A Self-Stabilizing 3-Approximation for the Maximum
Leaf Spanning Tree Problem in Arbitrary Networks

Sayaka Kamét, Hirotsugu Kakugaw&™*, Stéphane Devism&sand Sébastien
Tixeuil****

1 Dept. of Information Engineering, Hiroshima Universitgpan,
E-mail:s- kanei @e. hi roshi ma-u. ac.jp
2 Dept. of Computer Science, Osaka University, Japan,
E-mail: kakugawa@ st . osaka-u. ac.jp
3 Université Joseph Fourier, Grenoble |, France, E-n@tiephane. Devi smes@ nag. f r
4 LIP6 UMR 7606, Université Pierre et Marie Curie, France,
E-mail: Sebast i en. Ti xeui | @i p6.fr

Abstract. The maximum leaf spanning tree (MLST) is a good candidatedar
structing a virtual backbone in self-organized multihopelss networks, but
is practically intractable (NP-complete). Self-staldtipn is a general technique
that permits to recover from catastrophic transient fasun self-organized net-
works without human intervention. We propose a fully dimited self-stabilizing
approximation algorithm for the MLST problem on arbitraoptlogy networks.
Our algorithm is the first self-stabilizing protocol thasisecifically designed for
the construction of an MLST. Itimproves other previous-sgdilizing solutions
both for generality (arbitrary topology grapts.unit disk graphs or generalized
unit disk graphs, respectively) and for approximationaasis it guarantees the
number of its leaves is at least3 of the maximum one. The time complexity of
our algorithm isO(n?) rounds.

1 Introduction

Multihop wireless ad hoc or sensor networks have neithedfpteysical infrastructure
nor central administration. They typically operate in d-sefjanizing manner that per-
mits them to autonomously construct routing and commuigingtrimitives that are
used by higher level applications. The construction oingrbackbones infrastructures
usually makes use of graph related properties over the grajited by communica-
tion capabilitiesi¢te. nodes represent machines, and edges represent the aiyilityof
machines within wireless range to communicate) of the netweor example, a con-
nected dominating set (CDS) is a good candidate for a vibaekbone since it guaran-
tees reachability of every node yet preserves energy. Thénman leaf spanning tree
(MLST) problem consists in constructing a spanning tre@ wie maximum number of
leaves. Finding the MLST is tantamount to finding the minimG®S: letG = (V,E)

* This work is supported in part by a Grant-in-Aid for Young &tlists ((B)22700074) of JSPS.
** This work is supported in part by Kayamori Foundation of hnfiational Science Advance-
ment, a Grant-in-Aid for Scientific Research ((B)20300042)SPS, and “Global COE (Cen-
ters of Excellence) Program” of the Ministry of Educationyl@re, Sports, Science and Tech-
nology, Japan.
*** This work is supported in part by ANR projects SHAMAN and ALBSIN

be a graph anddgG) be the size of the minimum CDS &, then|V|— cdgG) is the
number of leaves of the MLST @& [1].

One of the most versatile techniques to ensure forward ergoof distributed
systems and networks is that sélf-stabilization[2]. A distributed algorithm is self-
stabilizing if after faults and attacks hit the system aratplit in some arbitrary global
state, the system recovers from this catastrophic situatithout external€.g.human)
intervention in finite time. As self-stabilization makesmgpothesis about the nature or
the extent of the faults (self-stabilization only dealshitie effect of the faults), it can
also be used to deal with other transient changes while ttveonle is being operated
(topology change, message loss, spontaneous resets, etc.)

1.1 Related Works

In [3], Galbiati et al. proved that the MLST problem is MAX-SNP-hartde., there
existse > 0 such that finding approximation algoritRmwith approximation ratio % €
is NP-hard. In [1], Solis-Oba proposed a 2-approximatigogathm, and in [4], Luet
al. proposed a 3-approximation algorithm. Note that none ofetalgorithms [1, 4] is
distributed, not to mention self-stabilizing.

Spanning tree construction is one of the main studied prnobli& self-stabilizing
literature. One of the main recent trends in this topic isrovfae self-stabilizing pro-
tocols for constrained variants of the spanning tree prabdeg. [5], [6], [7], etc. None
of those metrics give any guarantee on the number of leaves.

In [8], Guhaet al. showed that the existence of an algorithm for finding the min-
imum CDS with approximation ratior implies the existence of an algorithm of the
MLST problem with approximation ratioc2 In turn, there exist self-stabilizing ap-
proximation algorithms for finding the minimum CDS. In [9]akheiet al. proposed a
self-stabilizing 76-approximation algorithm for the CDS problem in unit diglaghs,
i.e, this algorithm is also an approximation algorithm for th&€ 3T problem with ap-
proximation ratio 13 (by [8]). However, this algorithm [9] does not guaranteg an
approximation ratio in general topology networks. The sgpent work of Raeét
al. [10] proposed a self-stabilizing 20 R/ In(2cog/5)) |-approximation algorithm
in generalized disk graphs whelRe= rmay/rmin @ndrmax (resp.rmin) is the maximum
(resp. minimum) transmission range. This algorithm is gr@ximation for the MLST
problem with approximation ratio 40hR/In(2cog1/5)) |. Again, this algorithm [10]
does not guarantee any approximation ratio in general ¢gyatetworks.

1.2 Our contribution and outline of this paper

We propose a fully distributed self-stabilizing approxtioa algorithm for the MLST
problem on arbitrary topology networks. Its time complgxit O(n?) rounds. To our
knowledge, our algorithm is the first self-stabilizing mrool that is specifically de-
signed for the construction of MLST. It improves over pradcelf-stabilizing deriva-
tions both for generality (arbitrary topology grapls unit disk graphs [9] (resp. gen-

5 An approximation algorithm for the MLST problem is an algm that guarantees approxi-
mation ratio| Topt|/|Taig|, Where| Ty 4| is the number of leaves obtained by the approximation
algorithm in the worst case andp| is the number of leaves of the optimal solution.

eralized disk graphs [10])) and for approximation ratios$315.2 [9] (resp. 40 InR /
In(2 cog1y/5)) | [10])).

The improved approximation ratio permits to improve siguaifitly the load and the
energy consumed by the virtual backbone. The improved gétyeon the communi-
cation graph enables our scheme to be useful even in netilmksannot be modeled
by (generalized) disk graphs (such as wired networks).

This paper is organized as follows. In Section 2, we formdégcribe the system
model and the distributed MLST problem. In Section 3, we @nésur self-stabilizing
approximation algorithm for the distributed MLST probleamd prove the correctness
and analyze the time complexity of the proposed algorithetalls of proofs are omit-
ted because of limitation of space, and they will appear efthl paper. Concluding
remarks can be found in Section 4.

2 Preliminaries

LetV = {Py,P,,...,P,} be a set oh processes anl CV x V be a set of bidirectional
communication links in a distributed system. Each linksisiaordered pair of distinct
processes. Then, the topology of the distributed systeepi®esented as an undirected
graphG = (V,E). We assume thas is connected and simple. In this paper, we use
“graphs” and “distributed systems” interchangeably. Weuase that each process has
unique identifier. By, we denote the identifier of procel3sfor each procesB.

We callsubgraptof G any graplG’ = (V/,E’) suchthav’ CV,E' CE, andvR, P;,
(R,P;) € E' = R,P; € V'. By N;, we denote the set of neighboring processeg.dfor
each procesB,, the setN; is assumed to be a constant. We definedbgreeof P, as
the number of its neighbors. The degredoih the subgrapl®’ is the number of edges
of E’ incident toR,. We assume that the maximum degreé&df at least 3. We define
thedistancebetweerP, andP; as the number of the edges of the shortest path between
them.

As communication model, we assume that each process cartheddcal state
of neighboring processes. This model is called stege reading modelAlthough a
process can read the local state of neighboring processasiriot update them; it can
only update its local state.

A set of local variables defines the local state of a procesQ;Bwve denote the local
state of each process € V. A tuple of the local state of each procé€s,Qz,...,Qn)
forms aconfigurationof a distributed system. L&t be a set of all configurations.

We say that? is privilegedin a configuratiory if and only if at least one of the
conditions of the algorithm is true ari®l must change the value of its variablesyin
An atomic step of each proceBsconsists of following three sub-steps: (1) read the
local states of all neighbors and evaluate the conditiontheglgorithm, (2) compute
the next local state, and (3) update the local state.

Executions of processes are scheduled by an externaldisttheduler calledae-
mon That is, the daemon decides which processes to execute imettt step. Here,
we assume distributed weakly fair daemomistributed means that, at each step, the
daemon selects an arbitrary non-empty set of privilegedgsges, and selected pro-
cesses executes the atomic step in paralNelkly fairmeans that every continuously
privileged process will be eventually executed.

For any configuration, lety’ be any configuration that followg Then, we denote
this transition relation by — y’. For any configurationy, a computation Estarting
from yp is a maximal (possibly infinite) sequence of configurati&ns: yo, i1, Yz, ...
such thaty — w41 for eacht > 0.

Definition 1 (Self-Stabilization). Let " be a set of all configurations. A system S is
self-stabilizingwith respect to\ such thatA C I if and only if it satisfies the following
two conditions:

— Convergence: Starting from an arbitrary configuration,@nfiguration eventually
becomes one in, and

— Closure: For any configuratioh € A, any configuratiory that followsA is also in
A as long as the system does not fail.

Eachy € A is called alegitimateconfiguration. Conversely, any configuration that is
not legitimate is saidllegitimate a

A spanning tree T= (V' E’) is any acyclic connected subgraph &fsuch that
V' =V andE’ C E. A leaf of a spanning tree is any process of degree one. Generally,
the MLST problem is defined as follows.

Definition 2. The maximum leaf spanning treie a spanning tree whose number of
leaves is maximum. a

We consider solving the MLST problem in distributed systémghis paper. We
assume that each process does not know global informatitheafetwork. Under this
assumption, we defined the distributed MLST problem asylo

Definition 3. Let G= (V,E) be a graph that represents a distributed system. Then, the
distributed maximum leaf spanning tree problisrdefined as follows.

— Each processj@nust select a neighbor on G or itself (if the father pfdR, then
P is aroof) as its father on a spanning treg,Tand output it, and
— The spanning tree,f is a maximum leaf spanning tree of G. O

3 Proposed Algorithm

Our algorithmSSMLST is based on the sequential approximation algorithm in [4].

We calltreeany subgrapf of G that has no cycle and more than one process. We
construct disjoint tree$y, Ty, - - -, whereT; = (Vi,E;), V. =V1UVLU---, |Vi| > 1, and
VinV; = 0 for anyi and j. We callforestany set of tree¢Ts, To, - - }. Note that some
process? can be alone and does not join the forést, S = ({R},0), in this caseR, is
calledsingleton _

Let dk(G) be the set of nodes that have degkemn G, and letdy(G) be the set of
nodes that have degree at lelasin G.

Definition 4. ([4]) Let T be atree of G. Ifi3(T) is not empty and every node in(@)
is adjacent in T to exactly two nodesd(T), then let T bdeafytree. Let T,To,---
be disjoint trees on G. If each Ty, - - is leafy, then F= {T1,To,--- } is aleafy forest
If F is not a subgraph of any other leafy forest of G, then wé Eamaximal leafy
forest a

In [4], Lu et al. showed the following theorem.

Theorem 1. ([4]) Let F be a maximal leafy forest of G, and lef,Tbe a spanning
tree of G such that F is a subgraph ofTLet Tspanbe any spanning tree of G. Then,
|d1(Tmi)| = |d1(Tspan)|/3.

Our algorithmSSMLST first constructs a maximal leafy forest (MLF) of G, and

then, it constructs a spanning trég of G that is a supergraph of the MLF. Hendgy
is an approximation of the MLST with ratio 3 according to Tha 1.

1.

N

The proposed algorithm is a fair composition [11] of fourdas.

In the first layer, each proceBscomputes its degree; on G and the maximum
coupleMAX = (Do, Po) of degreeDg and IDP on G, where(D;,R) > (Dj,Pj) =

[Di > D; Vv (Dj=DjAR > Pj)| for each proces8 andP;. For this layer, we can use
a self-stabilizing leader election algorithm for arbiyraetworks, for example [12]
(The time complexity of [12] i<O(n) rounds.). In such an algorithm, the process
with the minimum or the maximum ID is elected as a leader. mdglified to elect
the process with the maximum val@@o, Py) for our purpose.

. The second laye8SMLF (see subsection 3.1) computes an MLF&n
. The third layelSSTN (see subsection 3.2) modifies the cost of each link based on

the MLF.

. The last layer computes a minimum cost spanningTxgbased on the costs com-

puted bySSTN. Such costs makgy, includes the MLF. For this layer, we can use
one of existing self-stabilizing algorithme,g, [6] (The time complexity of [6] is
O(n?) rounds.).

3.1 The Second Layer: Construction of the Maximal Leafy Forst

We now propose a self-stabilizing algorithm call@8MLF that constructs of a maxi-
mal leafy forest (MLF) ofG. The formal description d6SMLF is shown in Fig. 1.

Each procesB, computes the following outputs:

root; is set to0 if B, is a singleton. Otherwis®, belongs to some trek androot;
is set to the coupléDy, P), whereP; is the root of the tree d®.

father, is set to the coupléDj, P;) whereP; is the father oR. If B, is neither a root
nor a singleton, theR; € N;. In this case, we say thaPj is a father of P and “R,
is a child of B”. In either casesH; is a singleton or the root of its tred}; = P.
Note that, iNSSMLF, each process distinguishes its incident link tiather, as its
parent-link in its tree.

rank; is the distance frorm® to the root of its tree.

— MaxChildren: the expected number of childreaf B in its tree. (We shall explain

that later.)

In the following explanations, we cdtrge treeany tree rooted at a process with

a large couple of degree da and ID. Also, we call echild-candidateof process?,
the neighbor o that may become a child & in the future,e.g, singleton, process
belonging to a tree that is not larger than the treB pbr process belonging to the tree

6

Constant (Input)

N;: the set of neighbors d? on G.

Dj: the degree oP, on G (an output from the first layer).

MAX: the maximum couple of degree and ID Gi(an output from the first layer).
Variable (Output)

root; = (Dr, P) (0 < root; < MAX): P is the root of tred to whichP, belongs.
father;: the couple(Dj, P;) of the fatherP; of B onT.

rank;: the distance from the root @ onT.

MaxChildren: the number of children and child-candidatesTan

Macro
MaxRoot = max{root;, (Dj,P) | P; € Ni}

. -1 (In case thatMaxRoof = (D;, R))
MinRank = min{rank; | P; € N; Aroot; = MaxRoot}(otherwise)
CCand =

{P; € N | rootj = 0V rootj < MaxRootV (rootj = MaxRoot Arankj > MinRank +2)}
. [D (In case thatD;,P) = MAX)
CountMaxChildren= { |{P} € Ni | father, = (Di,R)}| + |CCand|(otherwise)
FCand = {Pj € N; | rankj +1 < nA (MaxChildrery > 3v
(MaxChildrery = 2 A father; # (Dj,Pj) Arootj > (Dj,Pj)))}
Algorithm for process B:

do forever

1 if (root; > MAX){

2 rootj ;= 0

3 } elseif(MaxChildren # CountMaxChildrep){
4 MaxChildren := CountMaxChildref

I* For the roots. */

5 } elseif(MaxChildren > 3A MaxRoot = (Dj, R)){

6 root; := (Dj, R); rank; := 0; father, := (D;,R);

* For other nodes in tree.*/

7 } elseif(3P; € FCand, [root; = MaxRoof A rank; = MinRank]){

8 root; := MaxRoot;
9 rank; := MinRank +1;
10 father := max{(Dj, P;) | P; € FCand Aroot; = rootj Arankj = rank — 1};

11 } elseif(MinRank + 1 < nA MaxChildren > 2A MaxRoot # (D, P)){
12 root; := MaxRoot;

13 rank; ;== MinRank +1;

14 father := max{(Dj,Pj) | Pj € Nj Aroot; = rootj Arankj = rank — 1};

15 } elseif(3P; € FCand, [root; = MaxRoof]){

16 root; := MaxRoot;

17 rank; := min{rank;j | P; € FCand Arootj = root; } +-1;

18 father; := max{(Dj,P;) | P; € FCand A root; = rootj A rankj = rank — 1};
19 } elseif(|FCand| > 1){

20 root; := max{root; | P; € FCand};

21 rank; := min{rank; | P; € FCand Arootj = root; } +1;

22 father; := max{(Dj,P;) | P; € FCand A root; = rootj A rankj = rank — 1};
23 } else{

[* For singleton.*/

24 root; := 0; rank; := 0; father, := (D, P);

25 }

}

Fig. 1. SSMLF: Self-stabilizing algorithm for construction of the maxhieafy forest

of B that can minimize their height in the tree by changing itedatoR,. Theexpected
number of childrens the number of its children and child-candidates. EaclegssP,
counts the number of expected number of children to makerégeléafy, and joins a
tree as large as possible. That isRifs the root and its tree is larger than the one of its
neighbors, then all its neighbors will join the treeRbf

According to Definition 4 SSMLF constructs of a maximal leafy forest (MLF) of
G by assigning its outputs following Definitions 5 and 6.

Definition 5. Let sdeg be the degree of process i its tree, i.e., sdgg= |{Pj €
N | fatherj = (Di,R)}| +|{P; € N | father, = (Dj,P;)}|. O

Definition 6. Let Tx = (Vk, Ex) be a tree rooted at a process Where E is a set of links
represented by the value of fathef each process;Pf ik CV and sdeg> 3 holds.
Consider each process Buch that sdeg= 2 on . If sdeg > 3 and sdeg > 3 where
father = (D¢,Ps) and father = (Di,R), then T is leafy tree. If each tree TTy,---
is disjoint and leafy on G, then the sff;,T,,--- } is a leafy forest F. If F is not a
subgraph of any other leafy forest, then F is maximal leafgs a

In order to evaluate its output variables, a prodgssses several macros:

— MaxRoot returns the largest value in theot-variables ofP, and its neighbors.

— CCand returns the set of child-candidatesRf

— CountMaxChildrenreturns the expected number of childrerPpf

— FCand returns thdather candidatesf P, that is, the neighbors th& can choose
in order to make its tree leafy,e., processP; such thatrank; is not obviously
inconsistent and that has a chance of holdidgg > 3.

— MinRank returns tha@ank-value of the (current or future) father Bfin its tree. (If
P, is the root of its tree, theMinRank returns -1 so tha® setsrank to 0.)

Now, we give more details abo®SMLF. Consider a proceds. In Lines 1-2, if
the value ofoot; is obviously inconsistent.e., root; > MAX, thenP, resets its value to
0. In Lines 3-4 P updatesMaxChildren, if necessary. Then, ibot; andMaxChildren
are correctly evaluated® must choose its status amorapt, internal node or leabf
a tree andsingleton and updates its variablesot;, rank;, andfather, in consequence.
That is what it does in Lines 5-24. Below, we detail thesedine

— In Lines 5-6, ifMaxChildren > 3 andP, can become a root of large tree, thgn
becomes a root.

— InLines 7-10P selects a proce$} such that the distance from the rooRgis the
minimum on a largest tree dather; only if P; has a chance of holdirggeg > 3.
That is,P; € FCand.

— InLines 11-14, iff has a chance of holdirggieg > 3, thenP, selects a proce$y
such that the distance from the rooRpis the minimum on a largest tree fagher;
even ifsdeg < 3, in order to make the tree leafy. By the conditiorMihRank +
1 < n, B does not select a proceBs such that the value afank; is obviously
inconsistent.

— InLines 15-18, if? does not have a chance of holdsdpg > 3, P, selects a process
Pj on a largest tree dather; only if Pj has a chance of holdingdeg > 3 by the
conditionP; € FCand.

— In Lines 19-22, if? cannot belong to a largest tré& belongs to other tree.
— In Line 24, ifB cannot belong to any treB, becomes a singleton.

To show the correctness, we must first define the set of legfiimmonfigurations of
SSMLF. Such a definition is given in Definition 7 below:

Definition 7. A configuration ofSSMLF is legitimate if and only if each process P
satisfies the following conditions:

— The connection by fathetrepresents the maximal leafy forest.

— IfRisonatree T of the maximal leafy forest, then the value df mfd? represents
the rootof T.

— If B is not on any tree of the maximal leafy forest, thernsRcalled asingleton
father = (D, R) and roof = 0.

By A, we denote a set of legitimate configuration. a

Theorem 2. The algorithmSSMLF is self-stabilizing with respect ;.

Proof Outline. The first part of the proof consists in proving that any temhconfig-
uration of SSMLF is legitimate. So, in the following, we consider a configigaty
where no process is privileged. ¥h each connected componéntepresented by the
value offather, is a tree or a singleton d@. Additionally, there exists no process such
that the value ofank; is obviously inconsistent iy, i.e., for each procesB, rank <
n— 1 holds. Then, each tree is rooted at a pro€essich thafather = root; = (D, P)
andsdeg = MaxChildren = D;, andPy such thatDo, Py) = MAX is a root of a tree.
Additionally, each singleto® holdsfather = (D;,R), root; = 0 andsdeg = 0. Other
processef selects a procesy such thasdeg > 3 as its father ideg < 3, i.e,, each
treeT represented by the valuesfathers is leafy, and the leafy forest is maximal.

The second part of the proof consists in proving that evéigttize configuration
becomey by the algorithnSSMLF.

For any configuratioy and any computation starting fropneach value ofoot; of
each procesB on G eventually become smaller than or equaMé&X, andPy such
thatMAX = (Do, Po) decides the values of its each variable as a root of a treeerat n
change. After that, some proces§egventually form the tre@, = (Mo, Ep) rooted at
Po and never change the values of their each variable.

Let G = (V1,E?) be an induced subgraph b\ Vo. Let (D1, Py) be the maximum
couple among the processes®hwhich are not neighboring to any processvn If
D1 > 3, Py eventually fixes the values of its variables to be a root fereifter that,
some processd} eventually form the tre& = (V1,E1) rooted afP; and stop changing
the values of their variables.

By repeating this discussion, we have a series of tfges (Vo, Eg), T1 = (V1,Ez1),
-+, Tk = (Wk, Ex), where each process¥, Vi, - - - , Vi fixes the values of all its variables.
Let GX be an induced subgraph M\ {VoUV; U..UVk}. If Dg < 3 holds where the
maximum couple oG among the processes which are not neighboring to any process
in {V\oUV1U--- UV}, processes o* cannot form any leafy tree, and they become
singletons. Then, no process is privileged. o

Theorem 3. The time complexity of algorith®SMLF is O(nz) rounds.

3.2 The Third Layer: Modification of Edge Cost

The third layer algorithn8STN computes a network cost from the MLF computed by
the second layer. In the fourth layer, the minimum spannieg ts computed based
on this cost. The minimum spanning tree is the approximaligtiea of the MLST
problem. Then, the edges in any tree must include the minigpanning tree, and the
intra-tree edges such that both endpoints are in the same tree must motheemini-
mum spanning tree. Additionally, we would like to make thentner of the connector
edges between each tree as small as possible. The conndgésr &e selected from
inter-treeedges such that its endpoints are not in the same tree.

Formal description of this laye8SMLF is shown in Fig. 2.

Definition 8. A configuration ofSSTN is legitimate if and only if each edge satisfies
the following three conditions.

— Ifeis atree edge, then #)[P;] is O,
— If eis an intra-tree edge, then) [Pj] is «, and
— If eis an inter-tree edge, then{®)[P;] is 1.

By /i, we denote a set of legitimate configuration. O

Constant (Input)
Ni: the set of neighbors 0B.
root;: ID of the root of treeT to which P, belongs on the MLF (output from Layer 2).
father: ID of the father of?, in T (output from Layer 2).

Variable (Output)
W(PR)[Pj]: new cost of the edge betwelnandP; € N;.

Algorithm for process B:

do forever

1 if (3Pj € Ni[root; # rootj AW(R)[P;] # 1]){
W(PR)[Pj] := 1, /* For Inter-tree edge */

} elseif(3P; € Ni[root; = root; A (father; # Pj Afather; # B) AW(R)[Pj] # «]){
W(PR)[Pj] := ; /* For Intra-tree edge */

} elseif (3P € Ni[root; = root; A (father, = Pj v father; = B) AW(R)[Pj] # 0]){
W(PR)[Pj] := 0; /* For Tree edge */

- N O U~ W N

Fig. 2. SSTN: Self-stabilizing algorithm for transforming the network

Theorem 4. The algorithmSSTN is self-stabilizing with respect t&;. The time com-
plexity of algorithmSSTN is O(n) rounds.

Each of the four layers stabilize in at m@{n?) rounds, hence we can conclude:

Theorem 5. The algorithmSSMLST is a self-stabilizing approximation algorithm for
the MLST problem with approximation ratio 3. Its time conjiieis O(n?) rounds.

10

4

Conclusion

In this paper, we proposed a self-stabilizing distributpgraximation algorithm for
the MLST problem in arbitrary topology networks with appiroation ratio 3. How-
ever, there exists a sequential solution [1] proposed bis-&ba that has approxima-
tion ratio 2. Investigating the trade-off between appraadion ratio and complexity
of the self-stabilizing mechanism to achieve it is an immaggfuture work. Also, we
would like to mention the importance to complement the stdbilizing abilities of a
distributed algorithm with some additionsfetyproperties that are guaranteed when
the permanent and intermittent failures that hit the systetisfy some conditions.

References

10.

11.
12.

. Solis-Oba, R.: 2-approximation algorithm for finding asping tree with maximum number

of leaves. In: Proceedings of the 6th Annual European Symposn Algorithms. LNCS
1461 (1998) 441-452

. Tixeuil, S.: Self-stabilizing Algorithms. Chapman & H&RC Applied Algorithms and

Data Structures. In: Algorithms and Theory of Computaticantibook, Second Edition.
CRC Press, Taylor & Francis Group (November 2009) 26.1-56.4

. Galbiati, G., Maffioli, F., Morzenti, A.: A short note ondfapproximability of the maximum

leaves spanning tree problem. Information Processingtsf®(1) (1994) 45-49

. Lu, H.l., Ravi, R.: Approximating maximum leaf spannimges in almost linear time. Jour-

nal of algorithms29 (1998) 132-141

. Blin, L., Potop-Butucaru, M., Rovedakis, S.: Self-stiabig minimum-degree spanning tree

within one from the optimal degree. In: Proceedings of thiéa 2BEE International Parallel
and Distributed Processing Symposium. (2009)

. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixe@l; A new self-stabilizing minimum

spanning tree construction with loop-free property. Irnd@edings of the 23rd International
Symposium on Distributed Computing. LNCS 5805 (2009) 4@2-4

. Butelle, F., Lavault, C., Bui, M.: A uniform self-stakzlng minimum diameter tree algo-

rithm. In: Proceedings of the 9th International WorkshoDastributed Algorithms. LNCS
972 (1995) 257-272

. Guha, S., Khuller, S.: Approximation Algorithms for Camted Dominating Sets. Algorith-

mica20 (1998) 347-387

. Kamei, S., Kakugawa, H.: A self-stabilizing distributegproximation algorithm for the

minimum connected dominating set. In: Proceedings of the PDPS Workshop on Ad-
vances in Parallel and Distributed Computational Mod&807) 224

Raei, H., Tabibzadeh, M., Ahmadipoor, B., Saei, S.: Asglbilizing distributed algorithm
for minimum connected dominating sets in wireless senstwvor&s with different transmis-
sion ranges. In: Proceedings of the 11th International &enice on Advanced Communi-
cation Technology. (2009) 526-530

Dolev, S.: Self-Stabilization. The MIT Press (2000)

Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabitigileader election in optimal space. In:
Proceedings of the 10th International Symposium on Staitn, Safety, and Security of
Distributed Systems. LNCS 5340 (2008) 109 — 123

