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� Leader election
� Unidirectional rings
� Homonym processes
� Deterministic algorithm
� Asynchronous

message-passing
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State of the Art - Leader Election

+

Anonymous
processes

Deterministic
solution

Impossible
[Angluin, 80]
[Lynch, 96]

Probabilistic
solution

Possible
[Afek and Matias, 94]
[Kutten et al., 13]

Identified
processes

Possible
[LeLann, 77]

[Chang and Roberts, 79]
[Peterson, 82]
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Two versions of the Leader Election problem

1 Message-terminating: Processes do not explicitly terminate but
only a finite number of messages are exchanged.

2 Process-terminating: Every process eventually halts.
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Ring Classes

An algorithm A solves the leader election for the class of ring network
R if A solves the leader election for every network R ∈ R.

A cannot be given any specific information about the network unless
that information holds for all members of R.

We consider three important classes of ring networks.
� Kk is the class of all ring networks such that no label occurs more
than k times.

� A is the class of all asymmetric ring networks: rings with no
non-trivial rotational symmetry.

� U∗ is the class of all rings in which at least one label is unique.
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Symmetric vs. Asymmetric
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Inclusions

� K1 ⊂ K2 ⊂ K3 . . .

� U∗ ∩ K1 ⊂ U∗ ∩ K2 ⊂ U∗ ∩ K3 . . . ⊂ U∗

� K1 ⊂ U∗

� U∗ ⊂ A
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State of the Art vs. Contribution
Leader Election in Rings of Homonym Processes

PT/MT Asynch. Uni./Bi. Known Ring Class # Msg Time

[Delporte
et al., 14]

MT
Bi. # labels > greatest

proper divisor of n

? ?

PT n O(n log n) ?

[Dobrev,
Pelc, 04] PT

Bi. + Uni. m ≤ n Decide if inputs are
unambiguous

O(n log n) O(M)

Bi. M ≥ n O(nM) ?

[SSS 2016] PT Uni. k
∃ unique label and
# proc with same
label ≤ k

O(kn) O(kn)

O(n2 + kn) O(kn)
[IPDPS 2017] PT Uni. k

Asymmetric la-
belling and # proc
with same label ≤ k O(k2n2) O(k2n2)

� Uni : Unidirectional / Bi : Bidirectional
� MT = Message-terminating
� PT = Process-terminating
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Contributions

A Ā

MT-LE Impossible

� MT-LE: Message-Terminating
Leader Election

� PT-LE: Process-Terminating
Leader Election

� A: Rings with asymmetric labelling
� A: Rings with symmetric labelling
� U∗: Rings with at least one unique label
� Kk : Rings with no more than k processes with the

same label
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Contributions

Kk

A Ā

MT-LE Impossible

� MT-LE: Message-Terminating
Leader Election
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Contributions

Kk

A Ā

U∗

PT-LE Algorithm for U∗ ∩ Kk
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Lower bound
for U∗ ∩ Kk
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Lower bound

Lemma
Let k ≥ 2.

Let A be an algorithm that solves the PT-LE for U∗ ∩ Kk .

∀Rn ∈ K1 of n processes, the synchronous execution of A in Rn lasts at
least 1 + (k − 2) n time units.
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Proof Outline (1/3)

Ln-1 L0

Ln-2 L1

Li

Figure : Rn ∈ K1 ⊂ U∗ ∩ Kk

X

Ln-1 L0

L0

Li

Ln-1

Li

Ln-1

Li

L0

Figure : Rn,k ∈ U∗ ∩ Kk

By the contradiction, assume that the synchronous execution of A on
Rn terminates before time 1 + (k − 2) n.
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Proof Outline (2/3)

Ln-1 L0

Ln-2 L1

Li

Figure : Rn ∈ K1 ⊂ U∗ ∩ Kk

X

Ln-1 L0

L0
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Ln-1

Li

L0

Figure : Rn,k ∈ U∗ ∩ Kk

Synchronous execution after up to T < 1 + (k − 2) n time units.
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Proof Outline (3/3)
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Li

Figure : Rn ∈ K1 ⊂ U∗ ∩ Kk
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Figure : Rn,k ∈ U∗ ∩ Kk

At time T , one node is elected in Rn.

But, two nodes are elected in Rn,k , contradiction.
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Consequences (1/2)

Corollary
Let k ≥ 2. The time complexity of any algorithm that solves the
process-terminating leader election for U∗ ∩ Kk (resp. A ∩Kk) is
Ω(k n) time units, where n is the number of processes.
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Consequences (2/2)

Theorem
There is no algorithm that solves the process-terminating leader
election for U∗ (resp. A).

By the contradiction, let A be a PT-LE algorithm for U∗.
By definition, A solves PT-LE in U∗ ∩ K3, U∗ ∩ K4, . . .

Let Rn be a ring network of K1 with n processes.

Since Rn ∈ U∗ ∩K3, the synchronous execution of A in Rn lasts at least
1 + n time units, by Lemma 1.
Since Rn ∈ U∗ ∩K4, the synchronous execution of A in Rn lasts at least
1 + 2n time units, by Lemma 1.
. . .
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Algorithm for U∗ ∩ Kk
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PT-LE Algorithm Uk for U∗ ∩ Kk

b

a
c

a
a

0

0

0

0

0

〈b, 0〉

〈a, 0〉

〈a, 0〉

〈c, 0〉

〈a, 0〉

Lowest unique label

� Counter = rough estimation of the
predominance

� Process elimination:
I Lower counter, 6= label → not unique

I Same counter 6= 0, lower label → not
lowest unique

� Message elimination:
I Passive, same ID → not relevant

� Phases:
I 1st traversal: no more active

non-unique labels
I 2nd traversal: no more active

non-lowest unique labels
I Election detection: receiving 〈id , k〉
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PT-LE Algorithm Uk for U∗ ∩ Kk
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PT-LE Algorithm for U∗ ∩ Kk

� Time complexity: at most n(k + 2)
Asymptotically optimal (work under submission)

� # messages: O(n2 + kn)

� Memory requirement: dlog(k + 1)e+ log(n) + 4
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Algorithms for A ∩ Kk
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Ak , first PT-LE Algorithm for A ∩Kk

� Chosen Leader:
process whose LabelSequence = LyndonWord(LabelSequence)
Lyndon Word = smallest rotation in lexicographic order

1
2

2
1

2

p3
p4

p5
p1

p2

� Label Sequence at p1:
LSp1 = 12212
Rotations:
12212 (= LSp1)
21221 (= LSp2)
12122 (= LSp3) LW 6= LSp1

21212 (= LSp4)
22121 (= LSp5)
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2
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p1

p2

1

2

2

1

2

〈1〉

〈2〉

〈2〉

〈1〉

〈2〉

� Local label aggregation

� Do not know n
⇒ Leader cannot detect
its election

� Termination detection =
(2k + 1) × the same label
⇒ at least 2 times the
sequence of labels
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Ak , first PT-LE Algorithm for A ∩Kk

� Time complexity: at most (2k + 2)n time units

� Message complexity: at most n2(2k + 1) messages

� Memory: (2k + 1)nb + 2b + 3 bits,
where b = number of bits to store an ID

Asymptotically optimal time complexity
but

Large memory requirement
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Bk , second PT-LE Algorithm for A ∩Kk

� Decrease memory usage ⇒ Peterson principle with radix sort

1
2

2
1

2
p3

p4

p5
p1

p2

1 2122

2 1212

2 2121

1 2212

2 1221

1

2

2

1

2

Known
Phase 1

� During a phase, Known values of active processes circulate clockwise
� End of phase: each still active process received its Known value k + 1 times
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Bk , second PT-LE Algorithm for A ∩Kk

� Phase Shift
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Bk , second PT-LE Algorithm for A ∩Kk

� Execution

Shift Shift

Synchronization

Synchronization

Phase 1 Phase 2 Phase 3 · · ·
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Bk , second PT-LE Algorithm for A ∩Kk

� Termination Detection: count = k+1
count = # phases where Known = Label
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Bk , second PT-LE Algorithm for A ∩Kk

� Memory: 2 dlog ke+ 3b + 5 bits,
where b = number of bits to store an ID

� Time complexity: O(k2n2) time units

� Message complexity: O(k2n2) messages

Asymptotically optimal memory requirement
but

Large time complexity
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Conclusion
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Contributions Summary

� Impossibility results: Ā, A, U∗, and Kk
� Lower bounds:
I on the time in U∗ ∩ Kk and A ∩Kk : Ω(kn)
I on the # bits exchanged in U∗ ∩ Kk and A ∩Kk : Ω(n2 + kn)

� Algorithms:
Uk Ak Bk

Rings U∗ ∩ Kk A ∩Kk

Time O(kn) O(kn) O(k2n2)

# Messages O(kn) O(n2 + kn) O(k2n2)

Bits/process O(log k + b) O(knb) O(log k + b)

Key: asymptotically optimal
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Perspectives

� Leader election possible in A ∩Kk A, but impossible in A: where is
the boundary ?

� Find a best trade-off leader election algorithm for A ∩Kk

� In A, the knowledge of k and n is computationaly equivalent. Is-it
still true in bidirectional rings? What about time complexity?

� Self-stabilizing leader election in U∗ ∩Kk and A∩Kk . (research line:
adapting self-stabilizing census algorithms?)

� Other topologies: regular graphs, grids, torii, arbitrary connected . . .
� Other problems (solutions exist for the consensus problem with

permanent failures)
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Thank you for your attention
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