Natural Deduction

Stéphane Devismes, Pascal Lafourcade, and Michel Lévy

Université Grenoble Alpes

23-24 February 2017

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Intuition

When you write proofs in math courses,

when you decompose a reasoning in elementary obvious steps,

you somehow practice Natural Deduction.

Goals of Natural Deduction

Gerhard Gentzen (1934)

The goal is to provide a formal system to write proofs that are close to the "natural" way of reasoning.

Goals of Natural Deduction

Gerhard Gentzen (1934)

The goal is to provide a formal system to write proofs that are close to the "natural" way of reasoning.

Two orthogonal subgoals:

- 1. Proofs should be "readable enough" to be easily checked by a human being.
- 2. Proofs should be "formal enough" to prevent bugs (and to be mechanically checked/generated by a computer).

Stéphane Devismes et al (UGA)

Natural Deduction

Models for Natural Deduction

Gerhard Gentzen introduced two models of Natural Deduction for classical logic:

- NK: a proof is a tree of formulas.
- LK: a proof is a tree of sequents.

(NJ et LJ for intuitionistic logic.)

Models for Natural Deduction

Gerhard Gentzen introduced two models of Natural Deduction for classical logic:

- NK: a proof is a tree of formulas.
- LK: a proof is a tree of sequents.

(NJ et LJ for intuitionistic logic.)

Here, yet another (homemade) presentation of natural deduction.

Models for Natural Deduction

Gerhard Gentzen introduced two models of Natural Deduction for classical logic:

- NK: a proof is a tree of formulas.
- LK: a proof is a tree of sequents.

(NJ et LJ for intuitionistic logic.)

Here, yet another (homemade) presentation of natural deduction.

We try to take advantages from the two previous models!

Natural Deduction

Goal of my Talk

Natural Deduction Introduction

Goal of my Talk

1. Try to convince you that it is easy and safe to write proofs by yourself in **Natural Deduction**.

Goal of my Talk

- 1. Try to convince you that it is easy and safe to write proofs by yourself in **Natural Deduction**.
- 2. Present a tool that automatically constructs proofs in **Natural Deduction**:

http://teachinglogic.liglab.fr/DN/

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Propositional Logic

Definition 1

Propositional logic is a logic without quantifiers.

The only logical operations used are:

- ► ¬ (negation),
- ► ∧ (conjunction, also known as logical "and"),
- ► ∨ (disjunction, also known as logical "or"),
- \blacktriangleright \Rightarrow (implication)
- $\blacktriangleright \Leftrightarrow$ (equivalence)

Syntax: Vocabulary of the language

- The constants: \top (*true*) and \perp (*false*)
- ► The variables: for example, *x*, *y*₁
- ► The parentheses: left (and right).
- The connectives: $\neg, \lor, \land, \Rightarrow, \Leftrightarrow$

(Strict) Formula

Definition 2

A strict formula is defined inductively as:

- \top and \bot are strict formulae.
- A variable is a strict formula.
- If A is a strict formula then $\neg A$ is a strict formula.
- If A and B are strict formulae and if is one of the following operations ∨, ∧, ⇒, ⇔ then (A B) is a strict formula.

Example 1

 $(a \lor (\neg b \land c))$ is a **strict formula**, but neither $a \lor (\neg b \land c)$, nor $(a \lor (\neg (b) \land c))$.

Canonical Decomposition

Strict formulae decompose uniquely in their sub-formulae.

Theorem 1

For every formula A, there is one and only one of the following cases:

- A is a variable,
- A is a constant,
- A can be written in a unique manner as $\neg B$ where B is a formula,
- A can be written in a unique manner as $(B \circ C)$ where B and C are formulae.

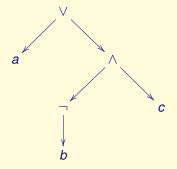
This will allow us to:

- prove properties by cases
- perform structural induction on the formulae: we will ALWAYS consider STRICT formulae in proofs

Tree

Example 2

The structure of the formula $(a \lor (\neg b \land c))$ is illustrated by the following tree:



Subtrees = sub-formulae

Prioritized formula

Definition 3

A prioritized formula is inductively defined in a similar way, but:

- ► if A and B are prioritized formulae, then A ∘ B is a prioritized formula,
- ▶ if A is a prioritized formula then (A) is a prioritized formula.

Example 3

 $a \lor \neg b \land c$ is a prioritized formula, but not a (strict) formula.

Connective precedence

Definition 4

By decreasing precedence, the connectives are: \neg , \land , \lor , \Rightarrow and \Leftrightarrow .

Left associativity

For identical connectives, the left-hand side connective has higher precedence: $A \circ B \circ C = (A \circ B) \circ C$ **except for the implication**: $A \Rightarrow B \Rightarrow C = A \Rightarrow (B \Rightarrow C)$

Connective precedence

Definition 4

By decreasing precedence, the connectives are: \neg , \land , \lor , \Rightarrow and \Leftrightarrow .

Left associativity

For identical connectives, the left-hand side connective has higher precedence: $A \circ B \circ C = (A \circ B) \circ C$ **except for the implication**: $A \Rightarrow B \Rightarrow C = A \Rightarrow (B \Rightarrow C)$

We usually write prioritized formulae, but we should reason with their corresponding strict formulae

Basic tables

0 indicates false and 1 indicates true.

The value of the constant op is 1 and the value of the constant op is 0

Table 1

X	у	$\neg x$	$x \lor y$	$x \wedge y$	$x \Rightarrow y$	$x \Leftrightarrow y$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

Assignment

Definition 5

A truth assignment (assignment, for short) is a function from the set of variables of a formula to the set $\{0,1\}$.

 $[A]_{v}$ denotes the truth value of the formula A for the assignment v.

Assignment

Definition 5

A truth assignment (assignment, for short) is a function from the set of variables of a formula to the set $\{0,1\}$.

 $[A]_{v}$ denotes the truth value of the formula A for the assignment v.

Example: Let *v* be an assignment such that v(x) = 0 and v(y) = 1.

Applying v to $x \lor y$ is written as $[x \lor y]_v$

 $[x \lor y]_v = \mathbf{0} \lor \mathbf{1} = \mathbf{1}$

Conclusion: $x \lor y$ is true for the truth assignment *v*

Stéphane Devismes et al (UGA)

Natural Deduction

Natural Deduction	
Preliminaries	

Example

X	У	$x \lor y \Rightarrow \neg x$
1	0	0
1	1	0
0	0	1
0	1	1

Assignment v: line 1, v(x) = 1 and v(y) = 0

Value of the assignment: $[x \lor y \Rightarrow \neg x]_v = \mathbf{0}$

Model for a formula

Definition 6

An assignment v for which a formula has truth value equal to 1 is a model for that formula.

v satisfies A or v makes A true.

Example 4

A model for $x \Rightarrow y$ is x = 1, y = 1 (among others)

Conversely, x = 1, y = 0 is not a model for $x \Rightarrow y$.

Model for a set of formulae

Definition 7

v is a model for a set of formulae $\{A_1, \ldots, A_n\}$ if and only if it is a model for every formula in the set.

Model for a set of formulae

Definition 7

v is a model for a set of formulae $\{A_1, \ldots, A_n\}$ if and only if it is a model for every formula in the set.

Example 5

A model of $\{a \Rightarrow b, b \Rightarrow c\}$ is a = 0, b = 0 (for any *c*).

Validity, Contradiction

Definition 8

- A formula is valid (resp., a tautology) if its value is 1 for all truth assignments.
- A formula is unsatisfiable (resp., contradictory or a contradiction) if its value is 0 for all truth assignments.

Example 6

- $(x \Rightarrow y) \Leftrightarrow (\neg x \lor y)$ is valid.
- x ⇒ y is not valid since it is false for x = 1 and y = 0, but is not a contradiction since it is true for x = 0 and y = 0.
- $x \land \neg x$ is a contradiction.

Logical consequence (entailment)

Definition 9

A is a consequence of the set Γ of formulae (called set of hypotheses or environment) if every model of Γ is a model of A.

The fact that A is a consequence of Γ is noted $\Gamma \models A$.

Example of a consequence

Example 7

 $a \Rightarrow b, b \Rightarrow c \models a \Rightarrow c.$

Example of a consequence

Example 7

 $a \Rightarrow b, b \Rightarrow c \models a \Rightarrow c.$

а	b	С	$a \Rightarrow b$	$b \Rightarrow c$	a⇒c
0	0	0	1	1	1
0	0	1	1	1	1
0	1	0	1	0	1
0	1	1	1	1	1
1	0	0	0	1	0
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	1	1	1

Property

Property 1

The following two formulations are equivalent:

1.
$$A_1,\ldots,A_n \models B$$

2. $A_1 \wedge \ldots \wedge A_n \Rightarrow B$ is valid.

Property

Property 1

The following two formulations are equivalent:

1.
$$A_1,\ldots,A_n \models B$$

2.
$$A_1 \land \ldots \land A_n \Rightarrow B$$
 is valid.

Remark: Let Γ be a set of formulae and A be a formula. 1. $\Gamma \models \bot$ means that Γ is contradictory (always false),

2. $0 \models A$ ($\models A$, for short) means that Γ is valid (always true).

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Two main specificities

- System with several rules.
- During a proof, we can add and remove hypotheses.
- During a proof, we use abbreviations of formulae.

 \top , negation and equivalence are abbreviations defined as:

- \top abbreviates $\bot \Rightarrow \bot$.
- $\neg A$ abbreviates $A \Rightarrow \bot$.
- $A \Leftrightarrow B$ abbreviates $(A \Rightarrow B) \land (B \Rightarrow A)$.

 \top , negation and equivalence are abbreviations defined as:

- \top abbreviates $\bot \Rightarrow \bot$.
- $\neg A$ abbreviates $A \Rightarrow \bot$.
- $A \Leftrightarrow B$ abbreviates $(A \Rightarrow B) \land (B \Rightarrow A)$.

Two formulae are said to be equal, if the formulas obtained by removing the abbreviations are identical.

 \top , negation and equivalence are abbreviations defined as:

- \top abbreviates $\bot \Rightarrow \bot$.
- $\neg A$ abbreviates $A \Rightarrow \bot$.
- $A \Leftrightarrow B$ abbreviates $(A \Rightarrow B) \land (B \Rightarrow A)$.

Two formulae are said to be equal, if the formulas obtained by removing the abbreviations are identical.

E.g., the formulae $\neg \neg a$, $\neg a \Rightarrow \bot$ and $(a \Rightarrow \bot) \Rightarrow \bot$ are equal.

 \top , negation and equivalence are abbreviations defined as:

- \top abbreviates $\bot \Rightarrow \bot$.
- $\neg A$ abbreviates $A \Rightarrow \bot$.
- $A \Leftrightarrow B$ abbreviates $(A \Rightarrow B) \land (B \Rightarrow A)$.

Two formulae are said to be equal, if the formulas obtained by removing the abbreviations are identical.

E.g., the formulae $\neg \neg a$, $\neg a \Rightarrow \bot$ and $(a \Rightarrow \bot) \Rightarrow \bot$ are equal.

Two equal formulae are equivalent!

 \top , negation and equivalence are abbreviations defined as:

- \top abbreviates $\bot \Rightarrow \bot$.
- $\neg A$ abbreviates $A \Rightarrow \bot$.
- $A \Leftrightarrow B$ abbreviates $(A \Rightarrow B) \land (B \Rightarrow A)$.

Two formulae are said to be **equal**, if the formulas obtained by removing the abbreviations are identical.

E.g., the formulae $\neg \neg a$, $\neg a \Rightarrow \bot$ and $(a \Rightarrow \bot) \Rightarrow \bot$ are equal.

Two equal formulae are equivalent!

In the proof, we usually write every formula in its abbreviated form, *e.g.*, $\neg A$, but we keep in mind that we can use its unabbreviated form, *e.g.*, $A \Rightarrow \bot$, when applying a rule.

Stéphane Devismes et al (UGA)

Natural Deduction

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Rule

Definition 10

A rule consists of:

- ► some formulae *H*₁,...,*H*_n called **premises** (or hypotheses)
- ► a unique conclusion C
- ► a name *R* for the rule (optional)

$$\frac{H_1\ldots H_n}{C} R$$

Rule

Definition 10

A rule consists of:

- ► some formulae *H*₁,...,*H*_n called **premises** (or hypotheses)
- ► a unique conclusion C
- a name R for the rule (optional)

$$\frac{H_1 \dots H_n}{C} R$$

Example 8

$$\frac{A \quad B}{A \wedge B} \wedge B$$

Natural Deduction	n
Rules	

Classification of rules

► Introduction rules for introducing a connective in the conclusion.

Natural De	duction
Rules	

Classification of rules

- ► Introduction rules for introducing a connective in the conclusion.
- Elimination rules for removing a connective from one of the premises.

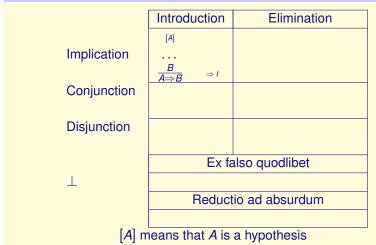
Classification of rules

- ► Introduction rules for introducing a connective in the conclusion.
- Elimination rules for removing a connective from one of the premises.
- + two special rules

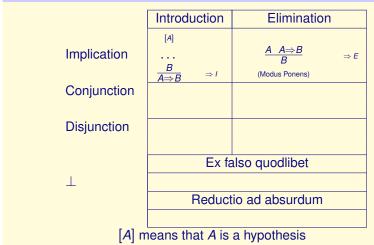
Natural	Deduction
Rules	

	Introduction	Elimination	
Implication			
Conjunction			
Disjunction			
	Ex fa	also quodlibet	
Ţ	Reductio ad absurdum		

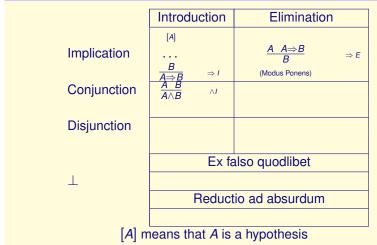
Natural	Deduction
Rules	



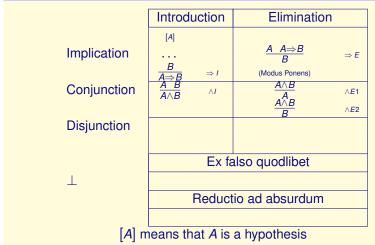
Natural	Deduction
Rules	



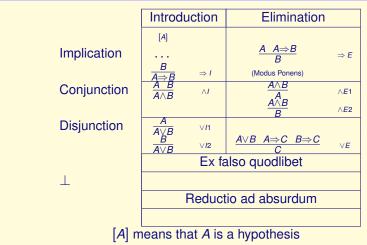
Natural	Deduction
Rules	

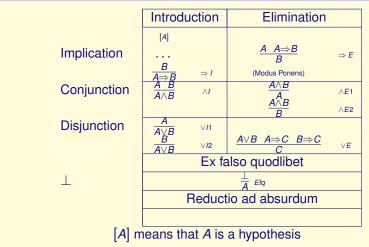


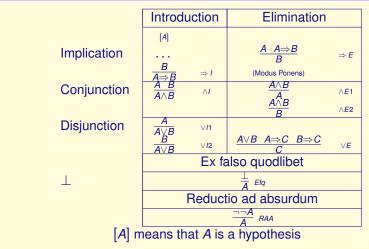
Natural	Deduction
Rules	



	Introduction		Elimination	
Implication	[A] B		$\frac{A A \Rightarrow B}{B}$	⇒E
Conjunction		$\Rightarrow I$ $\land I$	(Modus Ponens)	∧ <i>E</i> 1 ∧ <i>E</i> 2
Disjunction	$\frac{A}{A \lor B}$	∨/1 ∨/2	<u> </u>	
	AVB VI2 Ex falso quodlibet			
Τ.	Reductio ad absurdum			
[A] means that A is a hypothesis				







Natural Deduction Rules

$$\frac{A \qquad A \Rightarrow B}{B} \Rightarrow E \qquad \frac{A \qquad A \Rightarrow C}{C} \Rightarrow E$$
$$\frac{B \land C}{B \land C} \land I$$

```
Natural Deduction
Rules
```

$$\frac{A \qquad A \Rightarrow B}{B} \Rightarrow E \qquad \frac{A \qquad A \Rightarrow C}{C} \Rightarrow E$$
$$\frac{B \land C}{B \land C} \land I$$

What have we proven here exactly?

```
Natural Deduction
Rules
```

$$\frac{A \qquad A \Rightarrow B}{B} \Rightarrow E \qquad \frac{A \qquad A \Rightarrow C}{C} \Rightarrow E$$
$$\frac{B \land C}{B \land C} \land I$$

What have we proven here exactly? $B \wedge C$

```
Natural Deduction
Rules
```

$$\frac{A \qquad A \Rightarrow B}{B} \Rightarrow E \qquad \frac{A \qquad A \Rightarrow C}{C} \Rightarrow E$$
$$\frac{B \land C}{B \land C} \land I$$

What have we proven here exactly? $B \land C$ under the hypotheses $A, A \Rightarrow B, A \Rightarrow C$

i.e., A, $A \Rightarrow B$, $A \Rightarrow C \vDash B \land C$

Fundamental rule of Natural Deduction

Implies-introduction:

In order to prove $A \Rightarrow B$,

just derive *B* under the additional hypothesis *A* and then remove this assumption.

If $A \models B$ then $\models A \Rightarrow B$

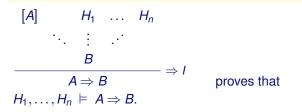
Fundamental rule of Natural Deduction

Implies-introduction:

In order to prove $A \Rightarrow B$,

just derive *B* under the additional hypothesis *A* and then remove this assumption.

If
$$A \models B$$
 then $\models A \Rightarrow B$



Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Definition 11

A proof line is one of the three following:

- Assume formula
- formula
- Therefore formula

Definition 11

A proof line is one of the three following:

- Assume formula (to add an hypothesis)
- formula (derived from previous lines using the rules)
- Therefore formula (to remove the last hypothesis)

Definition 11

A proof line is one of the three following:

- Assume formula (to add an hypothesis)
- formula (derived from previous lines using the rules)
- Therefore formula (to remove the last hypothesis)

This last case is the rule of implies-introduction.

Definition 11

A proof line is one of the three following:

- Assume formula (to add an hypothesis)
- formula (derived from previous lines using the rules)
- Therefore formula (to remove the last hypothesis)

This last case is the rule of implies-introduction.

Examples:

- ► Assume *A* ∧ *B*
- ► A
- Therefore $A \land B \Rightarrow A$

$$\frac{[A \land B]}{A} \land E$$
$$\frac{A \land B \Rightarrow A}{A \land B \Rightarrow A} \Rightarrow I$$

Proof sketch

Definition 12

A proof sketch is a sequence of lines such that, in every prefix of the sequence, there are at least as many Assume as Therefore.

Proof sketch

Definition 12

A proof sketch is a sequence of lines such that, in every prefix of the sequence, there are at least as many Assume as Therefore.

Example 9

number	line
1	Assume a
2	a∨b
3	Therefore $a \Rightarrow a \lor b$
4	Therefore ¬ <i>a</i>
5	Assume b

Proof sketch

Definition 12

A proof sketch is a sequence of lines such that, in every prefix of the sequence, there are at least as many Assume as Therefore.

Example 9

number	line
1	Assume a
2	a∨b
3	Therefore $a \Rightarrow a \lor b$
4	Therefore ¬ <i>a</i>
5	Assume b

Proof sketch: examples

Where are the sketches?

number	line			
1	Assume a ∧b	n	umber	line
2	6		1	Assume a
-	D		2	a∨b
3	b∨c		3	Therefore $a \Rightarrow a \lor b$
4	Therefore $a \land b \Rightarrow b \lor c$		5	
5	Therefore ¬ <i>a</i>		4	Assume b
0			5	Therefore ¬ <i>a</i>
6	Assume b			L

number	line
1	Assume a
2	a∨b
3	Therefore $a \Rightarrow a \lor b$
4	Assume b

Natural	Deduction
Proofs	

Context (1/2)

- Each line of a proof sketch has a context
- ► The context is the sequence of hypotheses introduced (using Assume lines) until the current line (included) and not removed in Therefore lines.

Natural	Deduction
Proof	s

Context (1/2)

- Each line of a proof sketch has a context
- The context is the sequence of hypotheses introduced (using Assume lines) until the current line (included) and not removed in Therefore lines.

Example:

context	number	line	rule
1	1	Assume a	
1,2	2	Assume b	
1,2	3	a∧b	∧l 1,2
1	4	Therefore $b \Rightarrow a \land b$	⇒l 2,3
1,5	5	Assume <i>e</i>	

```
Natural Deduction
Proofs
```

Context (2/2)

The context of a formula represents the hypotheses from which it has been derived.

Definition 13

Formally: Γ_i is the context of the line *i*.

 $\Gamma_0=\emptyset$

If the line *i* is:

Assume A

then $\Gamma_i = \Gamma_{i-1}, i$

► Therefore A

then Γ_i is obtained by deleting the last formula in Γ_{i-1}

```
• A
then \Gamma_i = \Gamma_{i-1}
```

Natural Deduction	
Proofs	

Example of context

Write down the contexts of the following proof sketch:

context	number	line
	1	Assume a
	2 a∨b	
	3	Therefore $a \Rightarrow a \lor b$
	4	Assume b
	5	Therefore b

Natural Deduction	
Proofs	

Example of context

Write down the contexts of the following proof sketch:

context	number	line	
1	1	Assume a	
1	2	a∨b	
	3	Therefore $a \Rightarrow a \lor b$	
4	4	Assume b	
	5	Therefore b	

Usable formulae, *i.e.*, formulae on which can be applied rules (1/2)

Definition 14

- ► A formula appearing on a line of a proof sketch is its conclusion.
- The conclusion of a line is usable as long as its context (*i.e.*, the hypotheses from which it has been derived) is present.

Usable formulae, *i.e.*, formulae on which can be applied rules (1/2)

Definition 14

- ► A formula appearing on a line of a proof sketch is its conclusion.
- ► The conclusion of a line is usable as long as its context (*i.e.*, the hypotheses from which it has been derived) is present.

Example 10

context	number	line
1	1	Assume a
1	2	a∨b
	3	Therefore $a \Rightarrow b$
	4	а
	5	b∨a

The conclusion of line 2 is usable on line 2 and not beyond.

Natural Deduction Proofs

Usable formulae (2/2)

On which lines are formulae 1 and 3 usable?

context	number	line
1	1	Assume a
1,2	2 Assume b	
1,2	3	С
1	4	Therefore d
1,5	5	Assume <i>e</i>

Definition of a Proof

Definition 15

Let Γ be a set of formulae.

A proof in the environment Γ is a proof sketch such that:

- 1. For every "Therefore" line, the formula is $B \Rightarrow C$, where:
 - ► *B* is the last hypothesis we've removed (from the context of the previous line)
 - C is either a formula usable on the previous line, or belongs to Γ .

Definition of a Proof

Definition 15

Let Γ be a set of formulae.

A proof in the environment Γ is a proof sketch such that:

- 1. For every "Therefore" line, the formula is $B \Rightarrow C$, where:
 - B is the last hypothesis we've removed (from the context of the previous line)
 - C is either a formula usable on the previous line, or belongs to Γ .
- 2. For every "A" line, the formula A is:
 - the conclusion of a rule (other than \Rightarrow *I*)
 - whose premises are usable on the previous line, or belong to Γ.

Definition of a Proof

Definition 15

Let Γ be a set of formulae.

A proof in the environment Γ is a proof sketch such that:

- 1. For every "Therefore" line, the formula is $B \Rightarrow C$, where:
 - B is the last hypothesis we've removed (from the context of the previous line)
 - C is either a formula usable on the previous line, or belongs to Γ .
- 2. For every "A" line, the formula A is:
 - the conclusion of a rule (other than \Rightarrow *I*)
 - whose premises are usable on the previous line, or belong to Γ.

Beware:

- The context Γ_i changes during the proof.
- The environment Γ remains the same.

Stéphane Devismes et al (UGA)

Natural Deduction

Proof of formulae

Definition 16

A proof of formula A within the environment Γ is:

- either the empty proof (when A is an element of Γ),
- ► or a proof whose last line is A with an empty context.

Proof of formulae

Definition 16

A proof of formula A within the environment Γ is:

- either the empty proof (when A is an element of Γ),
- ► or a proof whose last line is A with an empty context.

We note:

- ► $\Gamma \vdash A$ the fact that there is a proof of A within the environment Γ ,
- $\Gamma \vdash P$: *A* the fact that *P* is a proof of *A* within Γ .
- When the environment is empty, we abbreviate $\emptyset \vdash A$ by $\vdash A$.
- When we ask for a proof without indicating the environment, we mean that Γ = Ø.

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Prove $(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$, *i.e.*, $\models (a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$

context	number	line	justification
---------	--------	------	---------------

Prove $(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a), i.e., \models (a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$

context	number	line	justification
1	1	Assume $a {\Rightarrow} b$	

Prove
$$(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$$
, *i.e.*, $\models (a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$

context	number	line	justification
1	1	Assume $a \Rightarrow b$	
1,2	2	Assume ¬ b	

Prove
$$(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$$
, *i.e.*, $\models (a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$

context	number	line	justification
1	1	Assume $a {\Rightarrow} b$	
1,2	2	Assume ¬ b	
1,2,3	3	Assume a	

Prove
$$(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a), i.e., \models (a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$$

context	number	line	justification
1	1	Assume $a {\Rightarrow} b$	
1,2	2	Assume ¬ b	
1,2,3	3	Assume a	
1,2,3	4	b	$\Rightarrow E$ 1, 3

Prove $(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a), i.e., \models (a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$

context	number	line	justification
1	1	Assume $a {\Rightarrow} b$	
1,2	2	Assume ¬ b	
1,2,3	3	Assume a	
1,2,3	4	Ь	$\Rightarrow E$ 1, 3
1,2,3	5	\perp	\Rightarrow <i>E</i> 2, 4

Remark: line 2, $\neg b$ is an abbreviation of $b \Rightarrow \bot$.

So, applying $\Rightarrow E$ on *b* and $\neg b$ (*i.e.*, $b \Rightarrow \bot$), we obtain \bot !

$$\frac{A \ A \Rightarrow B}{B} \Rightarrow E$$

Prove $(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a), i.e., \models (a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$

context	number	line	justification
1	1	Assume $a {\Rightarrow} b$	
1,2	2	Assume ¬ b	
1,2,3	3	Assume a	
1,2,3	4	b	$\Rightarrow E$ 1, 3
1,2,3	5	\perp	\Rightarrow <i>E</i> 2, 4
1,2	6	Therefore ¬ a	\Rightarrow <i>I</i> 3, 5

Remark: \Rightarrow *I* on *a* and \perp gives $a \Rightarrow \perp$, which is abbreviated as $\neg a$.

$$\begin{bmatrix} A \end{bmatrix}$$
$$\dots \\ \frac{B}{A \Rightarrow B} \Rightarrow I$$

Prove $(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a), i.e., \models (a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$

context	number	line	justification
1	1	Assume $a {\Rightarrow} b$	
1,2	2	Assume ¬b	
1,2,3	3	Assume a	
1,2,3	4	b	$\Rightarrow E$ 1, 3
1,2,3	5	\perp	\Rightarrow <i>E</i> 2, 4
1,2	6	Therefore ¬ a	\Rightarrow / 3, 5
1	7	Therefore $\neg b \Rightarrow \neg a$	\Rightarrow / 2, 6

Prove $(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a), i.e., \models (a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$

context	number	line	justification
1	1	Assume $a \Rightarrow b$	
1,2	2	Assume $\neg b$	
1,2,3	3	Assume a	
1,2,3	4	b	$\Rightarrow E 1, 3$
1,2,3	5	L	\Rightarrow <i>E</i> 2, 4
1,2	6	Therefore ¬ <i>a</i>	\Rightarrow <i>I</i> 3, 5
1	7	Therefore $\neg b \Rightarrow \neg a$	\Rightarrow <i>I</i> 2, 6
	8	Therefore $(a \Rightarrow b) \Rightarrow (\neg b \Rightarrow \neg a)$	\Rightarrow / 1,7

Natural Deduction Examples

Prove
$$a \land \neg a \Rightarrow b$$
, *i.e.*, $\models a \land \neg a \Rightarrow b$

context	number	line	justification	1
---------	--------	------	---------------	---

Natural Deduction Examples

Prove $a \land \neg a \Rightarrow b$, *i.e.*, $\models a \land \neg a \Rightarrow b$

context	number	line	justification
1	1	Assume $a \land \neg a$	

Natural Deduction Examples

Prove
$$a \land \neg a \Rightarrow b$$
, *i.e.*, $\models a \land \neg a \Rightarrow b$

context	number	line	justification
1	1	Assume <i>a</i> ∧¬ <i>a</i>	
1	2	а	<i>∧E</i> 1 1

Natural Deduction Examples

Prove
$$a \land \neg a \Rightarrow b$$
, *i.e.*, $\models a \land \neg a \Rightarrow b$

context	number	line	justification
1	1	Assume <i>a</i> ∧¬ <i>a</i>	
1	2	а	<i>∧E</i> 1 1
1	3	$\neg a$	<i>∧E</i> 2 1

Natural Deduction

Second Example

Prove $a \land \neg a \Rightarrow b$, *i.e.*, $\models a \land \neg a \Rightarrow b$

context	number	line	justification
1	1	Assume <i>a</i> ∧¬ <i>a</i>	
1	2	а	<i>∧E</i> 1 1
1	3	$\neg a$	<i>∧E</i> 2 1
1	4	\perp	\Rightarrow <i>E</i> 2,3

Remark: $\neg a$ is the abbreviation of $a \Rightarrow \bot$.

Natural Deduction Examples

Prove $a \land \neg a \Rightarrow b$, *i.e.*, $\models a \land \neg a \Rightarrow b$

context	number	line	justification
1	1	Assume <i>a</i> ∧¬ <i>a</i>	
1	2	а	<i>∧E</i> 1 1
1	3	$\neg a$	<i>∧E</i> 2 1
1	4	1	\Rightarrow <i>E</i> 2,3
1	5	Ь	Efq 4

Natural Deduction Examples

Prove $a \land \neg a \Rightarrow b$, *i.e.*, $\models a \land \neg a \Rightarrow b$

context	number	line	justification
1	1	Assume <i>a</i> ∧¬ <i>a</i>	
1	2	а	<i>∧E</i> 1 1
1	3	$\neg a$	<i>∧E</i> 2 1
1	4	\perp	\Rightarrow <i>E</i> 2,3
1	5	b	Efq 4
	6	Therefore $a \land \neg a \Rightarrow b$	\Rightarrow <i>I</i> 1,5

Natural Deduction

Third Example

 $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg(m \lor p)$	

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg(m \lor p)$	
1,5,6	6	assume p	

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg(m \lor p)$	
1,5,6	6	assume p	
1,5,6	7	$m \lor p$	∨l2 6

Third Example

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

number	line	justification
1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
3	$(j \Rightarrow m)$	∧E2 2
4	$(\neg p \Rightarrow j)$	∧E1 2
5	assume $\neg(m \lor p)$	
6	assume p	
7	$m \lor p$	VI2 6
8	\perp	⇒E 5,7
	1 2 3 4 5 6 7	1 assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$ 2 $(\neg p \Rightarrow j) \land (j \Rightarrow m)$ 3 $(j \Rightarrow m)$ 4 $(\neg p \Rightarrow j)$ 5 assume $\neg (m \lor p)$ 6 assume p 7 $m \lor p$

Remark: Line 5, $\neg(m \lor p)$ is the abbreviation of $(m \lor p) \Rightarrow \bot$.

Third Example

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg(m \lor p)$	
1,5,6	6	assume p	
1,5,6	7	$m \lor p$	VI2 6
1,5,6	8	\perp	⇒E 5,7
1,5	9	therefore $\neg p$	⇒l 6,8

Remark: $\neg p$ is the abbreviation of $p \Rightarrow \bot$.

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg(m \lor p)$	
1,5,6	6	assume p	
1,5,6	7	$m \lor p$	∨l2 6
1,5,6	8	1	⇒E 5,7
1,5	9	therefore $\neg p$	⇒l 6,8
1,5	10	j	⇒E 4,9

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg(m \lor p)$	
1,5,6	6	assume p	
1,5,6	7	$m \lor p$	VI2 6
1,5,6	8	L	⇒E 5,7
1,5	9	therefore $\neg p$	⇒l 6,8
1,5	10	j	⇒E 4,9
1,5	11	m	⇒E 3,10

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg(m \lor p)$	
1,5,6	6	assume p	
1,5,6	7	$m \lor p$	VI2 6
1,5,6	8	L	⇒E 5,7
1,5	9	therefore $\neg p$	⇒l 6,8
1,5	10	j	⇒E 4,9
1,5	11	m	⇒E 3,10
1,5	12	$m \lor p$	VI1 11

Third Example

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg (m \lor p)$	
1,5,6	6	assume p	
1,5,6	7	$m \lor p$	∨l2 6
1,5,6	8	\perp	⇒E 5,7
1,5	9	therefore $\neg p$	⇒l 6,8
1,5	10	j	⇒E 4,9
1,5	11	m	⇒E 3,10
1,5	12	$m \lor p$	∨l1 11
1,5	13	\perp	⇒E 5,12

Remark: Line 5, $\neg(m \lor p)$ is the abbreviation of $(m \lor p) \Rightarrow \bot$.

Third Example

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg(m \lor p)$	
1,5,6	6	assume p	
1,5,6	7	$m \lor p$	∨l2 6
1,5,6	8	\perp	⇒E 5,7
1,5	9	therefore $\neg p$	⇒l 6,8
1,5	10	j	⇒E 4,9
1,5	11	m	⇒E 3,10
1,5	12	$m \lor p$	VI1 11
1,5	13	\perp	⇒E 5,12
1	14	therefore $\neg \neg (m \lor p)$	⇒l 5,13

Remark: $\neg \neg (m \lor p)$ is an abbreviation of $\neg (m \lor p) \Rightarrow \bot$.

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg(m \lor p)$	
1,5,6	6	assume p	
1,5,6	7	$m \lor p$	VI2 6
1,5,6	8	1	⇒E 5,7
1,5	9	therefore $\neg p$	⇒l 6,8
1,5	10	j	⇒E 4,9
1,5	11	m	⇒E 3,10
1,5	12	$m \lor p$	∨l1 11
1,5	13	L	⇒E 5,12
1	14	therefore $\neg \neg (m \lor p)$	⇒l 5,13
1	15	$m \lor p$	RAA 14

$$(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$$

context	number	line	justification
1	1	assume $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m)$	
1	2	$(\neg p \Rightarrow j) \land (j \Rightarrow m)$	∧E2 1
1	3	$(j \Rightarrow m)$	∧E2 2
1	4	$(\neg p \Rightarrow j)$	∧E1 2
1,5	5	assume $\neg(m \lor p)$	
1,5,6	6	assume p	
1,5,6	7	$m \lor p$	∨l2 6
1,5,6	8	1	⇒E 5,7
1,5	9	therefore ¬p	⇒l 6,8
1,5	10	j	⇒E 4,9
1,5	11	m	⇒E 3,10
1,5	12	$m \lor p$	∨l1 11
1,5	13	L	⇒E 5,12
1	14	therefore $\neg \neg (m \lor p)$	⇒I 5,13
1	15	$m \lor p$	RAA 14
	16	therefore $(p \Rightarrow \neg j) \land (\neg p \Rightarrow j) \land (j \Rightarrow m) \Rightarrow m \lor p$	⇒l 1,15

Natural	Deduction
Exam	nles

Prove $\neg A$ in the environment $\neg (A \lor B)$, *i.e.*, $\neg (A \lor B) \models \neg A$

environment			
refer	ence		formula
<i>(i)</i>		-	$\neg(A \lor B)$
context number		line	justification

Natural Deduction Examples

Prove $\neg A$ in the environment $\neg (A \lor B)$, *i.e.*, $\neg (A \lor B) \models \neg A$

environment				
refer	ence	formula		
((<i>i</i>)		$\neg (A \lor B)$	
context number		line	justification	
1	1 1			

Natural Deduction Examples

Prove $\neg A$ in the environment $\neg (A \lor B)$, *i.e.*, $\neg (A \lor B) \models \neg A$

environment					
refer	ence	formula			
((<i>i</i>)		\∨ <i>B</i>)		
context	number	line justification			
1	1	Assume A			
1	2	$A \lor B$	∨ / 1 1		

Natural Deduction Examples

Prove $\neg A$ in the environment $\neg (A \lor B)$, *i.e.*, $\neg (A \lor B) \models \neg A$

environment					
reference		formula			
<i>(i)</i>		$\neg(A \lor B)$			
context	number	line justification			
1	1	Assume A			
1	2	$A \lor B$	∨ <i>I</i> 1 1		
1	3	\perp	\Rightarrow <i>E i</i> ,2		

Remark: \neg (*A* \lor *B*) is the abbreviation of (*A* \lor *B*) \Rightarrow \bot .

Natural Deduction Examples

Prove $\neg A$ in the environment $\neg (A \lor B)$, *i.e.*, $\neg (A \lor B) \models \neg A$

environment				
reference		formula		
(<i>i</i>)		$\neg(A \lor B)$		
context	number	line justificatio		
1	1	Assume A		
1	2	$A \lor B$	∨ / 1 1	
1	3	\perp	$\Rightarrow E i, 2$	
	4	Therefore ¬ <i>A</i>	\Rightarrow <i>I</i> 1,3	

Remark: $\neg A$ is the abbreviation of $A \Rightarrow \bot$.

environment				
reference formula				
(i)		$A \Rightarrow B$	
context	number	line	justification	

environment					
refer	ence		formula		
(<i>i</i>)			$A \Rightarrow B$		
context	number	line		justification	
1	1	Assume	$\neg(\neg A \lor B)$		

environment					
reference formula					
(<i>i</i>)		$A \Rightarrow B$			
context	number	line		justification	
1	1	Assume	$\neg(\neg A \lor B)$		
1,2	2	Assume	Α		

environment					
refer	ence		formula		
(i)		$A \Rightarrow B$		
context	number	line		justification	
1	1	Assume	$\neg(\neg A \lor B)$		
1,2	2	Assume	Α		
1,2	3	В		$\Rightarrow E i, 2$	

environment					
reference			formula		
(i)		$A \Rightarrow B$		
context	number	line		justification	
1	1	Assume	$\neg(\neg A \lor B)$		
1,2	2	Assume	Α		
1,2	3	В		$\Rightarrow E i, 2$	
1,2	4	$\neg A \lor B$		∨ / 2 3	

Prove $\neg A \lor B$ in the environment $A \Rightarrow B$, *i.e.*, $A \Rightarrow B \models \neg A \lor B$.

environment					
reference		formula			
(i)	$A \Rightarrow B$			
context	number	line	justification		
1	1	Assume $\neg(\neg A \lor B)$			
1,2	2	Assume A			
1,2	3	В	\Rightarrow <i>E i</i> , 2		
1,2	4	$\neg A \lor B$	∨ <i>I</i> 23		
1,2	5	L	$\Rightarrow E 1, 4$		

Remark: $\neg(\neg A \lor B)$ is the abbreviation of $(\neg A \lor B) \Rightarrow \bot$

Prove $\neg A \lor B$ in the environment $A \Rightarrow B$, *i.e.*, $A \Rightarrow B \models \neg A \lor B$.

environment					
refer	reference formula				
(i)	$A \Rightarrow B$			
context	number	line	justification		
1	1	Assume $\neg(\neg A \lor B)$			
1,2	2	Assume A			
1,2	3	В	$\Rightarrow E i, 2$		
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3		
1,2	5	⊥	$\Rightarrow E 1, 4$		
1	6	Therefore ¬ <i>A</i>	\Rightarrow <i>I</i> 2, 5		

Remark: $\neg A$ is the abbreviation of $A \Rightarrow \bot$

environment				
reference		formula		
(i)	$A \Rightarrow B$		
context	number	line	justification	
1	1	Assume $\neg(\neg A \lor B)$		
1,2	2	Assume A		
1,2	3	В	$\Rightarrow E i, 2$	
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3	
1,2	5	\perp	$\Rightarrow E 1, 4$	
1	6	Therefore ¬ A	\Rightarrow <i>I</i> 2, 5	
1	7	$\neg A \lor B$	∨ / 1 6	

Prove $\neg A \lor B$ in the environment $A \Rightarrow B$, *i.e.*, $A \Rightarrow B \models \neg A \lor B$.

environment					
reference		formula			
(<i>i</i>)		$A \Rightarrow B$			
context	number	line	justification		
1	1	Assume $\neg(\neg A \lor B)$			
1,2	2	Assume A			
1,2	3	В	$\Rightarrow E i, 2$		
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3		
1,2	5	\perp	$\Rightarrow E 1, 4$		
1	6	Therefore ¬ A	\Rightarrow / 2, 5		
1	7	$\neg A \lor B$	∨ / 1 6		
1	8	\perp	$\Rightarrow E 1, 7$		

Remark: line 1, $\neg(\neg A \lor B)$ is the abbreviation of $(\neg A \lor B) \Rightarrow \bot$

environment					
reference		formula			
(<i>i</i>)		$A \Rightarrow B$			
context	number	line	justification		
1	1	Assume $\neg(\neg A \lor B)$			
1,2	2	Assume A			
1,2	3	В	$\Rightarrow E i, 2$		
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3		
1,2	5	⊥	$\Rightarrow E 1, 4$		
1	6	Therefore $\neg A$	\Rightarrow I 2, 5		
1	7	$\neg A \lor B$	∨ / 1 6		
1	8	⊥	$\Rightarrow E 1, 7$		
	9	Therefore $\neg \neg (\neg A \lor B)$	\Rightarrow <i>I</i> 1, 8		

Prove $\neg A \lor B$ in the environment $A \Rightarrow B$, *i.e.*, $A \Rightarrow B \models \neg A \lor B$.

environment						
reference		formula				
(<i>i</i>)		$A \Rightarrow B$				
context	number	line	justification			
1	1	Assume $\neg(\neg A \lor B)$				
1,2	2	Assume A				
1,2	3	В	$\Rightarrow E i, 2$			
1,2	4	$\neg A \lor B$	∨ <i>I</i> 2 3			
1,2	5	⊥ ⊥	$\Rightarrow E 1, 4$			
1	6	Therefore $\neg A$	\Rightarrow <i>I</i> 2, 5			
1	7	$\neg A \lor B$	∨ <i>I</i> 1 6			
1	8	1	$\Rightarrow E 1, 7$			
	9	Therefore $\neg \neg (\neg A \lor B)$	\Rightarrow <i>I</i> 1, 8			
	10	$\neg A \lor B$	RAA 9			

Stéphane Devismes et al (UGA)

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Theorem

Theorem 2

If a formula *A* is deduced from an environment Γ ($\Gamma \vdash A$) then *A* is a consequence of Γ ($\Gamma \models A$).

Every proof written in an environment Γ is correct!

In particular, if $\Gamma = \emptyset$, then $\vdash A$ implies $\models A$.

Theorem

Theorem 2

If a formula *A* is deduced from an environment Γ ($\Gamma \vdash A$) then *A* is a consequence of Γ ($\Gamma \models A$).

Every proof written in an environment Γ is correct!

In particular, if $\Gamma = \emptyset$, then $\vdash A$ implies $\models A$.

Let $\Gamma \vdash P$: *A*. Proof by induction on the number of lines *i* in *P*:

- Let H_i be the context and C_i the conclusion of the ith line in P. (We let H₀ = ∅. If P is empty, we let C₀ = A.)
- We show that for every k we have Γ , $H_k \models C_k$.

Theorem

Theorem 2

If a formula *A* is deduced from an environment Γ ($\Gamma \vdash A$) then *A* is a consequence of Γ ($\Gamma \models A$).

Every proof written in an environment Γ is correct!

In particular, if $\Gamma = \emptyset$, then $\vdash A$ implies $\models A$.

Let $\Gamma \vdash P$: *A*. Proof by induction on the number of lines *i* in *P*:

- Let H_i be the context and C_i the conclusion of the ith line in P. (We let H₀ = ∅. If P is empty, we let C₀ = A.)
- ► We show that for every *k* we have Γ , $H_k \models C_k$. Hence, for the last line (*n*) of the proof, we have $\Gamma \models A$ (Remember that H_n is empty and $C_n = A$.)

Stéphane Devismes et al (UGA)

Natural Deduction

Natural Deduction	
Correctness	

Base case

Assume that A is derived from Γ by an empty proof.

That is, A is a member of Γ .

Hence $\Gamma \models A$. Since $H_0 = \emptyset$, we can conclude that $\Gamma, H_0 \models A$, so $\Gamma, H_0 \models C_0$.

Induction hypothesis

Assume that for every line i < k of the proof *P* we have Γ , $H_i \models C_i$.

Let us show that Γ , $H_k \models C_k$.

Induction hypothesis

Assume that for every line *i* < *k* of the proof *P* we have Γ , $H_i \models C_i$.

Let us show that Γ , $H_k \models C_k$.

Three possible cases:

- ▶ Line k is "Assume C_k".
- ► Line k is "Therefore C_k".
- ▶ Line *k* is "*C_k*".

Natural Deduction Correctness

Line k is "Assume C_k"

The formula C_k is the last formula of H_k .

Then $H_k \models C_k$.

Then Γ , $H_k \models C_k$.

```
Natural Deduction
Correctness
```

The line k is "Therefore C_k"

 C_k is the formula $B \Rightarrow D$ where:

- *B* is the last formula of H_{k-1} : $H_{k-1} = H_k, B$
- ► *D* is either a formula in Γ or is usable on the previous line k 1.

```
Natural Deduction
Correctness
```

The line k is "Therefore C_k"

 C_k is the formula $B \Rightarrow D$ where:

- *B* is the last formula of H_{k-1} : $H_{k-1} = H_k, B$
- ► *D* is either a formula in Γ or is usable on the previous line k 1.
- (1) If D is a formula of Γ .

(2) If D is usable on the previous line.

```
Natural Deduction
Correctness
```

The line k is "Therefore C_k"

 C_k is the formula $B \Rightarrow D$ where:

- *B* is the last formula of H_{k-1} : $H_{k-1} = H_k, B$
- ► *D* is either a formula in Γ or is usable on the previous line k 1.
- (1) If *D* is a formula of Γ. Γ ⊨ *D* Γ, *H_k* ⊨ *D*. Since *D* ⊨ *B* ⇒ *D*, we conclude that Γ, *H_k* ⊨ *B* ⇒ *D*, *i.e.*, Γ, *H_k* ⊨ *C_k*.
 (2) If *D* is usable on the previous line.

```
Natural Deduction
Correctness
```

The line k is "Therefore C_k"

 C_k is the formula $B \Rightarrow D$ where:

- *B* is the last formula of H_{k-1} : $H_{k-1} = H_k, B$
- ► *D* is either a formula in Γ or is usable on the previous line k 1.

(1) If *D* is a formula of
$$\Gamma$$
.
 $\Gamma \models D$
 $\Gamma, H_k \models D$.
Since $D \models B \Rightarrow D$, we conclude that $\Gamma, H_k \models B \Rightarrow D$, *i.e.*,
 $\Gamma, H_k \models C_k$.

(2) If *D* is usable on the previous line. Hence ∃*i* < *k* such that *D* = *C_i* and *H_i* is a prefix of *H_{k-1}*. By induction hypothesis, Γ, *H_i* ⊨ *D*.

```
Natural Deduction
Correctness
```

The line k is "Therefore C_k"

 C_k is the formula $B \Rightarrow D$ where:

- *B* is the last formula of H_{k-1} : $H_{k-1} = H_k, B$
- ► *D* is either a formula in Γ or is usable on the previous line k 1.

(2) If *D* is usable on the previous line. Hence ∃*i* < *k* such that *D* = *C_i* and *H_i* is a prefix of *H_{k-1}*. By induction hypothesis, Γ, *H_i* ⊨ *D*. Since *H_i* is a prefix of *H_{k-1}*, we have Γ, *H_{k-1}* ⊨ *D* which can also be written Γ, *H_k*, *B* ⊨ *D*. Therefore Γ, *H_k* ⊨ *B* ⇒ *D*, *i.e.*, Γ, *H_k* ⊨ *C_k*.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\wedge I$, the other cases being similar.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\land I$, the other cases being similar. $C_k = (D \land E)$ and the premises of the rule are *D* and *E*.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\land I$, the other cases being similar. $C_k = (D \land E)$ and the premises of the rule are *D* and *E*.

By induction hypothesis (and similarly to the previous case), we have: Γ , $H_{k-1} \models D$ and Γ , $H_{k-1} \models E$.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\wedge \mathbf{I},$ the other cases being similar.

 $C_k = (D \wedge E)$ and the premises of the rule are D and E.

By induction hypothesis (and similarly to the previous case), we have: Γ , $H_{k-1} \models D$ and Γ , $H_{k-1} \models E$.

Since the line *k* does not change the hypotheses, we have $H_{k-1} = H_k$. Hence, Γ , $H_k \models D$ and Γ , $H_k \models E$.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\wedge I$, the other cases being similar.

 $C_k = (D \wedge E)$ and the premises of the rule are D and E.

By induction hypothesis (and similarly to the previous case), we have: Γ , $H_{k-1} \models D$ and Γ , $H_{k-1} \models E$.

Since the line *k* does not change the hypotheses, we have $H_{k-1} = H_k$. Hence, Γ , $H_k \models D$ and Γ , $H_k \models E$.

Finally $D, E \models D \land E$. Transitively, $\Gamma, H_k \models D \land E, i.e., \Gamma, H_k \models C_k$.

 C_k is then the conclusion of a rule, whose premises either:

- are usable on the previous line
- or belong to Γ.

We only consider the rule $\wedge I$, the other cases being similar.

 $C_k = (D \wedge E)$ and the premises of the rule are D and E.

By induction hypothesis (and similarly to the previous case), we have: Γ , $H_{k-1} \models D$ and Γ , $H_{k-1} \models E$.

Since the line *k* does not change the hypotheses, we have $H_{k-1} = H_k$. Hence, Γ , $H_k \models D$ and Γ , $H_k \models E$.

Finally $D, E \models D \land E$. Transitively, $\Gamma, H_k \models D \land E, i.e., \Gamma, H_k \models C_k$.

For the other rules, it is the same proof, you just have to prove that the conclusion is a consequence of the premises.

Stéphane Devismes et al (UGA)

Natural Deduction

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Theorem

We prove the completeness of the rules only for formulas containing the following logic symbols: \bot , \land , \lor , \Rightarrow .

This is enough because additional symbols \top , \neg and \Leftrightarrow are abbreviations.

Theorem

We prove the completeness of the rules only for formulas containing the following logic symbols: \bot , \land , \lor , \Rightarrow .

This is enough because additional symbols \top , \neg and \Leftrightarrow are abbreviations.

Theorem 3 Let Γ be a finite set of formulae and A a formula. If $\Gamma \models A$ then $\Gamma \vdash A$.

A literal is either a variable *x* or an implication $x \Rightarrow \bot$. *x* and $x \Rightarrow \bot$ (abbreviated as $\neg x$) are complementary literals.

A literal is either a variable *x* or an implication $x \Rightarrow \bot$. *x* and $x \Rightarrow \bot$ (abbreviated as $\neg x$) are complementary literals.

We define a measure *m* of formulae and of lists of formulae as:

- $m(\perp) = 0$
- m(x) = 1
- $m(A \Rightarrow B) = 1 + m(A) + m(B)$
- $m(A \wedge B) = 1 + m(A) + m(B)$
- $m(A \lor B) = 2 + m(A) + m(B)$
- $m(\Gamma) = \sum_{A \in \Gamma} m(A)$

A literal is either a variable *x* or an implication $x \Rightarrow \bot$. *x* and $x \Rightarrow \bot$ (abbreviated as $\neg x$) are complementary literals.

We define a measure *m* of formulae and of lists of formulae as:

- $m(\perp) = 0$
- m(x) = 1
- $m(A \Rightarrow B) = 1 + m(A) + m(B)$

(thus $m(\neg a) = m(a) + 1 = 2$)

- $m(A \wedge B) = 1 + m(A) + m(B)$
- $m(A \lor B) = 2 + m(A) + m(B)$
- $m(\Gamma) = \sum_{A \in \Gamma} m(A)$

A literal is either a variable *x* or an implication $x \Rightarrow \bot$. *x* and $x \Rightarrow \bot$ (abbreviated as $\neg x$) are complementary literals.

We define a measure *m* of formulae and of lists of formulae as:

•
$$m(\perp) = 0$$

- m(x) = 1
- $m(A \Rightarrow B) = 1 + m(A) + m(B)$

• $m(A \wedge B) = 1 + m(A) + m(B)$

- $m(A \lor B) = 2 + m(A) + m(B)$
- $m(\Gamma) = \sum_{A \in \Gamma} m(A)$

For example, let $A = (a \lor \neg a)$. $m(\neg a) = 2$, m(A) = 5 and $m(A, (b \land b), A) = 13$.

(thus $m(\neg a) = m(a) + 1 = 2$)

Natural	Deduction	
Com	oleteness	

Induction

We define P(n) to be the following property:

If $m(\Gamma, A) = n$, then if $\Gamma \models A$ then $\Gamma \vdash A$.

Natural Deduction Completeness

Induction

We define P(n) to be the following property:

If $m(\Gamma, A) = n$, then if $\Gamma \models A$ then $\Gamma \vdash A$.

To show that P(n) holds for every integer *n*, we use "strong" induction:

Induction

We define P(n) to be the following property:

If $m(\Gamma, A) = n$, then if $\Gamma \models A$ then $\Gamma \vdash A$.

To show that P(n) holds for every integer *n*, we use "strong" induction:

Assume that for every i < k, property P(i) holds. Assume that $m(\Gamma, A) = k$ and $\Gamma \models A$. Let us show that $\Gamma \vdash A$.

Idea: we decompose Γ , *A* in order to apply the induction hypothesis.

Idea: we decompose Γ , *A* in order to apply the induction hypothesis.

- A is **undecomposable** if A is \perp or a variable
- Γ is **undecomposable** if Γ is a list of literals or contains \bot .

Idea: we decompose Γ , *A* in order to apply the induction hypothesis.

- A is **undecomposable** if A is \perp or a variable
- Γ is **undecomposable** if Γ is a list of literals or contains \bot .

We study three cases:

Case 1: Neither A, nor Γ is decomposable.

Idea: we decompose Γ , *A* in order to apply the induction hypothesis.

- A is **undecomposable** if A is \perp or a variable
- Γ is **undecomposable** if Γ is a list of literals or contains \bot .

We study three cases:

- Case 1: Neither A, nor Γ is decomposable.
- Case 2: A is decomposable.

We decompose *A* in two sub-formulae *B* and *C*. We obtain $m(\Gamma, B) < m(\Gamma, A)$ and $m(\Gamma, C) < m(\Gamma, A)$ and so we can apply the induction hypothesis.

Idea: we decompose Γ , *A* in order to apply the induction hypothesis.

- A is **undecomposable** if A is \perp or a variable
- Γ is **undecomposable** if Γ is a list of literals or contains \bot .

We study three cases:

- Case 1: Neither A, nor Γ is decomposable.
- Case 2: A is decomposable.

We decompose *A* in two sub-formulae *B* and *C*. We obtain $m(\Gamma, B) < m(\Gamma, A)$ and $m(\Gamma, C) < m(\Gamma, A)$ and so we can apply the induction hypothesis.

Case 3: Γ is decomposable: we choose in Γ a decomposable formula.

(*i.e.*, other than \bot , *x*, and $x \Rightarrow \bot$ where *x* is a variable).

We decompose it.

The new set Γ' satisfies $m(\Gamma', A) < m(\Gamma, A)$, and so we can apply the induction hypothesis.

Stéphane Devismes et al (UGA)

Then:

- Γ is a list of literals or contains the formula \bot .
- A is \perp or a variable.

Then:

- Γ is a list of literals or contains the formula \bot .
- A is \perp or a variable.

(a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule *Efq*.

Then:

- Γ is a list of literals or contains the formula \bot .
- A is \perp or a variable.

(a) If ⊥ ∈ Γ then A can be derived from ⊥ by the rule *Efq*.
(b) If ⊥ ∉ Γ and Γ is a list of literals, then we have two cases:

Then:

- Γ is a list of literals or contains the formula \perp .
- A is \perp or a variable.
- (a) If ⊥ ∈ Γ then A can be derived from ⊥ by the rule *Efq*.
 (b) If ⊥ ∉ Γ and Γ is a list of literals, then we have two cases:
 - A = ⊥.
 Since Γ ⊨ A, there are two complementary literals in Γ.
 Therefore A can be derived from Γ by the rule ⇒E.

Then:

- Γ is a list of literals or contains the formula \perp .
- A is \perp or a variable.
- (a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule *Efq*.

(b) If $\perp \notin \Gamma$ and Γ is a list of literals, then we have two cases:

- A = ⊥.
 Since Γ ⊨ A, there are two complementary literals in Γ.
 Therefore A can be derived from Γ by the rule ⇒E.
- A is a variable. Since $\Gamma \models A$:

Then:

- Γ is a list of literals or contains the formula \perp .
- A is \perp or a variable.
- (a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule *Efq*.

(b) If $\perp \notin \Gamma$ and Γ is a list of literals, then we have two cases:

- A = ⊥.
 Since Γ ⊨ A, there are two complementary literals in Γ.
 Therefore A can be derived from Γ by the rule ⇒E.
- A is a variable. Since $\Gamma \models A$:
 - either Γ contains two complementary literals, and similarly $\Gamma \vdash A$ by $\Rightarrow E$ and then *Efq*

Then:

- Γ is a list of literals or contains the formula \perp .
- A is \perp or a variable.
- (a) If $\perp \in \Gamma$ then A can be derived from \perp by the rule *Efq*.

(b) If $\perp \notin \Gamma$ and Γ is a list of literals, then we have two cases:

- A = ⊥.
 Since Γ ⊨ A, there are two complementary literals in Γ.
 Therefore A can be derived from Γ by the rule ⇒E.
- A is a variable. Since $\Gamma \models A$:
 - either Γ contains two complementary literals, and similarly $\Gamma \vdash A$ by $\Rightarrow E$ and then *Efq*
 - or $A \in \Gamma$ and in this case $\Gamma \vdash A$ by an empty proof.

A is decomposed into $B \wedge C$, $B \vee C$, or $B \Rightarrow C$.

We only study the case $A = B \wedge C$, the other cases are similar.

A is decomposed into $B \land C$, $B \lor C$, or $B \Rightarrow C$.

We only study the case $A = B \wedge C$, the other cases are similar.

Since $\Gamma \models A$ and $A = B \land C$, we have $\Gamma \models B$ and $\Gamma \models C$.

A is decomposed into $B \wedge C$, $B \vee C$, or $B \Rightarrow C$.

We only study the case $A = B \wedge C$, the other cases are similar.

Since $\Gamma \models A$ and $A = B \land C$, we have $\Gamma \models B$ and $\Gamma \models C$.

Now m(B) < m(A) and m(C) < m(A), hence $m(\Gamma, B) < k$ and $m(\Gamma, C) < k$.

A is decomposed into $B \wedge C$, $B \vee C$, or $B \Rightarrow C$.

We only study the case $A = B \wedge C$, the other cases are similar.

Since $\Gamma \models A$ and $A = B \land C$, we have $\Gamma \models B$ and $\Gamma \models C$.

Now m(B) < m(A) and m(C) < m(A), hence $m(\Gamma, B) < k$ and $m(\Gamma, C) < k$.

By induction hypothesis, there exist two proofs *P* and *Q* such that $\Gamma \vdash P : B$ and $\Gamma \vdash Q : C$.

Case 2: A is decomposable into B and C

A is decomposed into $B \wedge C$, $B \vee C$, or $B \Rightarrow C$.

We only study the case $A = B \wedge C$, the other cases are similar.

Since $\Gamma \models A$ and $A = B \land C$, we have $\Gamma \models B$ and $\Gamma \models C$.

Now m(B) < m(A) and m(C) < m(A), hence $m(\Gamma, B) < k$ and $m(\Gamma, C) < k$.

By induction hypothesis, there exist two proofs *P* and *Q* such that $\Gamma \vdash P : B$ and $\Gamma \vdash Q : C$.

Hence the proof "P, Q, A" is a proof of A in the environment Γ .

Stéphane Devismes et al (UGA)

Natural Deduction Completeness

Case 3: Γ is decomposable

There is a decomposable formula in Γ which is either:

- ► *B*∧*C*
- ► *B*∨*C*
- $B \Rightarrow C$ where $C \neq \bot$
- $(B \wedge C) \Rightarrow \bot$
- $(B \lor C) \Rightarrow \bot$
- $(B \Rightarrow C) \Rightarrow \bot$

We only study the first case.

Remark: the four last cases are due to the fact that $x \Rightarrow \perp$ is undecomposable whenever *x* is a variable.

 Γ and $(B \land C)$, Δ have the same measure.

 Γ and $(B \land C), \Delta$ have the same measure. Since $\Gamma \models A$, we have $(B \land C), \Delta \models A$ and so $B, C, \Delta \models A$.

 Γ and $(B \land C), \Delta$ have the same measure. Since $\Gamma \models A$, we have $(B \land C), \Delta \models A$ and so $B, C, \Delta \models A$. $m(B) + m(C) < m(B \land C)$

 Γ and $(B \land C), \Delta$ have the same measure. Since $\Gamma \models A$, we have $(B \land C), \Delta \models A$ and so $B, C, \Delta \models A$. $m(B) + m(C) < m(B \land C)$ Hence $m(B, C, \Delta, A) < m((B \land C), \Delta, A) = m(\Gamma, A) = k$. By induction hypothesis, there exist a proof *P* such that $B, C, \Delta \vdash P : A$.

 Γ and $(B \land C)$, Δ have the same measure. Since $\Gamma \models A$, we have $(B \land C)$, $\Delta \models A$ and so $B, C, \Delta \models A$. $m(B) + m(C) < m(B \land C)$ Hence $m(B, C, \Delta, A) < m((B \land C), \Delta, A) = m(\Gamma, A) = k$. By induction hypothesis, there exist a proof *P* such that $B, C, \Delta \vdash P : A$.

Since

- *B* can be derived from $(B \land C)$ by the rule $\land E1$ and
- C can be derived from $(B \land C)$ by the rule $\land E2$

We have "B, C, P" is a proof of A in the environment Γ . So $\Gamma \vdash A$.

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Remark

The proof of completeness is constructive, that is it provides a complete (recursive) algorithm, or equivalently a set of tactics to construct the proofs of a formula in an environment.

However, these tactics can lead to long proofs.

Remark

The proof of completeness is constructive, that is it provides a complete (recursive) algorithm, or equivalently a set of tactics to construct the proofs of a formula in an environment.

However, these tactics can lead to long proofs.

It is better then to use "optimized" tactics.

For example, to prove $B \lor C$:

- First try to prove B
- ▶ If failure, then try to prove C
- Otherwise, use Tactic 10 (prove C under the hypothesis $\neg B$)

Remark

The proof of completeness is constructive, that is it provides a complete (recursive) algorithm, or equivalently a set of tactics to construct the proofs of a formula in an environment.

However, these tactics can lead to long proofs.

It is better then to use "optimized" tactics.

For example, to prove $B \lor C$:

- First try to prove B
- ▶ If failure, then try to prove C
- Otherwise, use Tactic 10 (prove C under the hypothesis $\neg B$)

Before explaining these tactics ... A few number of small proofs are hard coded!

Stéphane Devismes et al (UGA)

Natural Deduction

 $P1: \neg B \Rightarrow C \models B \lor C$

environment			
reference		formula	
i		$ eg B \Rightarrow C$	
context	number	line	rule
1	1	Assume $\neg(B \lor C)$	
1,2	2	Assume B	
1,2	3	$B \lor C$	∨ <i>I</i> 1 2
1,2	4	\perp	$\Rightarrow E$ 1,3
1	5	Therefore ¬ <i>B</i>	\Rightarrow / 2,4
1	6	С	$\Rightarrow E i,5$
1	7	$B \lor C$	∨ / 26
1	8	\perp	$\Rightarrow E 1,7$
	9	Therefore $\neg \neg (B \lor C)$	\Rightarrow <i>I</i> 1,8
	10	$B \lor C$	RAA 9

Natural Deduction

 $P2: B \Rightarrow C \models \neg B \lor C$

environment			
reference		formula	
	i	$B \Rightarrow C$	
context	number	line	rule
1	1	Assume $\neg(\neg B \lor C)$	
1,2	2	Assume ¬ B	
1,2	3	$\neg B \lor C$	∨ <i>I</i> 1 2
1,2	4	\perp	\Rightarrow <i>E</i> 3,1
1	5	Therefore ¬¬ <i>B</i>	\Rightarrow <i>E</i> 2,4
1	6	В	RAA 5
1	7	С	$\Rightarrow E i,6$
1	8	$\neg B \lor C$	∨ <i>1</i> 27
1	9	L	$\Rightarrow E$ 1,8
	10	Therefore $\neg \neg (\neg B \lor C)$	\Rightarrow <i>E</i> 1,9
	11	$\neg B \lor C$	<i>RAA</i> 10

Stéphane Devismes et al (UGA)

Natural Deduction

 $P3: \neg (B \land C) \models \neg B \lor \neg C$

environment			
reference		formula	
	i	$\neg (B \land C)$	
context	number	line	rule
1	1	Assume $\neg(\neg B \lor \neg C)$	
1,2	2	Assume ¬ B	
1,2	3	$\neg B \lor \neg C$	∨ <i>l</i> 1 2
1,2	4	L	$\Rightarrow E$ 1,3
1	5	Therefore ¬¬ B	\Rightarrow / 2,4
1	6	В	RAA 5
1,7	7	Assume ¬C	
1,7	8	$\neg B \lor \neg C$	∨ <i>I</i> 2 7
1,7	9	L	$\Rightarrow E$ 8,1
1	10	Therefore ¬¬C	\Rightarrow <i>I</i> 7,9
1	11	С	<i>RAA</i> 10
1	12	$B \wedge C$	∧/ 6,11
1	13	L	$\Rightarrow E i, 12$
	14	Therefore $\neg \neg (\neg B \lor \neg C)$	⇒ / 1,13
	15	$\neg B \lor \neg C$	RAA 14

Stéphane Devismes et al (UGA)

Natural Deduction

 $P4: \neg (B \lor C) \models \neg B$

environment			
reference		formula	
i		$\neg (B \lor C)$	
context	number	line rule	
1	1	Assume B	
1	2	$B \lor C$	∨ <i>I</i> 1 1
1	3	\perp	\Rightarrow <i>E i</i> ,2
	4	Therefore ¬ <i>B</i>	\Rightarrow / 1,3

Similarly, $P5: \neg(B \lor C) \models \neg C$

Natural Deduction

 $P6: \neg(B \Rightarrow C) \models B$

environment			
reference		formula	
i		$ eg (B \Rightarrow C)$	
context	number	line	rule
1	1	Assume ¬ B	
1,2	2	Assume B	
1,2	3	\perp	\Rightarrow <i>E</i> 2,1
1,2	4	С	Efq 3
1	5	Therefore $B \Rightarrow C$	\Rightarrow / 2,4
1	6	\perp	\Rightarrow <i>E i</i> ,5
	7	Therefore ¬¬ B	\Rightarrow <i>I</i> 1,6
	8	В	RAA 7

Natural Deduction

 $P7: \neg(B \Rightarrow C) \models \neg C$

environment			
reference		formula	
i		$ eg (B \Rightarrow C)$	
context	number	line rule	
1	1	Assume C	
1,2	2	Assume B	
1	3	Therefore $B \Rightarrow C$	\Rightarrow / 1,2
1	4	\perp	\Rightarrow <i>E i</i> ,3
	5	Therefore ¬C	\Rightarrow <i>I</i> 1,4

Natural	Deduction
Algor	ithm

Proof Tactics

We wish to prove A in the environment Γ

The 13 following tactics must be used in the following order!

Natural D	eduction
Algorit	hm

If $A \in \Gamma$, then the proof is empty.

Natural Deduction Algorithm

If *A* is the conclusion of a rule *R* whose premises are in Γ , then the proof is

context	line	justification
Г	Α	R

Natural	Deduction
Algor	ithm

If Γ contains a contradiction, *i.e.* two formulae of the form *B* and $\neg B$, then proof is

context	line	justification
Г	\perp	⇒E
Г	Α	Efq

Natural Deduction Algorithm

If $A = B \wedge C$, then

context	line	justification
Г		
Г	В	
Г		
Г	С	
Г	$B \wedge C$	$\wedge I$

Natural Deduction Algorithm

If $A = B \wedge C$, then

context	line	justification
Г		
Г	В	
Г		
Г	С	
Г	$B \wedge C$	$\wedge I$

The proofs can fail (if it is asked to prove a formula that is unprovable in the given environment).

if the proof of *B* or *C* fails, then *A* is not valid.

To simplify the remaining, we do not highlight the failure cases anymore, **unless they must be followed by another tactic.**

Stéphane Devismes et al (UGA)

Natural Deduction

Natural Deduction Algorithm

If $A = B \Rightarrow C$, then prove *C* under hypothesis *B*, or equivalently prove *C* in the environment Γ , *B*, let *P* be the proof.

context	line	justification
Г, В	Assume B	
Г, В		Р
Г, <i>В</i>	С	
Г	Therefore $B \Rightarrow C$	\Rightarrow I

Natural Deduction Algorithm

If $A = B \lor C$, then prove *B*, let *P* be the proof.

context	line	justification
Г		Р
Г	В	
Г	$B \lor C$	∨ / 1

If the proof of *B* fails, then prove *C*, let *Q* be the proof.

context	line	justification
Г		Q
Г	С	
Г	$B \lor C$	∨ <i>I</i> 2

If the proof of C fails, try the following tactics.

Stéphane Devismes et al (UGA)

Natural Deduction

Natural Deduction Algorithm

If $\Gamma = \Gamma', B \wedge C$, then prove *A* in the environment Γ', B, C , let *P* the proof of *A* in Γ', B, C .

context	line	justification
$\Gamma', B \wedge C$	В	<i>∧E</i> 1
$\Gamma', B \wedge C$	С	∧ <i>E</i> 2
$\Gamma', B \wedge C$		Р
$\Gamma', B \wedge C$	Α	

If $\Gamma = \Gamma', B \lor C$, then

- prove *A* in the environment Γ' , *B*, let *P* be the proof
- prove *A* in the environment Γ' , *C*, let *Q* be the proof

context	line	justification
$\Gamma', B \lor C, B$	Assume B	
Γ' , <i>B</i> ∨ <i>C</i> , B	•••	Р
Γ' , <i>B</i> ∨ <i>C</i> , B	Α	
$\Gamma', B \lor C$	Therefore $B \Rightarrow A$	\Rightarrow I
$\Gamma', B \lor C, C$	Assume C	
$\Gamma', B \lor C, C$		Q
$\Gamma', B \lor C, C$	Α	
$\Gamma', B \lor C$	Therefore $C \Rightarrow A$	\Rightarrow I
Γ ′, <i>B</i> ∨ <i>C</i>	A	∨E

- If $\Gamma = \Gamma', \neg (B \lor C)$, then
 - prove $\neg B$ by P4,
 - ▶ prove ¬*C* by *P*5, and
 - ▶ prove *A* in the environment Γ' , $\neg B$, $\neg C$, let *P* be the proof.

context	line	justification
$\Gamma', \neg(B \lor C)$		<i>P</i> 4
$\Gamma', \neg(B \lor C)$	$\neg B$	
$\Gamma', \neg(B \lor C)$		<i>P</i> 5
$\Gamma', \neg(B \lor C)$	$\neg C$	
$\Gamma', \neg(B \lor C)$		Р
$\Gamma', \neg(B \lor C)$	Α	

Natural	Deduction
Algor	ithm

If $A = B \lor C$, then prove *C* in the environment Γ , $\neg B$, let *P* be the proof.

context	line	justification
Γ, ¬ <i>B</i>	Assume ¬ B	
Γ, <i>¬B</i>		Р
Γ,¬ <i>B</i>	С	
Г	Therefore $\neg B \Rightarrow C$	
Г		<i>P</i> 1
Г	A	$A = B \lor C$

If $\Gamma = \Gamma', \neg (B \land C)$, then prove $\neg B \lor \neg C$ by *P*3, and reason case by case as follows:

- prove *A* in the environment Γ' , $\neg B$, let *P* the proof;
- prove *A* in the environment $\Gamma', \neg C$, let *Q* the proof.

context	line	justification
Г		<i>P</i> 3
Г	$\neg B \lor \neg C$	
Γ, ¬ <i>B</i>	Assume ¬ B	
Γ, ¬ <i>B</i>		Р
Γ, ¬ <i>B</i>	Α	
Г	Therefore $\neg B \Rightarrow A$	
Г , ¬ <i>С</i>	Assume $\neg C$	
Г , ¬ <i>С</i>		Q
Γ, ¬ <i>C</i>	Α	
Г	Therefore $\neg C \Rightarrow A$	
Г	Α	∨E

- If $\Gamma = \Gamma', \neg (B \Rightarrow C)$, then
 - ▶ prove *B* by *P*6,
 - prove $\neg C$ by P7, and
 - ▶ prove *A* in the environment $\Gamma', B, \neg C$, let *P* be the proof.

context	line	justification
$\Gamma', \neg(B \Rightarrow C)$		<i>P</i> 6
$\Gamma', \neg(B \Rightarrow C)$	В	
$\Gamma', \neg(B \Rightarrow C)$		<i>P</i> 7
$\Gamma', \neg(B \Rightarrow C)$	$\neg C$	
$\Gamma', \neg(B \Rightarrow C)$		Р
$\Gamma', \neg(B \Rightarrow C)$	Α	

If $\Gamma = \Gamma', B \Rightarrow C$ with $C \neq \bot$, *i.e.* if $B \Rightarrow C$ is not $\neg B$, then prove $\neg B \lor C$ in the environment $B \Rightarrow C$ by *P*2, and then we reason by cases:

- prove *A* in the environment Γ' , $\neg B$, let *P* the proof;
- prove *A* in the environment Γ' , *C*, let *Q* the proof.

context	line	justification
$\Gamma', B \Rightarrow C$		P2
$\Gamma', B \Rightarrow C$	$\neg B \lor C$	
$\Gamma', B \Rightarrow C, \neg B$	Assume ¬ B	
$\Gamma', B \Rightarrow C, \neg B$		Р
$\Gamma', B \Rightarrow C, \neg B$	Α	
$\Gamma', B \Rightarrow C$	Therefore $\neg B \Rightarrow A$	
$\Gamma', B \Rightarrow C, C$	Assume C	
$\Gamma', B \Rightarrow C, C$		Q
$\Gamma', B \Rightarrow C, C$	Α	
$\Gamma', B \Rightarrow C$	Therefore $C \Rightarrow A$	
$\Gamma', B \Rightarrow C$	Α	∨E

Natural	Deduction
Algorithm	

Proof of Peirce's law:

 $((\rho \Rightarrow q) \Rightarrow \rho) \Rightarrow \rho$

Stéphane Devismes et al (UGA)

Natural Deduction Algorithm

 $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$: proof plan

Tactic 5 is mandatory!

Proof Q: Assume $(p \Rightarrow q) \Rightarrow p$ Q_1 : proof of p in the environment $(p \Rightarrow q) \Rightarrow p$ Therefore $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$

Natural Deduction Algorithm

 $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$: proof plan

Tactic 5 is mandatory!

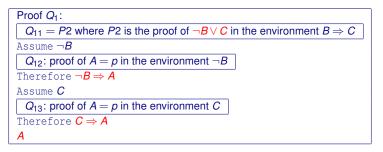
Proof Q: Assume $(p \Rightarrow q) \Rightarrow p$ Q_1 : proof of p in the environment $(p \Rightarrow q) \Rightarrow p$ Therefore $((p \Rightarrow q) \Rightarrow p) \Rightarrow p$

 Q_1 necessarily uses Tactic 13: indeed, Q_1 is written in the environment $B \Rightarrow C$ where $B = p \Rightarrow q$, C = p.

```
Natural Deduction
Algorithm
```

Proof Plan for Q_1

Proof of A = p in the environment $B \Rightarrow C$ where $B = p \Rightarrow q$, C = p



Proof of Q_1

 Q_{13} , *i.e.*, proof of A = p in the environment C = p: empty, since A = C = p.

 Q_{12} : proof of A = p in the environment $\neg B = \neg (p \Rightarrow q)$. The proof is actually *P*6.

By gluing pieces Q_1 , Q_{11} , Q_{12} , Q_{13} , we obtain the proof Q.

Proof of Q_1

 Q_{13} , *i.e.*, proof of A = p in the environment C = p: empty, since A = C = p.

 Q_{12} : proof of A = p in the environment $\neg B = \neg (p \Rightarrow q)$. The proof is actually *P*6.

By gluing pieces Q_1 , Q_{11} , Q_{12} , Q_{13} , we obtain the proof Q.

Below we show how to find the proof Q_{12} without using the tactics.

Proof of Q_{12} : A = p in the environment $\neg(p \Rightarrow q)$

The only rule, which does not lead to a deadlock, is the reduction ad absurdum.

```
Natural Deduction
Algorithm
```

Proof of Q_{12} : A = p in the environment $\neg(p \Rightarrow q)$

The only rule, which does not lead to a deadlock, is the reduction ad absurdum.

Hence this proof is of the form:

```
Assume \neg p

Q_{121}: proof of \perp in the environment \neg (p \Rightarrow q), \neg p

Therefore \neg \neg p

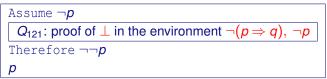
p
```

```
Natural Deduction
Algorithm
```

Proof of Q_{12} : A = p in the environment $\neg(p \Rightarrow q)$

The only rule, which does not lead to a deadlock, is the reduction ad absurdum.

Hence this proof is of the form:



To obtain \perp in the environment $\neg(p \Rightarrow q), \neg p$, $p \Rightarrow q$ must be derived. Hence, Q_{121} is:

```
Assume p

\perp

q

Therefore p \Rightarrow q

\perp
```

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion

Automated proofs

To automatically obtain the proofs in the system, one recommends to use the following software (implementing the 13 previous tactics):

http://teachinglogic.liglab.fr/DN/

Automated proofs

To automatically obtain the proofs in the system, one recommends to use the following software (implementing the 13 previous tactics):

http://teachinglogic.liglab.fr/DN/

Extension to First-Order formulae: complete, but undecidable.

Automated proofs

To automatically obtain the proofs in the system, one recommends to use the following software (implementing the 13 previous tactics):

http://teachinglogic.liglab.fr/DN/

Extension to First-Order formulae: complete, but undecidable.

Several proof assistants (like Coq) are based on the (first-order) natural deduction.

For omitted details

See

In French, sorry!

Stéphane Devismes et al (UGA)

Natural Deduction Conclusion

Slides

Available on my Webpage:

http://www-verimag.imag.fr/~devismes/

Natural Deduction	
Conclusion	

Conclusion

Thank you for your attention.