
A Self-Stabilizing 3-Approximation for the Maximum
Leaf Spanning Tree Problem in Arbitrary Networks

Sayaka Kamei1⋆, Hirotsugu Kakugawa2⋆⋆, Stéphane Devismes3, and Sébastien
Tixeuil4⋆ ⋆ ⋆

1 Dept. of Information Engineering, Hiroshima University, Japan,
E-mail:s-kamei@se.hiroshima-u.ac.jp

2 Dept. of Computer Science, Osaka University, Japan,
E-mail:kakugawa@ist.osaka-u.ac.jp

3 Université Joseph Fourier, Grenoble I, France, E-mail:Stephane.Devismes@imag.fr
4 LIP6 UMR 7606, Université Pierre et Marie Curie, France,

E-mail:Sebastien.Tixeuil@lip6.fr

Abstract. The maximum leaf spanning tree (MLST) is a good candidate forcon-
structing a virtual backbone in self-organized multihop wireless networks, but
is practically intractable (NP-complete). Self-stabilization is a general technique
that permits to recover from catastrophic transient failures in self-organized net-
works without human intervention. We propose a fully distributed self-stabilizing
approximation algorithm for the MLST problem on arbitrary topology networks.
Our algorithm is the first self-stabilizing protocol that isspecifically designed for
the construction of an MLST. It improves other previous self-stabilizing solutions
both for generality (arbitrary topology graphsvs.unit disk graphs or generalized
unit disk graphs, respectively) and for approximation ratio, as it guarantees the
number of its leaves is at least 1/3 of the maximum one. The time complexity of
our algorithm isO(n2) rounds.

1 Introduction

Multihop wireless ad hoc or sensor networks have neither fixed physical infrastructure
nor central administration. They typically operate in a self-organizing manner that per-
mits them to autonomously construct routing and communication primitives that are
used by higher level applications. The construction of virtual backbones infrastructures
usually makes use of graph related properties over the graphinduced by communica-
tion capabilities (i.e. nodes represent machines, and edges represent the ability for two
machines within wireless range to communicate) of the network. For example, a con-
nected dominating set (CDS) is a good candidate for a virtualbackbone since it guaran-
tees reachability of every node yet preserves energy. The maximum leaf spanning tree
(MLST) problem consists in constructing a spanning tree with the maximum number of
leaves. Finding the MLST is tantamount to finding the minimumCDS: letG = (V,E)

⋆ This work is supported in part by a Grant-in-Aid for Young Scientists ((B)22700074) of JSPS.
⋆⋆ This work is supported in part by Kayamori Foundation of Informational Science Advance-

ment, a Grant-in-Aid for Scientific Research ((B)20300012)of JSPS, and “Global COE (Cen-
ters of Excellence) Program” of the Ministry of Education, Culture, Sports, Science and Tech-
nology, Japan.

⋆⋆⋆ This work is supported in part by ANR projects SHAMAN and ALADDIN

2

be a graph andcds(G) be the size of the minimum CDS ofG, then|V|−cds(G) is the
number of leaves of the MLST ofG [1].

One of the most versatile techniques to ensure forward recovery of distributed
systems and networks is that ofself-stabilization[2]. A distributed algorithm is self-
stabilizing if after faults and attacks hit the system and place it in some arbitrary global
state, the system recovers from this catastrophic situation without external (e.g.human)
intervention in finite time. As self-stabilization makes nohypothesis about the nature or
the extent of the faults (self-stabilization only deals with the effect of the faults), it can
also be used to deal with other transient changes while the network is being operated
(topology change, message loss, spontaneous resets, etc.).

1.1 Related Works

In [3], Galbiati et al. proved that the MLST problem is MAX-SNP-hard,i.e., there
existsε > 0 such that finding approximation algorithm5 with approximation ratio 1+ ε
is NP-hard. In [1], Solis-Oba proposed a 2-approximation algorithm, and in [4], Luet
al. proposed a 3-approximation algorithm. Note that none of those algorithms [1, 4] is
distributed, not to mention self-stabilizing.

Spanning tree construction is one of the main studied problems in self-stabilizing
literature. One of the main recent trends in this topic is to provide self-stabilizing pro-
tocols for constrained variants of the spanning tree problem,e.g. [5], [6], [7], etc. None
of those metrics give any guarantee on the number of leaves.

In [8], Guhaet al. showed that the existence of an algorithm for finding the min-
imum CDS with approximation ratioα implies the existence of an algorithm of the
MLST problem with approximation ratio 2α. In turn, there exist self-stabilizing ap-
proximation algorithms for finding the minimum CDS. In [9], Kameiet al.proposed a
self-stabilizing 7.6-approximation algorithm for the CDS problem in unit disk graphs,
i.e., this algorithm is also an approximation algorithm for the MLST problem with ap-
proximation ratio 15.2 (by [8]). However, this algorithm [9] does not guarantee any
approximation ratio in general topology networks. The subsequent work of Raeiet
al. [10] proposed a self-stabilizing 20⌊lnR/ ln(2cos(π/5))⌋-approximation algorithm
in generalized disk graphs whereR= rmax/rmin andrmax (resp.rmin) is the maximum
(resp. minimum) transmission range. This algorithm is an approximation for the MLST
problem with approximation ratio 40⌊lnR/ ln(2cos(π/5))⌋. Again, this algorithm [10]
does not guarantee any approximation ratio in general topology networks.

1.2 Our contribution and outline of this paper

We propose a fully distributed self-stabilizing approximation algorithm for the MLST
problem on arbitrary topology networks. Its time complexity is O(n2) rounds. To our
knowledge, our algorithm is the first self-stabilizing protocol that is specifically de-
signed for the construction of MLST. It improves over previous self-stabilizing deriva-
tions both for generality (arbitrary topology graphsvs.unit disk graphs [9] (resp. gen-

5 An approximation algorithm for the MLST problem is an algorithm that guarantees approxi-
mation ratio|Topt|/|Talg|, where|Talg| is the number of leaves obtained by the approximation
algorithm in the worst case and|Topt| is the number of leaves of the optimal solution.

3

eralized disk graphs [10])) and for approximation ratio (3vs.15.2 [9] (resp. 40⌊ lnR /
ln(2 cos(π/5)) ⌋ [10])).

The improved approximation ratio permits to improve significantly the load and the
energy consumed by the virtual backbone. The improved generality on the communi-
cation graph enables our scheme to be useful even in networksthat cannot be modeled
by (generalized) disk graphs (such as wired networks).

This paper is organized as follows. In Section 2, we formallydescribe the system
model and the distributed MLST problem. In Section 3, we present our self-stabilizing
approximation algorithm for the distributed MLST problem,and prove the correctness
and analyze the time complexity of the proposed algorithm. Details of proofs are omit-
ted because of limitation of space, and they will appear in the full paper. Concluding
remarks can be found in Section 4.

2 Preliminaries

Let V = {P1,P2, ...,Pn} be a set ofn processes andE ⊆V ×V be a set of bidirectional
communication links in a distributed system. Each links is an unordered pair of distinct
processes. Then, the topology of the distributed system is represented as an undirected
graphG = (V,E). We assume thatG is connected and simple. In this paper, we use
“graphs” and “distributed systems” interchangeably. We assume that each process has
unique identifier. ByPi , we denote the identifier of processPi for each processPi .

We callsubgraphof G any graphG′ = (V ′,E′) such thatV ′ ⊆V, E′ ⊆E, and∀Pi ,Pj ,
(Pi ,Pj) ∈ E′ ⇒ Pi ,Pj ∈V ′. By Ni , we denote the set of neighboring processes ofPi . For
each processPi , the setNi is assumed to be a constant. We define thedegreeof Pi as
the number of its neighbors. The degree ofPi in the subgraphG′ is the number of edges
of E′ incident toPi. We assume that the maximum degree ofG is at least 3. We define
thedistancebetweenPi andPj as the number of the edges of the shortest path between
them.

As communication model, we assume that each process can readthe local state
of neighboring processes. This model is called thestate reading model. Although a
process can read the local state of neighboring processes, it cannot update them; it can
only update its local state.

A set of local variables defines the local state of a process. By Qi , we denote the local
state of each processPi ∈V. A tuple of the local state of each process(Q1,Q2, ...,Qn)
forms aconfigurationof a distributed system. LetΓ be a set of all configurations.

We say thatPi is privileged in a configurationγ if and only if at least one of the
conditions of the algorithm is true andPi must change the value of its variables inγ.
An atomic step of each processPi consists of following three sub-steps: (1) read the
local states of all neighbors and evaluate the conditions ofthe algorithm, (2) compute
the next local state, and (3) update the local state.

Executions of processes are scheduled by an external (virtual) scheduler calleddae-
mon. That is, the daemon decides which processes to execute in the next step. Here,
we assume adistributed weakly fair daemon. Distributedmeans that, at each step, the
daemon selects an arbitrary non-empty set of privileged processes, and selected pro-
cesses executes the atomic step in parallel.Weakly fairmeans that every continuously
privileged process will be eventually executed.

4

For any configurationγ, let γ ′ be any configuration that followsγ. Then, we denote
this transition relation byγ → γ ′. For any configurationγ0, a computation Estarting
from γ0 is a maximal (possibly infinite) sequence of configurationsE = γ0,γ1,γ2, ...
such thatγt → γt+1 for eacht ≥ 0.

Definition 1 (Self-Stabilization). Let Γ be a set of all configurations. A system S is
self-stabilizingwith respect toΛ such thatΛ ⊆ Γ if and only if it satisfies the following
two conditions:

– Convergence: Starting from an arbitrary configuration, a configuration eventually
becomes one inΛ, and

– Closure: For any configurationλ ∈ Λ, any configurationγ that followsλ is also in
Λ as long as the system does not fail.

Eachγ ∈ Λ is called alegitimateconfiguration. Conversely, any configuration that is
not legitimate is saidillegitimate. ⊓⊔

A spanning tree T= (V ′,E′) is any acyclic connected subgraph ofG such that
V ′ = V andE′ ⊆ E. A leaf of a spanning tree is any process of degree one. Generally,
the MLST problem is defined as follows.

Definition 2. The maximum leaf spanning treeis a spanning tree whose number of
leaves is maximum. ⊓⊔

We consider solving the MLST problem in distributed systemsin this paper. We
assume that each process does not know global information ofthe network. Under this
assumption, we defined the distributed MLST problem as follows.

Definition 3. Let G= (V,E) be a graph that represents a distributed system. Then, the
distributed maximum leaf spanning tree problemis defined as follows.

– Each process Pi must select a neighbor on G or itself (if the father of Pi is Pi , then
Pi is a root) as its father on a spanning tree Tml and output it, and

– The spanning tree Tml is a maximum leaf spanning tree of G. ⊓⊔

3 Proposed Algorithm
Our algorithmSSMLST is based on the sequential approximation algorithm in [4].

We call treeany subgraphT of G that has no cycle and more than one process. We
construct disjoint treesT1,T2, · · · , whereTi = (Vi ,Ei), V = V1∪V2∪ ·· · , |Vi| > 1, and
Vi ∩Vj = /0 for any i and j. We call forestany set of trees{T1,T2, · · · }. Note that some
processPi can be alone and does not join the forest,i.e., Si = ({Pi}, /0), in this casePi is
calledsingleton.

Let dk(G) be the set of nodes that have degreek on G, and letd̄k(G) be the set of
nodes that have degree at leastk onG.

Definition 4. ([4]) Let T be a tree of G. Ifd̄3(T) is not empty and every node in d2(T)
is adjacent in T to exactly two nodes in̄d3(T), then let T beleafy tree. Let T1,T2, · · ·
be disjoint trees on G. If each T1,T2, · · · is leafy, then F= {T1,T2, · · · } is a leafy forest.
If F is not a subgraph of any other leafy forest of G, then we call F maximal leafy
forest. ⊓⊔

5

In [4], Lu et al.showed the following theorem.

Theorem 1. ([4]) Let F be a maximal leafy forest of G, and let Tml be a spanning
tree of G such that F is a subgraph of Tml. Let Tspan be any spanning tree of G. Then,
|d1(Tml)| ≥ |d1(Tspan)|/3.

Our algorithmSSMLST first constructs a maximal leafy forest (MLF) of G, and
then, it constructs a spanning treeTml of G that is a supergraph of the MLF. Hence,Tml

is an approximation of the MLST with ratio 3 according to Theorem 1.
The proposed algorithm is a fair composition [11] of four layers:

1. In the first layer, each processPi computes its degreeDi on G and the maximum
coupleMAX = (D0,P0) of degreeD0 and IDP0 on G, where(Di ,Pi) > (D j ,Pj) ≡
[Di > D j ∨(Di = D j ∧Pi > Pj)] for each processPi andPj . For this layer, we can use
a self-stabilizing leader election algorithm for arbitrary networks, for example [12]
(The time complexity of [12] isO(n) rounds.). In such an algorithm, the process
with the minimum or the maximum ID is elected as a leader. It ismodified to elect
the process with the maximum value(D0,P0) for our purpose.

2. The second layerSSMLF (see subsection 3.1) computes an MLF onG.
3. The third layerSSTN (see subsection 3.2) modifies the cost of each link based on

the MLF.
4. The last layer computes a minimum cost spanning treeTml based on the costs com-

puted bySSTN. Such costs makeTml includes the MLF. For this layer, we can use
one of existing self-stabilizing algorithms,e.g., [6] (The time complexity of [6] is
O(n2) rounds.).

3.1 The Second Layer: Construction of the Maximal Leafy Forest

We now propose a self-stabilizing algorithm calledSSMLF that constructs of a maxi-
mal leafy forest (MLF) ofG. The formal description ofSSMLF is shown in Fig. 1.

Each processPi computes the following outputs:

– rooti is set to/0 if Pi is a singleton. Otherwise,Pi belongs to some treeT androoti
is set to the couple(Dr ,Pr), wherePr is the root of the tree ofPi.

– fatheri is set to the couple(D j ,Pj) wherePj is the father ofPi. If Pi is neither a root
nor a singleton, thenPj ∈ Ni . In this case, we say that “Pj is a father of Pi” and “Pi

is a child of Pj ”. In either cases (Pi is a singleton or the root of its tree),Pj = Pi.
Note that, inSSMLF, each processPi distinguishes its incident link tofatheri as its
parent-link in its tree.

– ranki is the distance fromPi to the root of its tree.
– MaxChildreni : theexpected number of childrenof Pi in its tree. (We shall explain

that later.)

In the following explanations, we calllarge treeany tree rooted at a process with
a large couple of degree onG and ID. Also, we call achild-candidateof processPi

the neighbor ofPi that may become a child ofPi in the future,e.g., singleton, process
belonging to a tree that is not larger than the tree ofPi , or process belonging to the tree

6

Constant (Input)
Ni : the set of neighbors ofPi onG.
Di : the degree ofPi onG (an output from the first layer).
MAX: the maximum couple of degree and ID onG (an output from the first layer).
Variable (Output)
rooti = (Dr ,Pr)(/0 ≤ rooti ≤ MAX): Pr is the root of treeT to whichPi belongs.
fatheri : the couple(D j ,Pj) of the fatherPj of Pi on T.
ranki : the distance from the root toPi on T.
MaxChildreni : the number of children and child-candidates onT.
Macro
MaxRooti = max{root j ,(Di ,Pi) | Pj ∈ Ni}

MinRanki =

{

−1 (In case thatMaxRooti = (Di ,Pi))
min{rankj | Pj ∈ Ni ∧ root j = MaxRooti}(otherwise)

CCandi =
{Pj ∈ Ni | root j = /0∨ root j < MaxRooti ∨ (root j = MaxRooti ∧ rankj > MinRanki +2)}

CountMaxChildreni =

{

Di (In case that(Di ,Pi) = MAX)
|{Pj ∈ Ni | fatherj = (Di ,Pi)}|+ |CCandi |(otherwise)

FCandi = {Pj ∈ Ni | rankj +1≤ n∧ (MaxChildrenj ≥ 3∨
(MaxChildrenj = 2∧ fatherj 6= (D j ,Pj)∧ root j > (D j ,Pj)))}

Algorithm for process Pi:
do forever{
1 if (rooti > MAX){
2 rooti := /0;
3 } elseif(MaxChildreni 6= CountMaxChildreni){
4 MaxChildreni := CountMaxChildreni ;
/* For the roots. */
5 } elseif(MaxChildreni ≥ 3∧MaxRooti = (Di ,Pi)){
6 rooti := (Di ,Pi); ranki := 0; fatheri := (Di ,Pi);
/* For other nodes in tree.*/
7 } elseif(∃Pj ∈ FCandi , [root j = MaxRooti ∧ rankj = MinRanki]){
8 rooti := MaxRooti ;
9 ranki := MinRanki +1;
10 fatheri := max{(D j ,Pj) | Pj ∈ FCandi ∧ root j = rooti ∧ rankj = ranki −1};
11 } elseif(MinRanki +1≤ n∧MaxChildreni ≥ 2∧MaxRooti 6= (Di ,Pi)){
12 rooti := MaxRooti ;
13 ranki := MinRanki +1;
14 fatheri := max{(D j ,Pj) | Pj ∈ Ni ∧ root j = rooti ∧ rankj = ranki −1};
15 } elseif(∃Pj ∈ FCandi , [root j = MaxRooti]){
16 rooti := MaxRooti ;
17 ranki := min{rankj | Pj ∈ FCandi ∧ root j = rooti}+1;
18 fatheri := max{(D j ,Pj) | Pj ∈ FCandi ∧ root j = rooti ∧ rankj = ranki −1};
19 } elseif(|FCandi | ≥ 1){
20 rooti := max{root j | Pj ∈ FCandi};
21 ranki := min{rankj | Pj ∈ FCandi ∧ root j = rooti}+1;
22 fatheri := max{(D j ,Pj) | Pj ∈ FCandi ∧ root j = rooti ∧ rankj = ranki −1};
23 } else{
/* For singleton.*/
24 rooti := /0; ranki := 0; fatheri := (Di ,Pi);
25 }
}

Fig. 1. SSMLF: Self-stabilizing algorithm for construction of the maximal leafy forest

7

of Pi that can minimize their height in the tree by changing its father toPi . Theexpected
number of childrenis the number of its children and child-candidates. Each processPi

counts the number of expected number of children to make the tree leafy, and joins a
tree as large as possible. That is, ifPi is the root and its tree is larger than the one of its
neighbors, then all its neighbors will join the tree ofPi .

According to Definition 4,SSMLF constructs of a maximal leafy forest (MLF) of
G by assigning its outputs following Definitions 5 and 6.

Definition 5. Let sdegi be the degree of process Pi in its tree, i.e., sdegi ≡ |{Pj ∈
Ni | fatherj = (Di ,Pi)}|+ |{Pj ∈ Ni | fatheri = (D j ,Pj)}|. ⊓⊔

Definition 6. Let Tk = (Vk,Ek) be a tree rooted at a process Pr where Ek is a set of links
represented by the value of fatheri of each process Pi of Vk ⊆ V and sdegr ≥ 3 holds.
Consider each process Pi such that sdegi = 2 on Tk. If sdegf ≥ 3 and sdegj ≥ 3 where
fatheri = (D f ,Pf) and fatherj = (Di ,Pi), then Tk is leafy tree. If each tree T1,T2, · · ·
is disjoint and leafy on G, then the set{T1,T2, · · · } is a leafy forest F. If F is not a
subgraph of any other leafy forest, then F is maximal leafy forest. ⊓⊔

In order to evaluate its output variables, a processPi uses several macros:

– MaxRooti returns the largest value in theroot-variables ofPi and its neighbors.
– CCandi returns the set of child-candidates ofPi .
– CountMaxChildreni returns the expected number of children ofPi .
– FCandi returns thefather candidatesof Pi , that is, the neighbors thatPi can choose

in order to make its tree leafy,i.e., processPj such thatrankj is not obviously
inconsistent and that has a chance of holdingsdegj ≥ 3.

– MinRanki returns therank-value of the (current or future) father ofPi in its tree. (If
Pi is the root of its tree, thenMinRanki returns -1 so thatPi setsranki to 0.)

Now, we give more details aboutSSMLF. Consider a processPi. In Lines 1-2, if
the value ofrooti is obviously inconsistent,i.e., rooti > MAX, thenPi resets its value to
/0. In Lines 3-4,Pi updatesMaxChildreni , if necessary. Then, ifrooti andMaxChildreni
are correctly evaluated,Pi must choose its status amongroot, internal node or leafof
a tree andsingleton, and updates its variablesrooti , ranki , andfatheri in consequence.
That is what it does in Lines 5-24. Below, we detail these lines:

– In Lines 5-6, ifMaxChildreni ≥ 3 andPi can become a root of large tree, thenPi

becomes a root.
– In Lines 7-10,Pi selects a processPj such that the distance from the root toPj is the

minimum on a largest tree asfatheri only if Pj has a chance of holdingsdegj ≥ 3.
That is,Pj ∈ FCandi .

– In Lines 11-14, ifPi has a chance of holdingsdegi ≥ 3, thenPi selects a processPj

such that the distance from the root toPj is the minimum on a largest tree asfatheri
even ifsdegj < 3, in order to make the tree leafy. By the condition ofMinRanki +
1 ≤ n, Pi does not select a processPj such that the value ofrankj is obviously
inconsistent.

– In Lines 15-18, ifPi does not have a chance of holdingsdegi ≥ 3,Pi selects a process
Pj on a largest tree asfatheri only if Pj has a chance of holdingsdegj ≥ 3 by the
conditionPj ∈ FCandi .

8

– In Lines 19-22, ifPi cannot belong to a largest tree,Pi belongs to other tree.
– In Line 24, ifPi cannot belong to any tree,Pi becomes a singleton.

To show the correctness, we must first define the set of legitimate configurations of
SSMLF. Such a definition is given in Definition 7 below:

Definition 7. A configuration ofSSMLF is legitimate if and only if each process Pi

satisfies the following conditions:

– The connection by fatheri represents the maximal leafy forest.
– If Pi is on a tree T of the maximal leafy forest, then the value of rooti of Pi represents

the root of T .
– If Pi is not on any tree of the maximal leafy forest, then Pi is called asingleton,

fatheri = (Di ,Pi) and rooti = /0.

ByΛ f , we denote a set of legitimate configuration. ⊓⊔

Theorem 2. The algorithmSSMLF is self-stabilizing with respect toΛ f .
Proof Outline. The first part of the proof consists in proving that any terminal config-
uration ofSSMLF is legitimate. So, in the following, we consider a configuration γ′
where no process is privileged. Inγ′, each connected componentT represented by the
value offatheri is a tree or a singleton onG. Additionally, there exists no process such
that the value ofranki is obviously inconsistent inγ′, i.e., for each processPi, ranki ≤
n−1 holds. Then, each tree is rooted at a processPi such thatfatheri = rooti = (Di ,Pi)
andsdegi = MaxChildreni = Di , andP0 such that(D0,P0) = MAX is a root of a tree.
Additionally, each singletonPi holdsfatheri = (Di ,Pi), rooti = /0 andsdegi = 0. Other
processesPi selects a processPj such thatsdegj ≥ 3 as its father ifsdegi < 3, i.e., each
treeT represented by the values offathers is leafy, and the leafy forest is maximal.

The second part of the proof consists in proving that eventually the configuration
becomesγ′ by the algorithmSSMLF.

For any configurationγ and any computation starting fromγ, each value ofrooti of
each processPi on G eventually become smaller than or equal toMAX, andP0 such
thatMAX = (D0,P0) decides the values of its each variable as a root of a tree and never
change. After that, some processesPi eventually form the treeT0 = (V0,E0) rooted at
P0 and never change the values of their each variable.

Let G1 = (V1,E1) be an induced subgraph byV \V0. Let (D1̄,P1̄) be the maximum
couple among the processes onG1 which are not neighboring to any process inV0. If
D1̄ ≥ 3, P1̄ eventually fixes the values of its variables to be a root forever. After that,
some processesPi eventually form the treeT1 = (V1,E1) rooted atP1̄ and stop changing
the values of their variables.

By repeating this discussion, we have a series of treesT0 = (V0,E0), T1 = (V1,E1),
· · · , Tk =(Vk,Ek), where each process inV0,V1, · · · ,Vk fixes the values of all its variables.
Let Gk be an induced subgraph byV \ {V0∪V1 ∪ ..∪Vk}. If Dk̄ < 3 holds where the
maximum couple onGk among the processes which are not neighboring to any process
in {V0∪V1∪ ·· · ∪Vk}, processes onGk cannot form any leafy tree, and they become
singletons. Then, no process is privileged. 2

Theorem 3. The time complexity of algorithmSSMLF is O(n2) rounds.

9

3.2 The Third Layer: Modification of Edge Cost

The third layer algorithmSSTN computes a network cost from the MLF computed by
the second layer. In the fourth layer, the minimum spanning tree is computed based
on this cost. The minimum spanning tree is the approximate solution of the MLST
problem. Then, the edges in any tree must include the minimumspanning tree, and the
intra-treeedges such that both endpoints are in the same tree must not bein the mini-
mum spanning tree. Additionally, we would like to make the number of the connector
edges between each tree as small as possible. The connector edges are selected from
inter-treeedges such that its endpoints are not in the same tree.

Formal description of this layerSSMLF is shown in Fig. 2.

Definition 8. A configuration ofSSTN is legitimate if and only if each edge satisfies
the following three conditions.

– If e is a tree edge, then W(Pi)[Pj] is 0,
– If e is an intra-tree edge, then W(Pi)[Pj] is ∞, and
– If e is an inter-tree edge, then W(Pi)[Pj] is 1.

ByΛt , we denote a set of legitimate configuration. ⊓⊔

Constant (Input)
Ni : the set of neighbors onG.
rooti : ID of the root of treeT to whichPi belongs on the MLF (output from Layer 2).
fatheri : ID of the father ofPi in T (output from Layer 2).

Variable (Output)
W(Pi)[Pj]: new cost of the edge betweenPi andPj ∈ Ni .

Algorithm for process Pi:
do forever{
1 if (∃Pj ∈ Ni [rooti 6= root j ∧W(Pi)[Pj] 6= 1]){
2 W(Pi)[Pj] := 1; /* For Inter-tree edge */
3 } elseif(∃Pj ∈ Ni [rooti = root j ∧ (fatheri 6= Pj ∧ fatherj 6= Pi)∧W(Pi)[Pj] 6= ∞]){

4 W(Pi)[Pj] := ∞; /* For Intra-tree edge */
5 } elseif(∃Pj ∈ Ni [rooti = root j ∧ (fatheri = Pj ∨ fatherj = Pi)∧W(Pi)[Pj] 6= 0]){

6 W(Pi)[Pj] := 0; /* For Tree edge */
7 }
}

Fig. 2.SSTN: Self-stabilizing algorithm for transforming the network

Theorem 4. The algorithmSSTN is self-stabilizing with respect toΛt . The time com-
plexity of algorithmSSTN is O(n) rounds.

Each of the four layers stabilize in at mostO(n2) rounds, hence we can conclude:

Theorem 5. The algorithmSSMLST is a self-stabilizing approximation algorithm for
the MLST problem with approximation ratio 3. Its time complexity is O(n2) rounds.

10

4 Conclusion

In this paper, we proposed a self-stabilizing distributed approximation algorithm for
the MLST problem in arbitrary topology networks with approximation ratio 3. How-
ever, there exists a sequential solution [1] proposed by Solis-Oba that has approxima-
tion ratio 2. Investigating the trade-off between approximation ratio and complexity
of the self-stabilizing mechanism to achieve it is an immediate future work. Also, we
would like to mention the importance to complement the self-stabilizing abilities of a
distributed algorithm with some additionalsafetyproperties that are guaranteed when
the permanent and intermittent failures that hit the systemsatisfy some conditions.

References

1. Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number
of leaves. In: Proceedings of the 6th Annual European Symposium on Algorithms. LNCS
1461 (1998) 441–452

2. Tixeuil, S.: Self-stabilizing Algorithms. Chapman & Hall/CRC Applied Algorithms and
Data Structures. In: Algorithms and Theory of Computation Handbook, Second Edition.
CRC Press, Taylor & Francis Group (November 2009) 26.1–26.45

3. Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the maximum
leaves spanning tree problem. Information Processing Letters52(1) (1994) 45–49

4. Lu, H.I., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. Jour-
nal of algorithms29 (1998) 132–141

5. Blin, L., Potop-Butucaru, M., Rovedakis, S.: Self-stabilizing minimum-degree spanning tree
within one from the optimal degree. In: Proceedings of the 23th IEEE International Parallel
and Distributed Processing Symposium. (2009)

6. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil,S.: A new self-stabilizing minimum
spanning tree construction with loop-free property. In: Proceedings of the 23rd International
Symposium on Distributed Computing. LNCS 5805 (2009) 407–422

7. Butelle, F., Lavault, C., Bui, M.: A uniform self-stabilizing minimum diameter tree algo-
rithm. In: Proceedings of the 9th International Workshop onDistributed Algorithms. LNCS
972 (1995) 257–272

8. Guha, S., Khuller, S.: Approximation Algorithms for Connected Dominating Sets. Algorith-
mica20 (1998) 347–387

9. Kamei, S., Kakugawa, H.: A self-stabilizing distributedapproximation algorithm for the
minimum connected dominating set. In: Proceedings of the 9th IPDPS Workshop on Ad-
vances in Parallel and Distributed Computational Models. (2007) 224

10. Raei, H., Tabibzadeh, M., Ahmadipoor, B., Saei, S.: A self-stabilizing distributed algorithm
for minimum connected dominating sets in wireless sensor networks with different transmis-
sion ranges. In: Proceedings of the 11th International Conference on Advanced Communi-
cation Technology. (2009) 526–530

11. Dolev, S.: Self-Stabilization. The MIT Press (2000)
12. Datta, A.K., Larmore, L.L., Vemula, P.: Self-stabilizing leader election in optimal space. In:

Proceedings of the 10th International Symposium on Stabilization, Safety, and Security of
Distributed Systems. LNCS 5340 (2008) 109 – 123

