1 IND-CCA2

For each of two games respectively evaluating data and nonce confidentialities, CryptoVerif reduces the advantage of every adversary A

- making q_G queries to $Gen^{E(k_{src}, \cdot)}(\cdot)$, q_V queries to $Verif^{E^{-1}(k_{src}, \cdot)}(\cdot)$, and q_H queries to $H(\cdot)$ in the game, and
- running the game in T_A time units,

to an expression depending on the advantage of an adversary B

- making $q_G + 1$ queries to the encryption oracle $E(k_{src}, \cdot)$ and q_V queries to the decryption oracle $E^{-1}(k_{src}, \cdot)$ in an IND-CCA2 game, and
- running a IND-CCA2 game in T_B time units with $T_B = T_A + P_1(q_G, q_V, s)$ time units, where $P_1(q_G, q_V, s)$ is polynomial in q_G, q_V, and the message size s.

We now evaluate the IND-CCA2 advantage of such an adversary B when using our encryption scheme.

By Theorem 3.2 in [4], there exist two adversaries C and D such that

$$\text{Adv}^{\text{IND-CCA2}}_{\text{AES-CBC, HMAC-SHA-256_trunc}}(B) \leq 2 \times \text{Adv}^{\text{INT-CTXT}}_{\text{AES-CBC, HMAC-SHA-256_trunc}}(C) + \text{Adv}^{\text{IND-CPA}}_{\text{AES-CBC, HMAC-SHA-256_trunc}}(D)$$

and

- C and D run in time $O(T_B)$,
- C makes $q_G + 1$ queries to the encryption oracle $E(k_{src}, \cdot)$ and q_V queries to $Verif^{E^{-1}(k_{src}, \cdot)}(\cdot)$, and
- D makes $q_G + 1$ queries to the left-right oracle $LR(k_{src}, \cdot)$.

By Theorems 4.3 and 4.4 in [4], there exist two adversaries F and G such that

$$\text{Adv}^{\text{IND-CCA2}}_{\text{AES-CBC, HMAC-SHA-256_trunc}}(B) \leq 2 \times \text{Adv}^{\text{SUF-CMA}}_{\text{HMAC-SHA-256_trunc}}(F) + \text{Adv}^{\text{IND-CPA}}_{\text{AES-CBC}}(G)$$

and

- F (resp. G) uses the same resources as C (resp. D), except that
- each tag query of F is 128 bits longer than that of C.

By Theorem 4.8.1 in [1], there exists an adversary I such that

$$\text{Adv}^{\text{IND-CCA2}}_{\text{AES-CBC, HMAC-SHA-256_trunc}}(B) \leq 2 \times \text{Adv}^{\text{SUF-CMA}}_{\text{HMAC-SHA-256_trunc}}(F) + 2 \times \text{Adv}^{\text{PRF}}_{\text{AES}}(I) + \frac{(14 \times (q_G + 1))^2}{2^{128}}$$

and

- I runs in time $O(T_B)$ and

1 We instantiate the parameter ℓ in Theorem 4.4 with 128, because the difference between the length of the ciphertext and the plaintext in our implementation of AES-CBC is 1 block of 128 bits.

2 In Theorem 4.8.1, we instantiate n by 128 because we use AES-128, moreover the parameter σ is instantiated as follows: σ is the total number of 128 bits blocks generated by the $q_G + 1$ queries to the encryption oracle $E(k_{src}, \cdot)$ made by F. In our case $\sigma = 14 \times (q_G + 1)$.

makes $14 \times (q_G + 1)$ queries to the encryption oracle modeling the encryption function of AES.

By Proposition 2.7 of [3], there exists an adversary J such that

$$\text{Adv}^{\text{IND-CCA2}}_{\text{AES-CBC,HMAC-SHA-256})} (B) \leq 2 \times (\text{Adv}^{\text{PRF}}_{\text{HMAC-SHA-256}} (J) + \frac{q_V}{2^{72}}) + 2 \times \text{Adv}^{\text{PRF}}_{\text{AES}} (I) + \frac{196 \times (q_G + 1)^2}{2^{128}}$$

and

- J runs in time $O(T_B)$
- makes q_V queries to the verification oracle of HMAC-SHA-256.

Now, for any function f, $\text{Adv}^{\text{PRF}}_{\text{f}} (A) \leq \text{Adv}^{\text{PRF}}_{\text{f}} (B)$ with A and B two attackers making the same queries and running the same time.

Hence, there exists an adversary L which runs in time $O(T_B)$ and makes q_V queries to the verification oracle of HMAC-SHA-256, such that $\text{Adv}^{\text{PRF}}_{\text{HMAC-SHA-256}} (J) \leq \text{Adv}^{\text{PRF}}_{\text{HMAC-SHA-256}} (L)$

We note comp-SHA-256 (resp. comp-SHA-256^*) the compression function used in SHA-256 (resp. its dual function). Using Lemma 5.2 from [2], we obtain

$$\text{Adv}^{\text{PRF}}_{\text{HMAC-SHA-256}} (L) \leq \text{Adv}^{\text{RKA}}_{\text{comp-SHA-256}} (M) + \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}} (N)$$

where M is a related key adversary that performs two oracle queries and has time $O(T_B)$.

By Theorem 3.3 of [2], there exist two adversaries N and O such that

$$\text{Adv}^{\text{PRF}}_{\text{HMAC-SHA-256}} (L) \leq \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}} (N) + \frac{(q_V - 1)q_V}{2m} \times (8 \times \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}} (O) + \frac{1}{2^{256}})$$

and $m = 4$ is number of blocks per query of L. N makes q_V queries and runs in $O(T_B)$ time, O makes 2 queries and run in $O(T)$, T being the time for one computation of comp-SHA-256.

So,

$$\text{Adv}^{\text{PRF}}_{\text{HMAC-SHA-256}} (L) \leq \text{Adv}^{\text{RKA}}_{\text{comp-SHA-256}} (M) + \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}} (N) + \frac{(q_V - 1)q_V}{2} \times (8 \times \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}} (O) + \frac{1}{2^{256}})$$

Consequently,

$$\text{Adv}^{\text{IND-CCA2}}_{\text{AES-CBC,HMAC-SHA-256})} (B) \leq 2 \times \text{Adv}^{\text{RKA}}_{\text{comp-SHA-256}} (M) + 2 \times \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}} (N) + \frac{(q_V - 1)q_V}{2} \times (8 \times \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}} (O) + \frac{1}{2^{256}}) + \frac{q_V}{2^{71}} + 2 \times \text{Adv}^{\text{PRF}}_{\text{AES}} (I) + \frac{196 \times (q_G + 1)^2}{2^{128}}$$

Estimation. Here, we assume $q_V = 2^{20}$ and $q_G = 2^{30}$. We now bound the strength of the adversaries using estimations based on the current best attacks on AES ($2^{126.1}$) and comp-SHA-256 (2^{256}):

- $\text{Adv}^{\text{RKA}}_{\text{comp-SHA-256}} (M)$
- $\text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}} (N)$
- $\text{Adv}^{\text{PRF}}_{\text{AES}} (I)$

3Here, we truncate from $d = 256$ bits (HMAC-SHA-256) to $s = 72$ bits. Moreover, $O(256 + 72) = O(1)$.

4The input of SHA-256 is 14×16 bytes $= 3.5 \times 512$ bits, now each block in SHA-256 is of size 512 bits, so we need 4 blocks.
For AES, if the attacker can make N_{AES} queries, its advantage can be estimated by $N_{AES}^2 2^{126}$. For SHA-256, if the attacker can make N_{SHA} queries to the compression function, then the advantage of the attacker can be estimated by $N_{SHA}^2 2^{256}$.

Here, we assume $N_{AES} \leq 2^{70}$ and $N_{SHA} \leq 2^{100}$. So,

$$\text{Adv}^{PRF}_{AES}(I) \leq 2^{-56.1} \quad \text{Adv}^{RKA}_{comp-SHA-256}(M) \leq 2^{-156}$$

$$\text{Adv}^{PRF}_{comp-SHA-256}(N) \leq 2^{-156} \quad \text{Adv}^{PRF}_{comp-SHA-256}(O) \leq 2^{-156}$$

Hence, we obtain the following estimations:

$$\text{Adv}^{PRF}_{HMAC-SHA-256_trunc}(L) \leq 2^{-156} + 2^{-156} + 2^{30} (2^{32} - 156 + 2^{-256}) \leq 2^{-113}$$

$$\text{Adv}^{IND-CCA2}_{AES-CBC,HMAC-SHA-256_trunc}(B) \leq 2^{-156} + 2^{256} + 2^{40} (2^{32} - 156 + 2^{-256}) + 2^{-51} + 2^{-56.1} + 2^{-59}$$

$$\leq 2^{-50}$$

2 Data Confidentiality

Below, we first recall the result from CryptoVerif.

For all adversaries A

- making q_G queries to $Gen^{E(k_{src}, \cdot)}(\cdot)$, q_V queries to $Verif^{E^{-1}(k_{src}, \cdot)}(\cdot)$, and q_H queries to $H(\cdot)$ in the FG game, and
- running the FG-game in T_A time units,

there exists an adversary B

- making $q_G + 1$ queries to the encryption oracle $E(k_{src}, \cdot)$ and q_V queries to the decryption oracle $E^{-1}(k_{src}, \cdot)$ in the $IND-CCA2$ game, and
- running the $IND-CCA2$ game in T_B time units with $T_B = T_A + P_1(q_G, q_V, s)$ time units, where $P_1(q_G, q_V, s)$ is polynomial in q_G, q_V, and the message size s

such that

$$\text{Adv}^{FG}_{AES-CBC,HMAC-SHA-256_trunc}(A) \leq 2 \times \text{Adv}^{IND-CCA2}_{AES-CBC,HMAC-SHA-256_trunc}(B)$$

From Section 1, we can deduce that

$$\text{Adv}^{FG}_{AES-CBC,HMAC-SHA-256_trunc}(A) \leq 4 \times \text{Adv}^{RKA}_{comp-SHA-256}(M) + 4 \times \text{Adv}^{PRF}_{comp-SHA-256}(N) + 2(q_V - 1)q_V \times \left(8 \times \text{Adv}^{PRF}_{comp-SHA-256}(O) + \frac{1}{2^{256}} \right) + \frac{q_V}{2^{70}} + 4 \times \text{Adv}^{AES}_{AES}(I) + \frac{196 \times (q_G + 1)^2}{2^{127}}$$

where N makes q_V queries and runs in $O(T_B) \text{ time}$, O makes 2 queries and run in $O(T)$, T being the time for one computation of $comp-SHA-256$.

Estimation. To obtain an estimation, we use the same values as in Section 1. We obtain:

$$\text{Adv}^{FG}_{AES-CBC,HMAC-SHA-256_trunc}(A) \leq 2 \times 2^{-50} \leq 2^{-49}$$
3 Nonce Confidentiality

Below, we first recall the result from CryptoVerif.

For all adversaries A:
- making q_G queries to $Gen^E(k_{src}, \cdot)$, q_V queries to $Verif^{E^{-1}(k_{src}, \cdot)}(\cdot)$, q_H queries to $H(\cdot)$, and nb_A tries in the N–$conf$ game, and
- running the N–$conf$ game in T_A times units,

there exists an adversary B:
- making $q_G + 1$ queries to $E(k_{src}, \cdot)$ and q_V queries to $E^{-1}(k_{src}, \cdot)$ in the IND–$CCA2$ game, and
- running the IND–$CCA2$ game in T_B time units with $T_B = T_A + P_2(q_G, q_V, s)$ time units, where $P_2(q_G, q_V, s)$ is polynomial in q_G, q_V, and the message size s

such that:

$$Adv_{N-conf}^{AES$–$CBC, HMAC$–$SHA$–$256_{trunc}}(A) \leq \frac{nb_A + q_H + q_G}{2^{n_n}} + Adv_{IND$–$CCA2}^{AES$–$CBC, HMAC$–$SHA$–$256_{trunc}}(B)$$

From Section 1, we can deduce that

$$Adv_{N-conf}^{AES$–$CBC, HMAC$–$SHA$–$256_{trunc}}(A) \leq \frac{nb_A + q_H + q_G}{2^{n_n}} + 2 \times Adv_{comp-SHA$–$256}^{RKA}(M) + 2 \times Adv_{comp-SHA$–$256}^{PRF}(N) + (q_V - 1)q_V \times (8 \times Adv_{comp-SHA$–$256}^{PRF}(O) + \frac{1}{2^{256}}) + \frac{q_V}{2^{71}} + 2 \times Adv_{AES}^{PRF}(I) + \frac{196 \times (q_G + 1)^2}{2^{128}}$$

and N makes q_V queries and runs in $O(T_B)$ time, O makes 2 queries and run in $O(T)$, T being the time for one computation of $comp$–SHA–256.

Estimation. To obtain an estimation, we use the same values as in Section 1 and we assume $nb_A = q_V = 2^{20}$ and $q_H = 2^{40}$. Moreover, in our case, $n_n = 96$. We obtain:

$$Adv_{N-conf}^{AES$–$CBC, HMAC$–$SHA$–$256_{trunc}}(A) \leq 2^{-55} + 2^{-50} \leq 2^{-49}$$

4 Unforgeability

Below, we first recall the result from CryptoVerif. For all adversaries A:
- making q_G queries to $Gen^E(k_{src}, \cdot)$, q_V queries to $Verif^{E^{-1}(k_{src}, \cdot)}(\cdot)$, q_H queries to $H(\cdot)$ in the UF–$CMVA$ game, and
- running the UF–$CMVA$ game in T_A time units,

there exists an adversary B:
- making q_G queries to $E(k_{src}, \cdot)$ and $q_V + 1$ queries to $E^{-1}(k_{src}, \cdot)$ in the INT–$PTXT$ game, and
running the INT-PTXT game in T_B time units with $T_B = T_A + P_3(q_G, q_V, s)$ time units, where $P_3(q_G, q_V, s)$ is polynomial in $q_G, q_V,$ and the message size s such that:

$$\text{Adv}^{\text{UF-CMVA}}_{\text{AES-CBC, HMAC-SHA-256, trunc}}(A) \leq \text{Adv}^{\text{INT-PTXT}}_{\text{AES-CBC, HMAC-SHA-256, trunc}}(B)$$

By Theorems 4.3 in [4], there exists an C such that

$$\text{Adv}^{\text{UF-CMVA}}_{\text{AES-CBC, HMAC-SHA-256, trunc}}(A) \leq \text{Adv}^{\text{WUF-CMA}}_{\text{HMAC-SHA-256, trunc}}(C)$$

and

- C uses the same resources as A, except that
- each tag query of C is 128 bits longer than that of A.

By Proposition 2.7 of [3], there exists an adversary D such that

$$\text{Adv}^{\text{UF-CMVA}}_{\text{AES-CBC, HMAC-SHA-256, trunc}}(A) \leq \text{Adv}^{\text{PRF}}_{\text{HMAC-SHA-256, trunc}}(D) + \frac{q_V}{2^{72}}$$

and

- D runs in time $O(T_B)$ and
- makes q_V queries to the verification oracle of HMAC-SHA-256$_{\text{trunc}}$.

Now, from Section 1, there exists adversaries M', N', O' such that

$$\text{Adv}^{\text{PRF}}_{\text{HMAC-SHA-256, trunc}}(D) \leq \text{Adv}^{\text{RKA}}_{\text{comp-SHA-256}}(M') + \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}}(N') + \frac{(q_V - 1)q_V}{2} \times (8 \times \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}}(O') + \frac{1}{2^{256}})$$

and M' is a related key adversary that performs two oracles queries and has time $O(T_B)$, N' makes q_V queries and runs in $O(T_B)$ time, O' makes 2 queries and run in $O(T)$, T being the time for one computation of comp-SHA-256.

So,

$$\text{Adv}^{\text{UF-CMVA}}_{\text{AES-CBC, HMAC-SHA-256, trunc}}(A) \leq \text{Adv}^{\text{RKA}}_{\text{comp-SHA-256}}(M') + \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}}(N') + \frac{(q_V - 1)q_V}{2} \times (8 \times \text{Adv}^{\text{PRF}}_{\text{comp-SHA-256}}(O') + \frac{1}{2^{256}}) + \frac{q_V}{2^{72}}$$

Estimation. Using the same value and estimation again, we obtain:

$$\text{Adv}^{\text{UF-CMVA}}_{\text{AES-CBC, HMAC-SHA-256, trunc}}(A) \leq 2^{-113} + 2^{-52} \leq 2^{-51}$$
References

