then, P contains a cycle
C = c1, . . . , ck . So, c1 = ck . From Definitions 4.4 and 4.5,
∀ i ∈ [1 . . . k −1], ci is linked to ci+1 i.e. Sci

= ci+1 ∧
Parci+1 = ci ∧ Sci+1 �= idle, and since SetError(ci+1) ≡
f alse, Visitedci

� Visitedci+1 . Now, because the inclusion
relationship is transitive, Visitedc1 � Visitedck

. Hence, Visitedc1

� Visitedc1 , a contradiction.

From now on and until the end of the paper, we only consider
maximal non-empty paths.

In the following lemma, we used the notion of distance
d(p, P) in a linked path. Let P be a linked path, let p ∈ P .
We define d(p, P) as follows:

• d(p, P) = 0, if p = IE(P );
• d(p, P) = 1 + d(q, P), where q is the parent of p in P ,

otherwise.

Lemma 4.2. Every linked path P satisfies VisitedFE(P ) ⊇
{Idp :: p ∈ P ∧ p �= IE(P )}.
Proof. Let γi ∈ C. Let P be a linked path in γi . To prove
this lemma, we show that ∀p ∈ P , Visitedp ⊇ {Idp′ ::
p′ ∈ P ∧ d(p′, P) ≤ d(p, P) ∧ p′ �= IE(P )} by induction
on d(p, P ).

Let f ∈ P such that d(f , P) = 0. By definition,
f = IE(P ). As P is elementary (see Lemma 4.1) and
maximal, there exists no processor f ′ ∈ P such that d(f ′, P) ≤
d(IE(P ), P) ∧ f ′ �= IE(P ). Thus, {Idf ′ :: f ′ ∈ P ∧ d(f ′,
P) ≤ d(f , P) ∧ f ′ �= IE(P )} = ∅ and the induction holds
(trivially, Visitedf ⊇ ∅).

Assume now that ∀p ∈ P , such that d(p, P) ≤ d (d ≥ 0),
p satisfies Visitedp ⊇ {Idp′ :: p′ ∈ P ∧ d(p′, P) ≤ d(p,
P) ∧ p′ �= IE(P )}.

Let q ∈ P such that d(q, P) = d + 1. As d(q, P) ≥ 1, by
Definitions 4.4 and 4.5, Sq �= idle ∧ ¬SetError(q). Then,
Idq ∈ Visitedq . By Definition 4.5, ∃p ∈ P such that p is linked
to q. Moreover, q �= r (since Parr =⊥, by Definition 4.4,
no processor can be linked to r). Now, since d(p, P) = d,
Visitedp ⊇ {Idp′ :: p′ ∈ P ∧ d(p′, P) ≤ d ∧ p′ �= IE(P )}
(by assumption). Moreover, as q �= r ∧ Sq �= idle ∧
¬SetError(q), Visitedp � Visitedq . Therefore, Visitedq ⊇
({Idp′ :: p′ ∈ P ∧ d(p′, P) ≤ d ∧ p′ �= IE(P )} ∪
{Idq}), i.e. Visitedq ⊇ {Idq ′ :: q ′ ∈ P ∧ d(q ′, P) ≤ d(q,
P) ∧ q ′ �= IE(P )}.

Thus, ∀ p ∈ P such that d(p) ≤ d + 1, Visitedp ⊇ {Idp′ ::
p′ ∈ P ∧ d(p′, P) ≤ d(p, P) ∧ p′ �= IE(P )}. In particular,
this property holds for FE(P ).

Definition 4.6. (Normal and Abnormal Linked Paths). A
linked path P satisfying Error(IE(P )) is said to be abnormal.
Respectively, we call normal linked path, every linked path
which is not abnormal. Obviously, a normal linked path P

satisfies IE(P ) = r.

Lemma 4.3. A normal linked path P satisfies VisitedFE(P ) ⊇
{Idp :: p ∈ P }.
Proof. Let γi ∈ C. Let P be a normal linked path in γi . By
Definition 4.6, IE(P ) = r. Moreover, by Definition 4.6, since
Sr �= idle ∧ ¬Error(r), Idr ∈ Visitedr . So, VisitedIE(P ) ⊇
{IdIE(P )}. Thus, we can prove this lemma by induction on
d(x, P ) like in the proof of Lemma 4.2.

We now introduce the notion of future of a linked path. We
call the future of a linked path P the evolution of P during a
computation. In particular, the immediate future of P is the
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FIGURE 2. Instances of immediate futures.

transformation supported by P after one step. Note that, P

may disappear after a step. Thus, by convention, we denote by
DeadP the fact that P has disappeared after a step.

Definition 4.7. (Immediate Future of a Linked Path). Let
γi �→ γi+1 be a step. Let P be a linked path in γi . We call
F(P ) the immediate future of P in γi+1 and we define it as
follows:

(i) if there exists a linked path P ′ in γi+1 which satisfies one
of the following conditions: (a) P ∩ P ′ �= ∅, or (b) in
γi , SFE(P ) = IE(P ′) and IE(P ′) executes Action F in
γi �→ γi+1 then F(P ) = P ′,

(ii) else, F(P ) = DeadP .

By convention, we state F(DeadP ) = DeadP .

Figure 2 depicts two types of immediate future. Consider,
first, Configurations i and ii. Configuration i contains one
linked path only: P = r, 1, 2. Moreover, Processor 3 has
Action F enabled in i and executes it in i �→ ii (i.e. 3 hooks
on to P ). Thus, the step i �→ ii illustrates the case (i)
(a) of Definition 4.7: in this execution, F(P ) = r, 1, 2, 3.
Configuration iii also contains one linked path only: P ′ = 1.
Then, in iii, Processor 1 has Action C enabled and Processor
2 has Action F enabled. These two processors execute C and
F respectively in iii �→ iv (1 unhooks from P ′ and 2 hooks
on to P ′). So, we obtain Configuration iv which illustrates the
case (i) (b) of Definition 4.7: in this execution, F(P ′) = 2.

Note that if only Processor 1 executes Action C from iii, P ′
disappears, i.e. F(P ′) = DeadP .

Definition 4.8. (Future of a Linked Path). Let e ∈ E ,
γi ∈ e, and P a linked path in γi . We define Fk(P ) (k ∈ N),
the future of P in e after k steps of computation from γi , as
follows:

(i) F 0(P ) = P ,
(ii) F 1(P ) = F(P ) (immediate future of P ),

(iii) Fk(P ) = Fk−1(F (P )) (future of P after k steps of
computation), if k > 1.

The following remarks and lemmas give some properties of
linked paths and their futures.

Remark 3. Let γi �→ γi+1 be a step. Let P be a linked path
in γi . ∀p ∈ V , p hooks on to P in γi �→ γi+1 if and only
if p executes Action F in γi �→ γi+1 and p = FE(F(P )) in
γi+1. As Parr is a constant equal to ⊥, r cannot hook on to
any linked path.

Remark 4. Let γi �→ γi+1 be a step such that there exists
a linked path P in γi . A processor p unhooks from P in
γi �→ γi+1 in the three following cases only:

(i) P is an abnormal linked path, IE(P ) = p and p

executes Action C,
(ii) Sp = done and its parent in P executes Action B

(p �= r),
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(iii) p = r, its child q satisfies Sq = done, and r sets Sr

to done by executing Action B. In this case, q is also
unhooked from P (Case (ii)); moreover, since r never
has any parent (see Remark 2), IE(P ) = r and setting Sr

to done involves that P disappears i.e. F(P ) = DeadP .

Remark 5. p (∈ V ) can unhook from the normal linked path
only by executing Action B (by q with Parp = q).

The following lemma allows us to claim that, during a
computation, the identities of processors which hook on to a
linked path P and its future are included into the V isited set
of the final extremity of the future of P . By checking Actions
B and F of Algorithms 1 and 2, this lemma is easy to verify:

Lemma 4.4. Let P be a linked path. While Fk(P ) �= DeadP

(with k ∈ N), VisitedFE(Fk(P )) contains exactly VisitedFE(P )

union the identities of every processor which hooks on to P

and its future until Fk(P ).

Lemma 4.5. For all linked path P , ∀ p ∈ V such that
Idp ∈ VisitedFE(P ), p cannot hook on to P .

Proof. Let γi �→ γi+1 be a step. Let P be a linked path in
γi . By Remark 3, p (∈ V ) hooks on to P in γi �→ γi+1
by executing Action F . By LockedF (p), SFE(P ) = p and
Idp /∈ VisitedFE(P ) in γi .

By Lemmas 4.4 and 4.5, we deduce the next lemma.

Lemma 4.6. For all linked path P , if p ∈ V hooks on to P ,
then p cannot hook on to Fk(P ), ∀k ∈ N+.

In the rest of the paper, we study the evolution of the paths. So,
many of the results concern P and Fk(P ) with k ∈ N. From
now on, when there is no ambiguity, we replace ‘P and Fk(P ),
∀k ∈ N’ by P only. Thus, we can reformulate Lemma 4.6 as
follows: during any computation, a processor p cannot hook
on to any linked path P more than once.

4.2. Proof assuming a weakly fair daemon

In this subsection, we assume a weakly fair daemon. Under this
assumption, the number of steps of any round is finite. So, as
we have defined the future of a linked path in terms of steps, we
can also evaluate the future of a linked path in terms of rounds.
Let e ∈ E . Let P be a linked path in γi (∈ e). We note FK

R (P )

the future of P , in e, after K rounds from γi .

We now show that the network contains no abnormal linked
path in at most N rounds, i.e. every abnormal path P of the
initial configuration satisfies FN

R (P ) = DeadP .

The following remark is used in the proof of Lemma 4.7.

Remark 6. During the step γi �→ γi+1, Processor p can set
Sp to q with q ∈ Neigp only if Sq = idle in γi (see Predicates
LockedF(p) and LockedB(p)).

Lemma 4.7. If Action C is enabled at p, it remains enabled
until p executes it.

Proof. Let γi �→ γi+1 be a step. Assume that a processor
p has its action C enabled in γi and its action C is disabled
in γi+1, but p does not execute it in γi �→ γi+1. Action C

of p is enabled in γi if and only if Clean(p) ∨ ((p �= r) ∧
NoRealParent(p)) ∨ SetError(p). Moreover, as p had Action
C enabled in γi , Sp �= idle in γi . So, we study the three
following cases:

• Clean(p) in γi . If p = r, then Action C is the only
enabled action of r in γi . Moreover, Clean(p) depends
on variables of r only (Clean(p) ≡ (Sp = done)). So,
if r does not execute Action C in γi �→ γi+1, then
Sr = done in γi+1 and Clean(p) remains true in γi+1, a
contradiction.

If p �= r, then SParp �= p ∧ Sp �= idle in γi . By
Remark 6, if p does not move in γi �→ γi+1, then
SParp �= p ∧ Sp �= idle in γi+1. Now, Action C is the
only enabled action of p in γi . So, if p does not execute
Action C in γi �→ γi+1, then Action C remains enabled
in γi+1, a contradiction.

• ((p �= r) ∧ NoRealParent (p)) in γi . This case is similar
to the previous case for p �= r. So, we also obtain a
contradiction.

• SetError(p) in γi .
Assume that (Idp /∈ Visitedp) ∨ (Sp /∈ {idle, done} ∧

IdSp ∈ Visitedp). In this case, SetError(p) is true due to
the variables of p only. Moreover, as Error(p), Action C

is the only enabled action of p in γi . So, p does not execute
Action C in γi �→ γi+1. Then, SetError(p) remains true
in γi+1, a contradiction.

Hence, SetError(p) ⇒ ((p �= r) ∧ (∃q ∈ Neigp ::
(Sq = p) ∧ (Parp = q) ∧ ¬(Visitedq � Visitedp))) in γi .
We can remark that SetError(p) depends on the states of
p and q. Then, as Error(p), Action C is the only enabled
action of p in γi . So, while q does not execute any action,
SetError(p) remains true. Processor q can only execute
Action C in γi �→ γi+1 (if Error(q)). Indeed, Action B of
q is disabled because of ChildError(q) and Action F of q

is disabled because Sq �= idle. Now, if q executes Action
C in γi �→ γi+1, then (Clean(p) ∨ NoRealParent(p)) is
true in γi+1. Hence, Action C remains enabled in γi+1, a
contradiction.

Theorem 4.2. The system contains no abnormal linked path
in at most N rounds.

Proof. Let e ∈ E . First, we can remark that the number of
abnormal linked paths cannot increase in e. So, let P be an
abnormal linked path of γ0, the initial configuration of e. By
Definition 4.6, in γ0, Error(IE(P )) holds. By Lemma 4.7,
Action C of IE(P ) is continuously enabled. As the daemon is
weakly fair, IE(P ) eventually executes Action C in at most one
round. Moreover, if F 1

R(P ) �= DeadP , then IE(F 1
R(P )) will
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be continuously enabled and so on. Thus, after each round,
at least one processor unhooks from P (while P does not
disappear). By Lemmas 4.5 and 4.6, only processors p such
that Idp /∈ VisitedFE(P ) (in γ0) can hook on to P and they can
do it at most once during the execution. Finally, by Remark 3
and Lemma 4.2, the number of processors which can hook on to
P during the execution is at most ((N − 1) − (length(P )− 1)),
i.e. (N − length(P )). Then, in the worst case, N rounds are
necessary (i.e. length(P ) + (N − length(P ))) to unhook the
processors of P in γ0 and those which will hook on. Thus,
FN

R (P ) = DeadP . Hence, after N rounds, the system contains
no abnormal linked path.

The following lemmas and theorems allow to prove that r
eventually executes Action F (the initialization action).

Lemma 4.8. For every normal linked path P , the future of P

is DeadP after at most 2N − 2 actions on it.

Proof. Let e ∈ E . Let γi ∈ e. Assume that there exists a
normal linked path P in γi . First, we can remark that the future
of P is either a normal linked path or DeadP . Moreover,
by Remarks 3 and 5, each action on P is either Action F or
Action B. By Lemmas 4.5 and 4.6, only processors p such that
Idp /∈ VisitedFE(P ) (in γi) can hook on to P and they can do it
at most once during the execution. By Lemma 4.3, in the worst
case, the number of processors which hook on to P during the
execution is N − length(P ). Then, after N − 2 processors
unhooked from P (i.e. length(P ) + (N − length(P )) − 2
actions B on P ), P satisfies length(P ) = 2. In this case,
only one action can be executed on P : the parent of FE(P )

(i.e. IE(P )) can execute Action B. Now, by Lemma 4.4,
VisitedFE(P ) = {Idq :: q ∈ V }. So, by executing Action B,
IE(P ) sets SIE(P ) to done (NextIE(P )). Thus, as explained in
Remark 4, P disappears. Hence, in the worst case, the future of
P isDeadP afterN−length(P )+ (N −2)+1 actions which is
maximal if initially length(P ) = 1 i.e. 2N − 2 actions.

Lemma 4.9. Let P be a normal linked path. If there exists no
abnormal linked path, F 2N−1

R (P ) = DeadP .

Proof. Let e ∈ E . Let γi ∈ e such that there exist only one
linked path in γi : the normal linked path P . In every con-
figuration reached from γi , the system contains no abnormal
linked path. So, the system can only contain pre-clean proces-
sors, idle processors and a normal linked path (at most one).
Now, all the pre-clean processors have Action C continuously
enabled (see Lemma 4.7) and, as the daemon is weakly fair,
they execute Action C in at most one round. Thus, after one
round, if there exist some pre-clean processors, then they have
been generated by the normal linked path. Hence, ∀k ≥ 1, if
Fk

R(P ) �= DeadP , then the identity of every pre-clean proces-
sor q belongs to VisitedFE(Fk

R(P )) (see Remarks 4 and 5, and

Lemma 4.4). So, ∀k ≥ 1, if Fk
R(P ) �= DeadP , two cases are

possible at the beginning of the k + 1th round from γi :

• SFE(Fk
R(P )) = done. Let p be the parent of FE(F k

R(P )).
First, there does not exist any abnormal linked path, so,
|Predp| = 1. Then, from the above discussion and
Lemma 4.3, every pre-clean processor and every pro-
cessor of Fk

R(P ) belongs to VisitedFE(Fk
R(P )). Moreover,

ChildVisitedp = VisitedFE(Fk
R(P )). Thus, ∀q ∈ Neigp

such that Idq /∈ ChildVisitedp, Sq = idle. Hence, p

satisfies Backward(p) ∧ ¬LockedB(p) and Action B is
continuously enabled because, except p, only pre-clean
processors can execute an action: Action C.

• SFE(Fk
R(P )) �= done. Let p such that p = SFE(Fk

R(P )). As
previously, |Predp| = 1 and ∀q ∈ Neigp such that Idq /∈
PredVisitedp, Sq = idle. Hence, p satisfies Forward(p)

∧ ¬LockedF(p) and Action F of p is continuously
enabled.

Then, at the beginning of each round, exactly one action on the
normal linked path is continuously enabled until the normal
linked path disappears. In the worst case, one action is executed
on the normal linked path by a round. Thus, by Lemma 4.8,
F

1+(2N−2)
R (P ) = DeadP , i.e. F 2N−1

R (P ) = DeadP .

By Theorem 4.2 and Lemma 4.9, follows:

Theorem 4.3. For all normal linked paths P , F 3N−1
R (P ) =

DeadP .

Theorem 4.4. From any initial configuration, r executes
Action F after at most 3N rounds.

Proof. By Theorems 4.2 and 4.3, from any initial configuration,
the system needs at most 3N −1 rounds to reach a configuration
γi satisfying ∀p ∈ V , Sp ∈ {idle, done}. In γi , ∀p ∈ V such
that Sp = done, we have, SParp �= p. So, every p has Action
C continuously enabled (by Lemma 4.7). As the daemon is
weakly fair, after one round, ∀p ∈ V , Sp = idle. Thus, r is the
only enabled processor and Action F is the only enabled action
of r. Hence, from any initial configuration, the root executes
Action F after at most 3N rounds.

The next theorem proves that, once initiated by r (Action F ),
the protocol behaves as expected.

Theorem 4.5. From any configuration where r executes
Action F , Specification 1 holds.

Proof. Assume that the system starts from a configuration
where ∀p ∈ V , Sp = idle. Let us call it the idle configuration.
From such a configuration, r creates a normal linked path by
Action F and this path is the only linked path in the network.
So, each time a processor executes Actions F or B it makes
progress to the visiting phase of the normal linked path. Now,
each time a processor p executes Actions F or B it knows,
thanks to Visitedp, which of its neighbors are visited or not
(see explanations provided in Section 3). So, by Macro Nextp
of Actions F or B, either p sets Sp to done because all its
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neighbors are visited (in this case, IDs of all its neighbors
are in Visitedp) or p sets Sp to q such that q is the minimal
non-visited neighbor of p by ≺p (i.e. the minimal neighbor
of p by ≺p such that Idq /∈ Visitedp). Thus, starting from
the idle configuration, a traversal is performed in the network
(by the normal linked path), this traversal follows the first DFS
order (Definition 2.4), and the termination of the traversal is
eventually detected by r when setting Sr to done. Hence,
starting from the idle configuration, the system runs according
to Specification 1.

If the system starts from an arbitrary configuration, then it
may contain some pre-clean processors and abnormal linked
paths. But we now show that these pre-clean processors and
abnormal linked paths can only slow down the progression of
the normal linked path, P , (generated when r has executed
Action F ) and, despite these items, P even progresses in
the network in the same way than if it starts from an idle

configuration. To that goal, assume that r executes Action F in
γ �→ γ ′. By Action F , r designates its minimal neighbor by ≺r

as its successor (indeed, by ¬LockedF (r), r executes Action
F only if ∀p ∈ Neigr , Sp = idle). Then, at each configuration
reached from γ ′ (included γ ′), two cases are possible according
to SFE(P ):

• SFE(P ) = p i.e. FE(P ) designates p as successor. In this
case, no processor of P is enabled while p does not hook
on to it (Action F ). Thus, P ‘waits’ until p hooks on to
it. However, p cannot hook on to P while it satisfies one
of the three following conditions:

(i) p has several predecessors,
(ii) p is not idle,

(iii) p has one predecessor only but one of its non-
visited neighbors is not idle. (By Lemma 4.4,
with PredVisitedp, p knows the set of the visited
processors by P .)

Clearly, these conditions are satisfied due to the existence
of pre-clean processors and/or abnormal linked paths.
Now, we know that, on the one hand, the pre-clean
processors eventually clean themselves (Action C is
continuously enabled, see Lemma 4.7) and, on the other
hand, the system does not contain any abnormal linked
path in a finite time (Lemma 4.2). So, p eventually hooks
on to P and p designates a successor among its non-visited
neighbors (i.e. neighbors q such that Idq /∈ Visitedp), if
any, w.r.t. ≺p (Macro Nextp).

• SFE(P ) = done. In the same way, when FE(P ) satisfies
SFE(P ) = done, the visiting phase from FE(P ) is
terminated and its parentq must continue the visiting phase
by designating a new successor, if any, by Action B. Now,
q is the only processor of P which can eventually execute
an action (Action B) and it waits until all its non-visited
neighbors become idle (with ChildVisitedq , q knows the
set of the visited processors by P , see Lemma 4.4).
Hence, like in the previous case, q eventually executes

Action B: q designates a successor among its non-visited
neighbors, if any, w.r.t. ≺q (Macro Nextq ).

Thus, starting from any arbitrary configuration, despite the pre-
clean processors and the abnormal linked paths that may exist,
the normal linked path progresses in the same way than if it starts
from the idle configuration. Hence, after r executes Action F ,
the execution always satisfies Specification 1.

From Remark 1, Theorems 4.4 and 4.5, follows:

Theorem 4.6. Algorithm snapDFS is snap-stabilizing for
Specification 1 under a weakly fair daemon.

4.3. Proof assuming an unfair daemon

We now show that our protocol works assuming an unfair
daemon. In Section 4.2, we shown that it works assuming
a weakly fair daemon (Theorem 4.6). So, according to
Theorem 4.1, it remains to show that any execution of
Algorithm snapDFS contains no infinite round.

Lemma 4.10. The future of an abnormal linked path P is
DeadP after at most 2N − 1 actions on it.

Proof. Let e ∈ E . Let γi ∈ e. Assume that there exists an
abnormal linked path P in γi . First, we can remark that every
future of P is either an abnormal linked path or DeadP . As in
the proof of Theorem 4.2, the number of processors which can
hook on to P during the execution is at most (N − length(P )).
Then, in the worst case, N processors must be unhooked from
P , i.e. length(P ) + (N − length(P )). So, N actions B or C

must be executed on P (see Remark 4) to unhook the processors
of P and those which will hook on. Thus, after these N actions,
the future of P is DeadP . Hence, in the worst case, the future of
P is DeadP after N − length(P ) actions F (in the worst case,
length(P ) = 1) and N actions B or C, i.e. 2N −1 actions.

Lemma 4.11. Every round of Algorithm snapDFS has a
finite number of steps.

Proof. Assume, by the contradiction, that there exists an
execution e ∈ E containing an infinite round R =
(γ0, . . . , γi, . . .).

Assume then that some abnormal linked paths existing in
γ0 never disapppear. So, the system eventually reaches a
configuration γi ∈ R in which there only exist abnormal
linked paths which never disappear. Also, as every abnormal
linked path disappears after a finite number of actions on it
(Lemma 4.10), the system eventually reaches a configuration
γj ∈ R (with j ≥ i) from which no actions are executed on
these abnormal linked paths forever. From γj , the actions can
only be executed on:

• Idle processors. An idle processor p can only execute
Action F to hook on to the normal linked path or create a
new normal linked path (when p = r).

• Pre-clean processors. A pre-clean processor can only
execute Action C to clean it.
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• A normal linked path P . P disappears after a finite number
of actions on it (Lemma 4.8). Also, before disappearing,
it generates a finite number of pre-clean processors only.
Indeed, the pre-clean processors generated by P have
belonged to it before and, until P disappears, only a finite
number of processors can hook on to it (Lemma 4.6).

So, pre-clean processors cannot prevent forever actions to
be executed on P (i.e. idle processors hooking on to P by
Action F or processors of P executing Actions B). Now, by
Lemma 4.8, P disappears after a finite number of actions on
it. Hence, the only way to indefinitely extend the round R is
that r executes Action F infinitively often. Now, between two
actions F executed by r, the system satisfies Specification 1
(Theorem 4.5). In particular, this implies that the normal linked
path P ′ created by r at the first execution of Action F has
visited all the processors of the networks, especially, those in
the abnormal linked paths. Now, a processor p of an abnormal
linked path can hook on to P ′ only if Sp = idle (see Remark 3
and Predicate Forward(p)), i.e. only if it has left its abnormal
linked path by Action C. As we stated no action is executed on
the abnormal linked path from γj , we obtain a contradiction.
This contradiction implies that the previous assumption: ‘some
abnormal linked paths never disappear’ is false.

So, there exists a configuration γk in which there exists no
abnormal linked path. Of course, from this configuration, there
always exists at most one linked path: the normal linked path.
Similar to the above discussion, we can deduce that the only
way to indefinitely extend the round R is that r executes Action
F infinitively often. Now, between two Actions F executed at
r, all processors are visited. So, each processor executes actions
infinitively often. In particular, this implies that each enabled
processor eventually executes an action (disabling action or
protocol action). Hence, there exists no infinite round in e, a
contradiction.

By Theorems 4.6 and 4.1, and Lemma 4.11, the following
theorem holds.

Theorem 4.7. Algorithm snapDFS is snap-stabilizing for
Specification 1 assuming an unfair daemon.

4.4. Complexity analysis

Space complexity. By checking Algorithms 1 and 2, follows:

Theorem 4.8. The space requirement of Algorithm
snapDFS is O(N × log(N) + log(�)) bits per processor.

Time complexity. By Lemma 4.4, we already know that the
delay to start a f DFS wave is O(3N ) rounds. The next
lemma gives us the complexity in terms of rounds to execute a
complete f DFS wave. It follows from Lemma 4.9, Theorems
4.2 and 4.4.

Theorem 4.9. From any initial configuration, a complete
f DFS wave is executed in at most 5N − 1 rounds.

Since Algorithm snapDFS is proven under the unfair daemon,
we can now evaluate its step complexities.

Theorem 4.10. From any initial configuration, r executes
Action F in O(N2) steps.

Proof. In the initial configuration, the system can contain
O(N) pre-clean processors and O(N) linked paths. Then,
every linked path can generate O(N) pre-clean processors.
Indeed, the pre-clean processors generated by a linked path
have belonged to it before and, until a linked path disappears,
every processor can hook on to it at most once (see Lemma 4.6).
Finally, every pre-clean processor cleans it by executing Action
C. And, every linked path disappears after O(N) actions on it
(see Lemmas 4.8 and 4.10). Hence, in the worst case, after
O(N2) steps, r is the only enabled processor and executes
Action F in the next step.

Theorem 4.11. From any initial configuration, a complete
f DFS wave is executed in O(N2) steps.

Proof. The reasoning is similar to the proof of Theorem 4.10.

Finally, we prove that the complexity result obtained in
Lemma 4.10 is due to the first fDFS wave only. Indeed, as
shown below, the time complexity of the other waves is O(N)

steps instead of O(N2).

Lemma 4.12. After the first f DFS wave, the system contains
no abnormal linked path.

Proof. Assume that some abnormal linked paths does not
disappear during the first f DFS wave. Let P be one of this
paths and P ′ be the normal linked path initiated by r at the
beginning of the first f DFS wave.

• Assume that P does not progress anymore, i.e. no
processor hooks on to it. Then, as P ′ visits the processors
in f irst DFS order (By Theorem 4.7, Algorithm
snapDFS satisfies Specification 1), P ′ eventually forces
the processors of P to unhook from it in order to visit them.
So, P eventually disappears (i.e. its future is eventually
DeadP ), a contradiction.

• Assume that some processor hooks on to P during the first
f DFS wave.

Assume now that only processors which have been not visited
by P ′ hook on to P . As the number of these processors
decreases (by Theorem 4.7, Algorithm snapDFS satisfies
Specification 1), P eventually does not progress anymore. So,
as explained before, P ′ eventually forces the processors of
P to unhook from it in order to visit them and P eventually
disappears, a contradiction.

So, some processor visited by P ′ (during the first f DFS

wave) eventually hooks on to P . Let q be the first processor
visited by P ′ which hooks on to P . Assume that q hooks on
to P in γ �→ γ ′. q satisfies Sq = idle in γ (see Action F ).
So, q unhooked from P ′ in order to satisfy Sq = idle. By
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Remark 4, q satisfies Sp = done when it unhooked from P ′.
Moreover, q executes Sq := done only if all its neighbors have
been visited by P ′ (see Actions F and B, and Lemma 4.4).
So, in γ , every neighbor of q has been already visited by P ′.
Now, in γ , ∀p ∈ P , p is not visited by P ′ (by assumption).
In particular, FE(P ) is not visited by P ′ in γ but FE(P ) ∈
Neigq , a contradiction.

By Lemmas 4.8 and 4.12, the following result holds.

Theorem 4.12. After the first f DFS wave, the other f DFS

waves are executed in O(N) steps.

5. CONCLUSION

We presented the first snap-stabilizing depth-first search
wave protocol for arbitrary rooted networks assuming an
unfair daemon, i.e. the weakest scheduling assumption. The
protocol does not use any pre-computed spanning tree but
requires identities on processors. The snap-stabilizing property
guarantees that as soon as the root initiates the protocol, every
processor of the network will be visited in DFS order. After the
end of the visit, the root eventually detects the termination of
the process. Furthermore, as our protocol is snap-stabilizing, by
definition, it is also a self-stabilizing protocol which stabilizes
in 0 round (resp. 0 step). Obviously, our protocol is optimal in
stabilization time. Our protocol executes a complete traversal
of the network in O(N ) rounds and O(N2) steps respectively.
We also shown that after the first DFS wave, the other waves
are executed in O(N ) steps only. The memory requirement of
our solution is O(N × log(N ) + log(�)) bits per processor. In
a future work, we would like to design a snap-stabilizing DFS
wave protocol (for arbitrary rooted networks) with a memory
requirement independent of N .
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