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Natural Deduction

Introduction

Intuition

When you write proofs in math courses,

when you decompose a reasoning in elementary obvious steps,

you somehow practice Natural Deduction.
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Natural Deduction

Introduction

Goals of Natural Deduction

Gerhard Gentzen (1934)

The goal is to provide a formal system to write proofs that are close to
the “natural” way of reasoning.

Two orthogonal subgoals:

1. Proofs should be “readable enough” to be easily checked by a
human being.

2. Proofs should be “formal enough” to prevent bugs (and to be
mechanically checked/generated by a computer).
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Natural Deduction

Introduction

Models for Natural Deduction

Gerhard Gentzen introduced two models of Natural Deduction for
classical logic:

I NK: a proof is a tree of formulas.

I LK: a proof is a tree of sequents.

(NJ et LJ for intuitionistic logic.)

Here, yet another (homemade) presentation of natural deduction.

We try to take advantages from the two previous models!
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Natural Deduction

Introduction

Goal of my Talk

1. Try to convince you that it is easy and safe to write proofs by
yourself in Natural Deduction.

2. Present a tool that automatically constructs proofs in Natural
Deduction:

http://teachinglogic.liglab.fr/DN/
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Stéphane Devismes et al (UGA) Natural Deduction 23-24 February 2017 8 / 98



Natural Deduction

Preliminaries

Propositional Logic

Definition 1

Propositional logic is a logic without quantifiers.

The only logical operations used are:

I ¬ (negation),

I ∧ (conjunction, also known as logical “and”),

I ∨ (disjunction, also known as logical “or”),

I ⇒ (implication)

I ⇔ (equivalence)
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Natural Deduction

Preliminaries

Syntax: Vocabulary of the language

I The constants: > (true) and ⊥ (false)

I The variables: for example, x , y1

I The parentheses: left ( and right ).

I The connectives: ¬,∨,∧,⇒,⇔
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Natural Deduction

Preliminaries

(Strict) Formula

Definition 2

A strict formula is defined inductively as:

I > and ⊥ are strict formulae.

I A variable is a strict formula.

I If A is a strict formula then ¬A is a strict formula.

I If A and B are strict formulae and if ◦ is one of the following
operations ∨,∧,⇒,⇔ then (A◦B) is a strict formula.

Example 1

(a∨ (¬b∧ c)) is a strict formula,
but neither a∨ (¬b∧ c), nor (a∨ (¬(b)∧ c)).
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Natural Deduction

Preliminaries

Canonical Decomposition

Strict formulae decompose uniquely in their sub-formulae.

Theorem 1
For every formula A, there is one and only one of the following cases:

I A is a variable,

I A is a constant,

I A can be written in a unique manner as ¬B where B is a formula,

I A can be written in a unique manner as (B ◦C) where B and C are formulae.

This will allow us to:

I prove properties by cases

I perform structural induction on the formulae: we will ALWAYS
consider STRICT formulae in proofs
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Natural Deduction

Preliminaries

Tree

Example 2

The structure of the formula (a∨ (¬b∧ c)) is illustrated by the
following tree:

∨

��   
a ∧

~~ ��
¬

��

c

b

Subtrees = sub-formulae
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Natural Deduction

Preliminaries

Prioritized formula

Definition 3

A prioritized formula is inductively defined in a similar way, but:

I if A and B are prioritized formulae, then A◦B is a prioritized
formula,

I if A is a prioritized formula then (A) is a prioritized formula.

Example 3

a∨¬b∧ c is a prioritized formula, but not a (strict) formula.
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Natural Deduction

Preliminaries

Connective precedence

Definition 4

By decreasing precedence, the connectives are: ¬, ∧, ∨,⇒ and⇔.

Left associativity

For identical connectives, the left-hand side connective has higher
precedence:
A◦B ◦C = (A◦B)◦C
except for the implication: A⇒ B⇒ C = A⇒ (B⇒ C)

We usually write prioritized formulae, but we should reason with
their corresponding strict formulae
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Natural Deduction

Preliminaries

Basic tables

0 indicates false and 1 indicates true.
The value of the constant > is 1 and the value of the constant ⊥ is 0

Table 1

x y ¬x x ∨ y x ∧ y x ⇒ y x ⇔ y
0 0 1 0 0 1 1
0 1 1 1 0 1 0
1 0 0 1 0 0 0
1 1 0 1 1 1 1
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Natural Deduction

Preliminaries

Assignment

Definition 5

A truth assignment (assignment, for short) is a function
from the set of variables of a formula to the set {0,1}.

[A]v denotes the truth value of the formula A for the assignment v .

Example: Let v be an assignment such that v(x) = 0 and v(y) = 1.

Applying v to x ∨ y is written as [x ∨ y ]v

[x ∨ y ]v = 0∨1 = 1

Conclusion: x ∨ y is true for the truth assignment v
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Natural Deduction

Preliminaries

Example

x y x ∨ y ⇒¬x
1 0 0
1 1 0
0 0 1
0 1 1

Assignment v : line 1, v(x) = 1 and v(y) = 0

Value of the assignment: [x ∨ y ⇒¬x]v = 0
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Natural Deduction

Preliminaries

Model for a formula

Definition 6

An assignment v for which a formula has truth value equal to 1 is a
model for that formula.

v satisfies A or v makes A true.

Example 4

A model for x ⇒ y is x = 1,y = 1 (among others)

Conversely, x = 1, y = 0 is not a model for x ⇒ y .
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Natural Deduction

Preliminaries

Model for a set of formulae

Definition 7

v is a model for a set of formulae {A1, . . . ,An}
if and only if
it is a model for every formula in the set.

Example 5

A model of {a⇒ b,b⇒ c} is a = 0,b = 0 (for any c).
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Natural Deduction

Preliminaries

Model for a set of formulae

Definition 7

v is a model for a set of formulae {A1, . . . ,An}
if and only if
it is a model for every formula in the set.

Example 5

A model of {a⇒ b,b⇒ c} is a = 0,b = 0 (for any c).
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Natural Deduction

Preliminaries

Validity, Contradiction

Definition 8

I A formula is valid (resp., a tautology) if its value is 1 for all truth
assignments.

I A formula is unsatisfiable (resp., contradictory or a contradiction)
if its value is 0 for all truth assignments.

Example 6

I (x ⇒ y)⇔ (¬x ∨ y) is valid.

I x ⇒ y is not valid since it is false for x = 1 and y = 0, but is not a
contradiction since it is true for x = 0 and y = 0.

I x ∧¬x is a contradiction.
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Natural Deduction

Preliminaries

Logical consequence (entailment)

Definition 9

A is a consequence of the set Γ of formulae (called set of hypotheses
or environment) if
every model of Γ is a model of A.

The fact that A is a consequence of Γ is noted Γ |= A.
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Natural Deduction

Preliminaries

Example of a consequence

Example 7

a⇒ b,b⇒ c |= a⇒ c.

a b c a⇒ b b⇒ c a⇒ c
0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 0 0
1 1 1 1 1 1
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Natural Deduction

Preliminaries

Property

Property 1

The following two formulations are equivalent:

1. A1, . . . ,An |= B

2. A1∧ . . .∧An⇒ B is valid.

Remark: Let Γ be a set of formulae and A be a formula.

1. Γ |=⊥ means that Γ is contradictory (always false),

2. /0 |= A (|= A, for short) means that Γ is valid (always true).
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Natural Deduction

Specificities of Natural Deduction

Two main specificities

I System with several rules.

I During a proof, we can add and remove hypotheses.

I During a proof, we use abbreviations of formulae.
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Natural Deduction

Specificities of Natural Deduction

Abbreviations

>, negation and equivalence are abbreviations defined as:
I > abbreviates ⊥⇒⊥.
I ¬A abbreviates A⇒⊥.
I A⇔ B abbreviates (A⇒ B)∧ (B⇒ A).

Two formulae are said to be equal, if the formulas obtained by
removing the abbreviations are identical.

E.g., the formulae ¬¬a, ¬a⇒⊥ and (a⇒⊥)⇒⊥ are equal.

Two equal formulae are equivalent!

In the proof, we usually write every formula in its abbreviated form,
e.g., ¬A, but we keep in mind that we can use its unabbreviated form,
e.g., A⇒⊥, when applying a rule.
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Natural Deduction

Rules

Rule

Definition 10

A rule consists of:

I some formulae H1, . . . ,Hn called premises (or hypotheses)

I a unique conclusion C

I a name R for the rule (optional)

H1 . . .Hn

C
R

Example 8

A B
A∧B

∧ I
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Natural Deduction

Rules

Classification of rules

I Introduction rules for introducing a connective in the conclusion.

I Elimination rules for removing a connective from one of the
premises.

I + two special rules
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Natural Deduction

Rules

The rules (system NK of Gentzen)

Table 2

Introduction Elimination

[A]

Implication

. . . A A⇒B
B ⇒ E

B
A⇒B ⇒ I (Modus Ponens)

Conjunction

A B
A∧B ∧I

A∧B
A ∧E1

A∧B
B ∧E2

Disjunction

A
A∨B ∨I1

B
A∨B ∨I2

A∨B A⇒C B⇒C
C ∨E

Ex falso quodlibet
⊥

⊥
A Efq

Reductio ad absurdum

¬¬A
A RAA

[A] means that A is a hypothesis
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¬¬A
A RAA

[A] means that A is a hypothesis
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Natural Deduction

Rules

A “simple” example

A A⇒ B

B
⇒ E

A A⇒ C

C
⇒ E

B∧C
∧I

What have we proven here exactly? B∧C
under the hypotheses A, A⇒ B, A⇒ C

i.e., A, A⇒ B, A⇒ C � B∧C
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Stéphane Devismes et al (UGA) Natural Deduction 23-24 February 2017 32 / 98



Natural Deduction

Rules

A “simple” example

A A⇒ B

B
⇒ E

A A⇒ C

C
⇒ E

B∧C
∧I

What have we proven here exactly? B∧C
under the hypotheses A, A⇒ B, A⇒ C

i.e., A, A⇒ B, A⇒ C � B∧C
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Natural Deduction

Rules

Fundamental rule of Natural Deduction

Implies-introduction:

In order to prove A⇒ B,
just derive B under the additional hypothesis A and then remove this
assumption.

If A |= B then |= A⇒ B

[A] H1 . . . Hn
. . .

... . ..

B

A⇒ B
⇒ I

proves that
H1, . . . ,Hn � A⇒ B.
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Natural Deduction

Proofs

Plan

Introduction

Preliminaries

Specificities of Natural Deduction

Rules

Proofs

Examples

Correctness

Completeness

Algorithm

Conclusion
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Natural Deduction

Proofs

Proof line

Definition 11

A proof line is one of the three following:

I Assume formula

(to add an hypothesis)

I formula

(derived from previous lines using the rules)

I Therefore formula

(to remove the last hypothesis)

This last case is the rule of implies-introduction.

Examples:
I Assume A∧B

I A

I Therefore A∧B⇒ A

[A∧B]

A
∧E

A∧B⇒ A
⇒ I
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Natural Deduction

Proofs

Proof sketch

Definition 12

A proof sketch is a sequence of lines such that, in every prefix of the
sequence, there are at least as many Assume as Therefore.

Example 9

number line
1 Assume a
2 a∨b
3 Therefore a⇒ a∨b
4 Therefore ¬a
5 Assume b
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Natural Deduction

Proofs

Proof sketch: examples

Where are the sketches?

number line
1 Assume a∧b
2 b
3 b∨ c
4 Therefore a∧b⇒ b∨ c
5 Therefore ¬a
6 Assume b

number line
1 Assume a
2 a∨b
3 Therefore a⇒ a∨b
4 Assume b
5 Therefore ¬a

number line
1 Assume a
2 a∨b
3 Therefore a⇒ a∨b
4 Assume b
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Natural Deduction

Proofs

Context (1/2)

I Each line of a proof sketch has a context
I The context is the sequence of hypotheses introduced (using

Assume lines) until the current line (included) and not removed in
Therefore lines.

Example:

context number line rule
1 1 Assume a
1,2 2 Assume b
1,2 3 a∧b ∧I 1,2
1 4 Therefore b⇒ a∧b ⇒I 2,3
1,5 5 Assume e
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Natural Deduction

Proofs

Context (2/2)

The context of a formula represents the hypotheses from which it has
been derived.

Definition 13

Formally: Γi is the context of the line i .

Γ0 = /0

If the line i is:

I Assume A
then Γi = Γi−1, i

I Therefore A
then Γi is obtained by deleting the last formula in Γi−1

I A
then Γi = Γi−1
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Natural Deduction

Proofs

Example of context

Write down the contexts of the following proof sketch:

context number line
1 Assume a
2 a∨b
3 Therefore a⇒ a∨b
4 Assume b
5 Therefore b
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Natural Deduction

Proofs

Example of context

Write down the contexts of the following proof sketch:

context number line
1 1 Assume a
1 2 a∨b

3 Therefore a⇒ a∨b
4 4 Assume b

5 Therefore b
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Natural Deduction

Proofs

Usable formulae, i.e., formulae on which can be applied rules (1/2)

Definition 14

I A formula appearing on a line of a proof sketch is its conclusion.

I The conclusion of a line is usable as long as its context (i.e., the
hypotheses from which it has been derived) is present.

Example 10

context number line
1 1 Assume a
1 2 a∨b

3 Therefore a⇒ b
4 a
5 b∨a

The conclusion of line 2 is usable on line 2 and not beyond.
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Natural Deduction

Proofs

Usable formulae (2/2)

On which lines are formulae 1 and 3 usable?

context number line
1 1 Assume a
1,2 2 Assume b
1,2 3 c
1 4 Therefore d
1,5 5 Assume e
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Natural Deduction

Proofs

Definition of a Proof

Definition 15

Let Γ be a set of formulae.
A proof in the environment Γ is a proof sketch such that:

1. For every “Therefore” line, the formula is B⇒ C, where:
I B is the last hypothesis we’ve removed

(from the context of the previous line)
I C is either a formula usable on the previous line, or belongs to Γ.

2. For every “A” line, the formula A is:
I the conclusion of a rule (other than⇒ I)
I whose premises are usable on the previous line, or belong to Γ.

Beware:
I The context Γi changes during the proof.
I The environment Γ remains the same.
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Natural Deduction

Proofs

Proof of formulae

Definition 16

A proof of formula A within the environment Γ is:

I either the empty proof (when A is an element of Γ),

I or a proof whose last line is A with an empty context.

We note:

I Γ ` A the fact that there is a proof of A within the environment Γ,

I Γ ` P : A the fact that P is a proof of A within Γ.

I When the environment is empty, we abbreviate /0 ` A by ` A.

I When we ask for a proof without indicating the environment, we
mean that Γ = /0.
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Natural Deduction

Examples

Plan

Introduction

Preliminaries

Specificities of Natural Deduction
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Proofs

Examples

Correctness
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Natural Deduction

Examples

First Example

Prove (a⇒ b)⇒ (¬b⇒¬a), i.e., |= (a⇒ b)⇒ (¬b⇒¬a)

context number line justification
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Examples

First Example
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context number line justification
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Natural Deduction

Examples

First Example

Prove (a⇒ b)⇒ (¬b⇒¬a), i.e., |= (a⇒ b)⇒ (¬b⇒¬a)

context number line justification
1 1 Assume a⇒ b
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Stéphane Devismes et al (UGA) Natural Deduction 23-24 February 2017 46 / 98



Natural Deduction

Examples

First Example

Prove (a⇒ b)⇒ (¬b⇒¬a), i.e., |= (a⇒ b)⇒ (¬b⇒¬a)

context number line justification
1 1 Assume a⇒ b
1,2 2 Assume ¬b
1,2,3 3 Assume a
1,2,3 4 b ⇒ E 1, 3
1,2,3 5 ⊥ ⇒ E 2, 4

Remark: line 2, ¬b is an abbreviation of b⇒⊥.

So, applying⇒ E on b and ¬b (i.e., b⇒⊥), we obtain ⊥ !

A A⇒ B
B

⇒ E
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Natural Deduction

Examples

First Example

Prove (a⇒ b)⇒ (¬b⇒¬a), i.e., |= (a⇒ b)⇒ (¬b⇒¬a)

context number line justification
1 1 Assume a⇒ b
1,2 2 Assume ¬b
1,2,3 3 Assume a
1,2,3 4 b ⇒ E 1, 3
1,2,3 5 ⊥ ⇒ E 2, 4
1,2 6 Therefore ¬a ⇒ I 3, 5

Remark: ⇒ I on a and ⊥ gives a⇒⊥, which is abbreviated as ¬a.

[A]
. . .
B

A⇒B ⇒ I
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Natural Deduction

Examples

First Example

Prove (a⇒ b)⇒ (¬b⇒¬a), i.e., |= (a⇒ b)⇒ (¬b⇒¬a)

context number line justification
1 1 Assume a⇒ b
1,2 2 Assume ¬b
1,2,3 3 Assume a
1,2,3 4 b ⇒ E 1, 3
1,2,3 5 ⊥ ⇒ E 2, 4
1,2 6 Therefore ¬a ⇒ I 3, 5
1 7 Therefore ¬b⇒¬a ⇒ I 2, 6

8 Therefore (a⇒ b)⇒ (¬b⇒¬a) ⇒ I 1,7
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Natural Deduction

Examples

Second Example

Prove a∧¬a⇒ b, i.e., |= a∧¬a⇒ b

context number line justification
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Natural Deduction

Examples

Second Example

Prove a∧¬a⇒ b, i.e., |= a∧¬a⇒ b

context number line justification
1 1 Assume a∧¬a
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Natural Deduction

Examples

Second Example

Prove a∧¬a⇒ b, i.e., |= a∧¬a⇒ b

context number line justification
1 1 Assume a∧¬a
1 2 a ∧E1 1
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Natural Deduction

Examples

Second Example

Prove a∧¬a⇒ b, i.e., |= a∧¬a⇒ b

context number line justification
1 1 Assume a∧¬a
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Natural Deduction

Examples

Second Example

Prove a∧¬a⇒ b, i.e., |= a∧¬a⇒ b

context number line justification
1 1 Assume a∧¬a
1 2 a ∧E1 1
1 3 ¬a ∧E2 1
1 4 ⊥ ⇒ E 2,3

Remark: ¬a is the abbreviation of a⇒⊥.
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Natural Deduction

Examples

Second Example

Prove a∧¬a⇒ b, i.e., |= a∧¬a⇒ b

context number line justification
1 1 Assume a∧¬a
1 2 a ∧E1 1
1 3 ¬a ∧E2 1
1 4 ⊥ ⇒ E 2,3
1 5 b Efq 4
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Natural Deduction

Examples

Second Example

Prove a∧¬a⇒ b, i.e., |= a∧¬a⇒ b

context number line justification
1 1 Assume a∧¬a
1 2 a ∧E1 1
1 3 ¬a ∧E2 1
1 4 ⊥ ⇒ E 2,3
1 5 b Efq 4

6 Therefore a∧¬a⇒ b ⇒ I 1,5
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Natural Deduction

Examples

Third Example

(p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)⇒m∨p

context number line justification

1 1 assume (p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)
1 2 (¬p⇒ j)∧ (j⇒m) ∧E2 1
1 3 (j⇒m) ∧E2 2
1 4 (¬p⇒ j) ∧E1 2
1,5 5 assume ¬(m∨p)
1,5,6 6 assume p
1,5,6 7 m∨p ∨I2 6
1,5,6 8 ⊥ ⇒E 5,7
1,5 9 therefore ¬p ⇒I 6,8
1,5 10 j ⇒E 4,9
1,5 11 m ⇒E 3,10
1,5 12 m∨p ∨I1 11
1,5 13 ⊥ ⇒E 5,12
1 14 therefore ¬¬(m∨p) ⇒I 5,13
1 15 m∨p RAA 14

16 therefore (p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)⇒m∨p ⇒I 1,15
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1,5,6 6 assume p
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1,5,6 8 ⊥ ⇒E 5,7
1,5 9 therefore ¬p ⇒I 6,8
1,5 10 j ⇒E 4,9
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Stéphane Devismes et al (UGA) Natural Deduction 23-24 February 2017 48 / 98



Natural Deduction

Examples

Third Example

(p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)⇒m∨p

context number line justification
1 1 assume (p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)
1 2 (¬p⇒ j)∧ (j⇒m) ∧E2 1
1 3 (j⇒m) ∧E2 2
1 4 (¬p⇒ j) ∧E1 2
1,5 5 assume ¬(m∨p)
1,5,6 6 assume p
1,5,6 7 m∨p ∨I2 6
1,5,6 8 ⊥ ⇒E 5,7
1,5 9 therefore ¬p ⇒I 6,8
1,5 10 j ⇒E 4,9
1,5 11 m ⇒E 3,10
1,5 12 m∨p ∨I1 11
1,5 13 ⊥ ⇒E 5,12

1 14 therefore ¬¬(m∨p) ⇒I 5,13
1 15 m∨p RAA 14

16 therefore (p⇒¬j)∧ (¬p⇒ j)∧ (j⇒m)⇒m∨p ⇒I 1,15

Remark: Line 5, ¬(m∨p) is the abbreviation of (m∨p)⇒⊥.
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Fourth Example: with an environment

Prove ¬A in the environment ¬(A∨B), i.e., ¬(A∨B) |= ¬A

environment
reference formula

(i) ¬(A∨B)
context number line justification
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Fourth Example: with an environment

Prove ¬A in the environment ¬(A∨B), i.e., ¬(A∨B) |= ¬A

environment
reference formula

(i) ¬(A∨B)
context number line justification
1 1 Assume A
1 2 A∨B ∨I1 1
1 3 ⊥ ⇒ E i,2

Remark: ¬(A∨B) is the abbreviation of (A∨B)⇒⊥.
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Prove ¬A in the environment ¬(A∨B), i.e., ¬(A∨B) |= ¬A

environment
reference formula

(i) ¬(A∨B)
context number line justification
1 1 Assume A
1 2 A∨B ∨I1 1
1 3 ⊥ ⇒ E i,2

4 Therefore ¬A ⇒ I 1,3

Remark: ¬A is the abbreviation of A⇒⊥.
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Prove ¬A∨B in the environment A⇒ B, i.e., A⇒ B |= ¬A∨B.
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Stéphane Devismes et al (UGA) Natural Deduction 23-24 February 2017 50 / 98



Natural Deduction

Examples

Fifth example

Prove ¬A∨B in the environment A⇒ B, i.e., A⇒ B |= ¬A∨B.
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reference formula

(i) A⇒ B
context number line justification
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1,2 2 Assume A
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Prove ¬A∨B in the environment A⇒ B, i.e., A⇒ B |= ¬A∨B.
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1,2 2 Assume A
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1,2 4 ¬A∨B ∨I2 3
1,2 5 ⊥ ⇒ E 1, 4

Remark: ¬(¬A∨B) is the abbreviation of (¬A∨B)⇒⊥
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1,2 5 ⊥ ⇒ E 1, 4
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Remark: ¬A is the abbreviation of A⇒⊥
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Remark: line 1, ¬(¬A∨B) is the abbreviation of (¬A∨B)⇒⊥
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Stéphane Devismes et al (UGA) Natural Deduction 23-24 February 2017 50 / 98



Natural Deduction

Examples

Fifth example

Prove ¬A∨B in the environment A⇒ B, i.e., A⇒ B |= ¬A∨B.
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1,2 4 ¬A∨B ∨I2 3
1,2 5 ⊥ ⇒ E 1, 4
1 6 Therefore ¬A ⇒ I 2, 5
1 7 ¬A∨B ∨I1 6
1 8 ⊥ ⇒ E 1, 7

9 Therefore ¬¬(¬A∨B) ⇒ I 1, 8
10 ¬A∨B RAA 9
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Natural Deduction

Correctness

Theorem

Theorem 2

If a formula A is deduced from an environment Γ (Γ ` A) then A is a
consequence of Γ (Γ |= A).

Every proof written in an environment Γ is correct!

In particular, if Γ = /0, then ` A implies |= A.

Let Γ ` P : A. Proof by induction on the number of lines i in P:

I Let Hi be the context and Ci the conclusion of the i th line in P.
(We let H0 = /0. If P is empty, we let C0 = A.)

I We show that for every k we have Γ,Hk |= Ck .

Hence, for the last line (n) of the proof, we have Γ |= A

(Remember that Hn is empty and Cn = A.)
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Natural Deduction

Correctness

Base case

Assume that A is derived from Γ by an empty proof.

That is, A is a member of Γ.

Hence Γ |= A. Since H0 = /0, we can conclude that Γ,H0 |= A, so
Γ,H0 |= C0.
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Natural Deduction

Correctness

Induction hypothesis

Assume that for every line i < k of the proof P we have Γ, Hi |= Ci .

Let us show that Γ, Hk |= Ck .

Three possible cases:

I Line k is “Assume Ck ”.

I Line k is “Therefore Ck ”.

I Line k is “Ck ”.
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Natural Deduction

Correctness

Line k is “Assume Ck ”

The formula Ck is the last formula of Hk .

Then Hk |= Ck .

Then Γ,Hk |= Ck .
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Natural Deduction

Correctness

The line k is “Therefore Ck ”

Ck is the formula B⇒ D where:
I B is the last formula of Hk−1: Hk−1 = Hk ,B
I D is either a formula in Γ or is usable on the previous line k−1.

(1) If D is a formula of Γ.
Γ � D
Γ, Hk � D.
Since D � B⇒ D, we conclude that Γ, Hk |= B⇒ D, i.e.,
Γ, Hk |= Ck .

(2) If D is usable on the previous line.
Hence ∃i < k such that D = Ci and Hi is a prefix of Hk−1.
By induction hypothesis, Γ, Hi |= D.
Since Hi is a prefix of Hk−1, we have Γ, Hk−1 |= D
which can also be written Γ, Hk , B |= D.
Therefore Γ, Hk |= B⇒ D, i.e., Γ, Hk |= Ck .
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Natural Deduction

Correctness

Line k is “Ck ”

Ck is then the conclusion of a rule, whose premises either:

I are usable on the previous line

I or belong to Γ.

We only consider the rule ∧I, the other cases being similar.

Ck = (D∧E) and the premises of the rule are D and E .

By induction hypothesis (and similarly to the previous case), we have:
Γ, Hk−1 |= D and Γ, Hk−1 |= E .

Since the line k does not change the hypotheses, we have Hk−1 = Hk .

Hence, Γ, Hk |= D and Γ, Hk |= E .

Finally D, E |= D∧E . Transitively, Γ, Hk |= D∧E , i.e., Γ, Hk |= Ck .

For the other rules, it is the same proof, you just have to prove that the
conclusion is a consequence of the premises.
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Natural Deduction

Completeness

Theorem

We prove the completeness of the rules only for formulas containing
the following logic symbols: ⊥, ∧, ∨, ⇒.

This is enough because additional symbols >, ¬ and⇔ are
abbreviations.

Theorem 3

Let Γ be a finite set of formulae and A a formula.
If Γ |= A then Γ ` A.
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Natural Deduction

Completeness

Definitions

A literal is either a variable x or an implication x ⇒⊥.
x and x ⇒⊥ (abbreviated as ¬x) are complementary literals.

We define a measure m of formulae and of lists of formulae as:

I m(⊥) = 0

I m(x) = 1

I m(A⇒ B) = 1 + m(A) + m(B)

(thus m(¬a) = m(a) + 1 = 2)

I m(A∧B) = 1 + m(A) + m(B)

I m(A∨B) = 2 + m(A) + m(B)

I m(Γ) =
∑

A∈Γ m(A)

For example, let A = (a∨¬a).
m(¬a) = 2, m(A) = 5 and m(A, (b∧b), A) = 13.
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Natural Deduction

Completeness

Induction

We define P(n) to be the following property:

If m(Γ, A) = n, then if Γ |= A then Γ ` A.

To show that P(n) holds for every integer n, we use “strong” induction:

Assume that for every i < k , property P(i) holds.

Assume that m(Γ, A) = k and Γ |= A.

Let us show that Γ ` A.
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Natural Deduction

Completeness

Decomposition

Idea: we decompose Γ,A in order to apply the induction hypothesis.

I A is undecomposable if A is ⊥ or a variable

I Γ is undecomposable if Γ is a list of literals or contains ⊥.

We study three cases:

Case 1: Neither A, nor Γ is decomposable.

Case 2: A is decomposable.

We decompose A in two sub-formulae B and C.

We obtain m(Γ, B) < m(Γ, A) and m(Γ, C) < m(Γ, A) and so we can
apply the induction hypothesis.

Case 3: Γ is decomposable: we choose in Γ a decomposable formula.

(i.e., other than ⊥, x , and x ⇒⊥ where x is a variable).

We decompose it.

The new set Γ′ satisfies m(Γ′, A) < m(Γ, A), and so we can apply the
induction hypothesis.
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The new set Γ′ satisfies m(Γ′, A) < m(Γ, A), and so we can apply the
induction hypothesis.
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Natural Deduction

Completeness

Case 1 : neither A, nor Γ are decomposable

Then:

I Γ is a list of literals or contains the formula ⊥.

I A is ⊥ or a variable.

(a) If ⊥ ∈ Γ then A can be derived from ⊥ by the rule Efq.
(b) If ⊥ /∈ Γ and Γ is a list of literals, then we have two cases:

I A =⊥.
Since Γ |= A, there are two complementary literals in Γ.
Therefore A can be derived from Γ by the rule⇒E.

I A is a variable.
Since Γ |= A :

I either Γ contains two complementary literals, and similarly Γ ` A by
⇒E and then Efq

I or A ∈ Γ and in this case Γ ` A by an empty proof.
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Stéphane Devismes et al (UGA) Natural Deduction 23-24 February 2017 63 / 98



Natural Deduction

Completeness

Case 1 : neither A, nor Γ are decomposable

Then:

I Γ is a list of literals or contains the formula ⊥.

I A is ⊥ or a variable.

(a) If ⊥ ∈ Γ then A can be derived from ⊥ by the rule Efq.
(b) If ⊥ /∈ Γ and Γ is a list of literals, then we have two cases:

I A =⊥.
Since Γ |= A, there are two complementary literals in Γ.
Therefore A can be derived from Γ by the rule⇒E.

I A is a variable.
Since Γ |= A :

I either Γ contains two complementary literals, and similarly Γ ` A by
⇒E and then Efq

I or A ∈ Γ and in this case Γ ` A by an empty proof.
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Natural Deduction

Completeness

Case 2: A is decomposable into B and C

A is decomposed into B∧C, B∨C, or B⇒ C.

We only study the case A = B∧C, the other cases are similar.

Since Γ |= A and A = B∧C, we have Γ |= B and Γ |= C.

Now m(B) < m(A) and m(C) < m(A), hence m(Γ,B) < k and
m(Γ,C) < k .

By induction hypothesis, there exist two proofs P and Q such that
Γ ` P : B and Γ ` Q : C.

Hence the proof “P, Q, A” is a proof of A in the environment Γ.
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Stéphane Devismes et al (UGA) Natural Deduction 23-24 February 2017 64 / 98



Natural Deduction

Completeness

Case 2: A is decomposable into B and C

A is decomposed into B∧C, B∨C, or B⇒ C.

We only study the case A = B∧C, the other cases are similar.

Since Γ |= A and A = B∧C, we have Γ |= B and Γ |= C.

Now m(B) < m(A) and m(C) < m(A), hence m(Γ,B) < k and
m(Γ,C) < k .

By induction hypothesis, there exist two proofs P and Q such that
Γ ` P : B and Γ ` Q : C.

Hence the proof “P, Q, A” is a proof of A in the environment Γ.
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Natural Deduction

Completeness

Case 3: Γ is decomposable

There is a decomposable formula in Γ which is either:

I B∧C

I B∨C

I B⇒ C where C 6=⊥
I (B∧C)⇒⊥
I (B∨C)⇒⊥
I (B⇒ C)⇒⊥

We only study the first case.

Remark: the four last cases are due to the fact that x ⇒⊥ is
undecomposable whenever x is a variable.
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Natural Deduction

Completeness

Γ is a permutation of the list (B∧C),∆

Γ and (B∧C),∆ have the same measure.

Since Γ |= A, we have (B∧C),∆ |= A and so B,C,∆ |= A.

m(B) + m(C) < m(B∧C)

Hence m(B,C,∆,A) < m((B∧C),∆,A) = m(Γ,A) = k .

By induction hypothesis, there exist a proof P such that
B,C,∆ ` P : A.

Since

I B can be derived from (B∧C) by the rule ∧E1 and

I C can be derived from (B∧C) by the rule ∧E2

We have “B, C, P” is a proof of A in the environment Γ. So Γ ` A.
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Natural Deduction

Algorithm

Remark

The proof of completeness is constructive, that is it provides a
complete (recursive) algorithm, or equivalently a set of tactics to
construct the proofs of a formula in an environment.

However, these tactics can lead to long proofs.

It is better then to use “optimized” tactics.

For example, to prove B∨C:

I First try to prove B

I If failure, then try to prove C

I Otherwise, use Tactic 10 (prove C under the hypothesis ¬B)

Before explaining these tactics ... A few number of small proofs are
hard coded!
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Natural Deduction

Algorithm

P1 : ¬B⇒ C |= B∨C

environment
reference formula

i ¬B⇒ C
context number line rule
1 1 Assume ¬(B∨C)
1,2 2 Assume B
1,2 3 B∨C ∨I1 2
1,2 4 ⊥ ⇒ E 1,3
1 5 Therefore ¬B ⇒ I 2,4
1 6 C ⇒ E i ,5
1 7 B∨C ∨I2 6
1 8 ⊥ ⇒ E 1,7

9 Therefore ¬¬(B∨C) ⇒ I 1,8
10 B∨C RAA 9
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Natural Deduction

Algorithm

P2 : B⇒ C |= ¬B∨C

environment
reference formula

i B⇒ C
context number line rule
1 1 Assume ¬(¬B∨C)
1,2 2 Assume ¬B
1,2 3 ¬B∨C ∨I1 2
1,2 4 ⊥ ⇒ E 3,1
1 5 Therefore ¬¬B ⇒ E 2,4
1 6 B RAA 5
1 7 C ⇒ E i ,6
1 8 ¬B∨C ∨I2 7
1 9 ⊥ ⇒ E 1,8

10 Therefore ¬¬(¬B∨C) ⇒ E 1,9
11 ¬B∨C RAA 10
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Natural Deduction

Algorithm

P3 : ¬(B∧C) |= ¬B∨¬C

environment
reference formula

i ¬(B∧C)
context number line rule
1 1 Assume ¬(¬B∨¬C)
1,2 2 Assume ¬B
1,2 3 ¬B∨¬C ∨I1 2
1,2 4 ⊥ ⇒ E 1,3
1 5 Therefore ¬¬B ⇒ I 2,4
1 6 B RAA 5
1,7 7 Assume ¬C
1,7 8 ¬B∨¬C ∨I2 7
1,7 9 ⊥ ⇒ E 8,1
1 10 Therefore ¬¬C ⇒ I 7,9
1 11 C RAA 10
1 12 B∧C ∧I 6,11
1 13 ⊥ ⇒ E i ,12

14 Therefore ¬¬(¬B∨¬C) ⇒ I 1,13
15 ¬B∨¬C RAA 14
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Natural Deduction

Algorithm

P4 : ¬(B∨C) |= ¬B

environment
reference formula

i ¬(B∨C)

context number line rule
1 1 Assume B
1 2 B∨C ∨I1 1
1 3 ⊥ ⇒ E i ,2

4 Therefore ¬B ⇒ I 1,3

Similarly, P5 : ¬(B∨C) |= ¬C

Stéphane Devismes et al (UGA) Natural Deduction 23-24 February 2017 72 / 98



Natural Deduction

Algorithm

P6 : ¬(B⇒ C) |= B

environment
reference formula

i ¬(B⇒ C)
context number line rule
1 1 Assume ¬B
1,2 2 Assume B
1,2 3 ⊥ ⇒ E 2,1
1,2 4 C Efq 3
1 5 Therefore B⇒ C ⇒ I 2,4
1 6 ⊥ ⇒ E i ,5

7 Therefore ¬¬B ⇒ I 1,6
8 B RAA 7
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Natural Deduction

Algorithm

P7 : ¬(B⇒ C) |= ¬C

environment
reference formula

i ¬(B⇒ C)
context number line rule
1 1 Assume C
1,2 2 Assume B
1 3 Therefore B⇒ C ⇒ I 1,2
1 4 ⊥ ⇒ E i ,3

5 Therefore ¬C ⇒ I 1,4
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Natural Deduction

Algorithm

Proof Tactics

We wish to prove A in the environment Γ

The 13 following tactics must be used in the following order!
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Natural Deduction

Algorithm

Tactic 1

If A ∈ Γ, then the proof is empty.
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Natural Deduction

Algorithm

Tactic 2

If A is the conclusion of a rule R whose premises are in Γ, then the
proof is

context line justification
Γ A R
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Natural Deduction

Algorithm

Tactic 3

If Γ contains a contradiction, i.e. two formulae of the form B and ¬B,
then proof is

context line justification
Γ ⊥ ⇒E
Γ A Efq
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Natural Deduction

Algorithm

Tactic 4

If A = B∧C, then

context line justification
Γ ...
Γ B
Γ ...
Γ C
Γ B∧C ∧I

The proofs can fail (if it is asked to prove a formula that is unprovable
in the given environment).

if the proof of B or C fails, then A is not valid.

To simplify the remaining, we do not highlight the failure cases
anymore, unless they must be followed by another tactic.
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Natural Deduction

Algorithm

Tactic 5

If A = B⇒ C, then prove C under hypothesis B, or equivalently prove
C in the environment Γ,B, let P be the proof.

context line justification
Γ,B Assume B
Γ,B · · · P
Γ,B C
Γ Therefore B⇒ C ⇒ I
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Natural Deduction

Algorithm

Tactic 6

If A = B∨C, then prove B, let P be the proof.

context line justification
Γ · · · P
Γ B
Γ B∨C ∨I1

If the proof of B fails, then prove C, let Q be the proof.

context line justification
Γ · · · Q
Γ C
Γ B∨C ∨I2

If the proof of C fails, try the following tactics.
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Natural Deduction

Algorithm

Tactic 7

If Γ = Γ′,B∧C , then prove A in the environment Γ′,B,C, let P the
proof of A in Γ′,B,C.

context line justification
Γ′,B∧C B ∧E1
Γ′,B∧C C ∧E2
Γ′,B∧C · · · P
Γ′,B∧C A
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Natural Deduction

Algorithm

Tactic 8

If Γ = Γ′,B∨C, then

I prove A in the environment Γ′,B, let P be the proof

I prove A in the environment Γ′,C, let Q be the proof

context line justification
Γ′,B∨C,B Assume B
Γ′,B∨C,B · · · P
Γ′,B∨C,B A
Γ′,B∨C Therefore B⇒ A ⇒ I
Γ′,B∨C,C Assume C
Γ′,B∨C,C · · · Q
Γ′,B∨C,C A
Γ′,B∨C Therefore C⇒ A ⇒ I
Γ′,B∨C A ∨E
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Natural Deduction

Algorithm

Tactic 9

If Γ = Γ′,¬(B∨C), then

I prove ¬B by P4,

I prove ¬C by P5, and

I prove A in the environment Γ′,¬B,¬C, let P be the proof.

context line justification
Γ′,¬(B∨C) · · · P4
Γ′,¬(B∨C) ¬B
Γ′,¬(B∨C) · · · P5
Γ′,¬(B∨C) ¬C
Γ′,¬(B∨C) · · · P
Γ′,¬(B∨C) A
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Natural Deduction

Algorithm

Tactic 10

If A = B∨C, then prove C in the environment Γ,¬B, let P be the proof.

context line justification
Γ,¬B Assume ¬B
Γ,¬B · · · P
Γ,¬B C
Γ Therefore ¬B⇒ C
Γ · · · P1
Γ A A = B∨C
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Tactic 11

If Γ = Γ′,¬(B∧C), then prove ¬B∨¬C by P3, and reason case by case as follows:

I prove A in the environment Γ′,¬B, let P the proof;

I prove A in the environment Γ′,¬C, let Q the proof.

context line justification
Γ · · · P3
Γ ¬B∨¬C
Γ,¬B Assume ¬B
Γ,¬B · · · P
Γ,¬B A
Γ Therefore ¬B⇒ A
Γ,¬C Assume ¬C
Γ,¬C · · · Q
Γ,¬C A
Γ Therefore ¬C⇒ A
Γ A ∨E
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Tactic 12

If Γ = Γ′,¬(B⇒ C), then

I prove B by P6,

I prove ¬C by P7, and

I prove A in the environment Γ′,B,¬C, let P be the proof.

context line justification
Γ′,¬(B⇒ C) . . . P6
Γ′,¬(B⇒ C) B
Γ′,¬(B⇒ C) · · · P7
Γ′,¬(B⇒ C) ¬C
Γ′,¬(B⇒ C) · · · P
Γ′,¬(B⇒ C) A
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Tactic 13

If Γ = Γ′,B⇒ C with C 6=⊥, i.e. if B⇒ C is not ¬B, then prove ¬B∨C in the
environment B⇒ C by P2, and then we reason by cases:
I prove A in the environment Γ′,¬B, let P the proof;
I prove A in the environment Γ′,C, let Q the proof.

context line justification
Γ′,B⇒ C · · · P2
Γ′,B⇒ C ¬B∨C
Γ′,B⇒ C, ¬B Assume ¬B
Γ′,B⇒ C, ¬B · · · P
Γ′,B⇒ C, ¬B A
Γ′,B⇒ C Therefore ¬B⇒ A
Γ′,B⇒ C, C Assume C
Γ′,B⇒ C, C · · · Q
Γ′,B⇒ C, C A
Γ′,B⇒ C Therefore C⇒ A
Γ′,B⇒ C A ∨E
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Example

Proof of Peirce’s law:

((p⇒ q)⇒ p)⇒ p
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((p⇒ q)⇒ p)⇒ p: proof plan

Tactic 5 is mandatory!

Proof Q:
Assume (p⇒ q)⇒ p

Q1: proof of p in the environment (p⇒ q)⇒ p
Therefore ((p⇒ q)⇒ p)⇒ p

Q1 necessarily uses Tactic 13: indeed, Q1 is written in the environment
B⇒ C where B = p⇒ q, C = p.
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Proof Plan for Q1

Proof of A = p in the environment B⇒ C where B = p⇒ q, C = p

Proof Q1:
Q11 = P2 where P2 is the proof of ¬B∨C in the environment B⇒ C

Assume ¬B
Q12: proof of A = p in the environment ¬B

Therefore ¬B⇒ A
Assume C

Q13: proof of A = p in the environment C
Therefore C⇒ A
A
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Proof of Q1

Q13, i.e., proof of A = p in the environment C = p: empty, since
A = C = p.

Q12: proof of A = p in the environment ¬B = ¬(p⇒ q). The proof is
actually P6.

By gluing pieces Q1, Q11, Q12, Q13, we obtain the proof Q.

Below we show how to find the proof Q12 without using the tactics.

Stéphane Devismes et al (UGA) Natural Deduction 23-24 February 2017 92 / 98



Natural Deduction

Algorithm

Proof of Q1

Q13, i.e., proof of A = p in the environment C = p: empty, since
A = C = p.

Q12: proof of A = p in the environment ¬B = ¬(p⇒ q). The proof is
actually P6.

By gluing pieces Q1, Q11, Q12, Q13, we obtain the proof Q.

Below we show how to find the proof Q12 without using the tactics.
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Proof of Q12: A = p in the environment ¬(p⇒ q)

The only rule, which does not lead to a deadlock, is the reduction ad
absurdum.

Hence this proof is of the form:

Assume ¬p
Q121: proof of ⊥ in the environment ¬(p⇒ q), ¬p

Therefore ¬¬p
p

To obtain ⊥ in the environment ¬(p⇒ q), ¬p,
p⇒ q must be derived. Hence, Q121 is:

Assume p
⊥
q
Therefore p⇒ q
⊥
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Automated proofs

To automatically obtain the proofs in the system, one recommends to
use the following software (implementing the 13 previous tactics):

http://teachinglogic.liglab.fr/DN/

Extension to First-Order formulae: complete, but undecidable.

Several proof assistants (like Coq) are based on the (first-order)
natural deduction.
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For omitted details

See

In French, sorry!
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Slides

Available on my Webpage:

http://www-verimag.imag.fr/˜devismes/
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Conclusion

Thank you for your attention.
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