
1 IND-CCA2

For each of two games respectively evaluating data and nonce confidentialities, CryptoVerif reduces the
advantage of every adversary A

• making qG queries to GenE(ksrc,·)(·), qV queries to V erifE
−1(ksrc,·)(·), and qH queries to H(·) in the

game, and

• running the game in TA time units,

to an expression depending on the advantage of an adversary B

• making qG + 1 queries to the encryption oracle E(ksrc, ·) and qV queries to the decryption oracle
E−1(ksrc, ·) in a IND-CCA2 game, and

• running a IND-CCA2 game in TB time units with TB = TA+P1(qG, qV , s) time units, where P1(qG, qV , s)
is polynomial in qG, qV , and the message size s

We now evaluate the IND-CCA2 advantage of such an adversary B when using our encryption scheme.

By Theorem 3.2 in [4], there exist two adversaries C and D such that

AdvIND−CCA2AES-CBC,HMAC-SHA-256trunc
(B) ≤ 2×AdvINT−CTXTAES-CBC,HMAC-SHA-256trunc

(C)+AdvIND−CPAAES-CBC,HMAC-SHA-256trunc
(D)

and

• C and D run in time O(TB),

• C makes qG + 1 queries to the encryption oracle E(ksrc, ·) and qV queries to V erifE
−1(ksrc,·)(·), and

• D makes qG + 1 queries to the left-right oracle LR(ksrc, ·).

By Theorems 4.3 and 4.4 in [4]1, there exist two adversaries F and G such that

AdvIND−CCA2AES-CBC,HMAC-SHA-256trunc
(B) ≤ 2×AdvSUF−CMAHMAC-SHA-256trunc

(F) + AdvIND−CPAAES-CBC(G)

and

• F (resp. G) uses the same resources as C (resp. D), except that

• each tag query of F is 128 bits longer than that of C.

By Theorem 4.8.1 in [1]2, there exists an adversary I such that

AdvIND−CCA2AES-CBC,HMAC-SHA-256trunc
(B) ≤ 2×AdvSUF−CMAHMAC-SHA-256trunc

(F) + 2×AdvPRFAES(I) +
(14× (qG + 1))2

2128

and

• I runs in time O(TB) and

1We instantiate the parameter ` in Theorem 4.4 with 128, because the difference between the length of the ciphertext and
the plaintext in our implementation of AES-CBC is 1 block of 128 bits.

2In Theorem 4.8.1, we instantiate n by 128 because we use AES-128, moreover the parameter σ is instantiated as follows:
σ is the total number of 128 bits blocks generated by the qG + 1 queries to the encryption oracle E(ksrc, ·) made by F . In our
case σ = 14× (qG + 1).
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• makes 14× (qG + 1) queries to the encryption oracle modeling the encryption function of AES.

By Proposition 2.7 of [3]3 , there exists an adversary J such that

AdvIND−CCA2AES-CBC,HMAC-SHA-256trunc
(B) ≤ 2×(AdvPRFHMAC-SHA-256trunc

(J )+
qV
272

)+2×AdvPRFAES(I)+
196× (qG + 1)2

2128

and

• J runs in time O(TB) and

• makes qV queries to the verification oracle of HMAC-SHA-256trunc.

Now, for any function f , AdvPRFftrunc
(A) ≤ AdvPRFf (B) with A and B two attackers making the same

queries and running the same time.
Hence, there exists an adversary L which runs in time O(TB) and makes qV queries to the verification

oracle of HMAC-SHA-256, such that AdvPRFHMAC-SHA-256trunc
(J ) ≤ AdvPRFHMAC-SHA-256(L)

We note comp-SHA-256 (resp. comp-SHA-256∗) the compression function used in SHA-256 (resp. its dual
function). Using Lemma 5.2 from [2], we obtain

AdvPRFHMAC-SHA-256(L) ≤ AdvRKAcomp-SHA-256∗(M) + AdvPRFNMAC-SHA-256(L)

where M is a related key adversary that performs two oracle queries and has time O(TB).
By Theorem 3.3 of [2], there exists two adversaries N and O such that

AdvPRFNMAC-SHA-256(L) ≤ AdvPRFcomp-SHA-256(N ) +
(qV − 1)qV

2
×

(
2m×AdvPRFcomp-SHA-256(O) +

1

2256
)

and m = 4 is number of blocks per query of L,4 N makes qV queries and runs in O(TB) time, O makes 2
queries and run in O(T ), T being the time for one computation of comp-SHA-256.
So,

AdvPRFHMAC-SHA-256trunc
(L) ≤ AdvRKAcomp-SHA-256∗(M) + AdvPRFcomp-SHA-256(N ) +

(qV − 1)qV
2

×
(
8×AdvPRFcomp-SHA-256(O) +

1

2256
)

Consequently,

AdvIND−CCA2AES-CBC,HMAC-SHA-256trunc
(B) ≤ 2×AdvRKAcomp-SHA-256∗(M) + 2×AdvPRFcomp-SHA-256(N ) +

(qV − 1)qV ×
(
8×AdvPRFcomp-SHA-256(O) +

1

2256
)

+

qV
271

+ 2×AdvPRFAES(I) +
196× (qG + 1)2

2128

Estimation. Here, we assume qV = 220 and qG = 230. We now bound the strength of the adversaries using
estimations based on the current best attacks on AES (2126.1) and comp-SHA-256 (2256):

3Here, we truncate from d = 256 bits (HMAC-SHA-256) to s = 72 bits. Moreover, O(256 + 72) = O(1).
4The input of SHA-256 is 14 ∗ 16 bytes = 3.5 ∗ 512 bits, now each block in SHA-256 is of size 512 bits, so we need 4 blocks.
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For AES, if the attacker can make NAES queries, its advantage can be estimated by NAES

2126.1 . For SHA-256,
if the attacker can make NSHA queries to the compression function, then the advantage of the attacker can
be estimated by NSHA

2256 .
Here, we assume NAES ≤ 270 and NSHA ≤ 2100. So,

AdvPRFAES(I) ≤ 2−56.1 AdvRKAcomp-SHA-256∗(M) ≤ 2−156

AdvPRFcomp-SHA-256(N ) ≤ 2−156 AdvPRFcomp-SHA-256(O) ≤ 2−156

Hence, we obtain the following estimations:

AdvPRFHMAC-SHA-256trunc
(L) ≤ 2−156 + 2−156 + 239

(
232−156 + 2−256

)
≤ 2−113

AdvIND−CCA2AES-CBC,HMAC-SHA-256trunc
(B) ≤ 2.2−156 + 2.2−156 + 240

(
232−156 + 2−256

)
+ 2−51 + 2.2−56.1 + 2−59

≤ 2−50

2 Data Confidentiality

Below, we first recall the result from CryptoVerif.

For all adversaries A

• making qG queries to GenE(ksrc,·)(·), qV queries to V erifE
−1(ksrc,·)(·), and qH queries to H(·) in the

FG game, and

• running the FG-game in TA time units,

there exists an adversary B

• making qG + 1 queries to the encryption oracle E(ksrc, ·) and qV queries to the decryption oracle
E−1(ksrc, ·) in the IND-CCA2 game, and

• running the IND-CCA2 game in TB time units with TB = TA + P1(qG, qV , s) time units, where
P1(qG, qV , s) is polynomial in qG, qV , and the message size s

such that
AdvFGAES-CBC,HMAC-SHA-256trunc

(A) ≤ 2×AdvIND−CCA2AES-CBC,HMAC-SHA-256trunc
(B)

From Section 1, we can deduce that

AdvFGAES-CBC,HMAC-SHA-256trunc
(A) ≤ 4×AdvRKAcomp-SHA-256∗(M) +

4×AdvPRFcomp-SHA-256(N ) +

2(qV − 1)qV ×
(
8×AdvPRFcomp-SHA-256(O) +

1

2256
)

+

qV
270

+ 4×AdvPRFAES(I) +
196× (qG + 1)2

2127

where N makes qV queries and runs in O(TB) time, O makes 2 queries and run in O(T ), T being the time
for one computation of comp-SHA-256.
Estimation. To obtain an estimation, we use the same values as in Section 1. We obtain:

AdvFGAES-CBC,HMAC-SHA-256trunc
(A) ≤ 2× 2−50 ≤ 2−49
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3 Nonce Confidentiality

Below, we first recall the result from CryptoVerif.

For all adversaries A:

• making qG queries to GenE(ksrc,·)(·), qV queries to V erifE
−1(ksrc,·)(·), qH queries to H(·), and nbA tries

in the N−conf game, and

• running the N−conf game in TA times units,

there exists an adversary B:

• making qG + 1 queries to E(ksrc, ·) and qV queries to E−1(ksrc, ·) in the IND-CCA2 game, and

• running the IND-CCA2 game in TB time units with TB = TA + P2(qG, qV , s) time units, where
P2(qG, qV , s) is polynomial in qG, qV , and the message size s

such that:

AdvN−confAES-CBC,HMAC-SHA-256trunc
(A) ≤ nbA + qH + qG

2ηn
+ AdvIND−CCA2AES-CBC,HMAC-SHA-256trunc

(B)

From Section 1, we can deduce that

AdvN−confAES-CBC,HMAC-SHA-256trunc
(A) ≤ nbA + qH + qG

2ηn
+ 2×AdvRKAcomp-SHA-256∗(M) +

2×AdvPRFcomp-SHA-256(N ) +

(qV − 1)qV ×
(
8×AdvPRFcomp-SHA-256(O) +

1

2256
)

+

qV
271

+ 2×AdvPRFAES(I) +
196× (qG + 1)2

2128

and N makes qV queries and runs in O(TB) time, O makes 2 queries and run in O(T ), T being the time for
one computation of comp-SHA-256.

Estimation. To obtain an estimation, we use the same values as in Section 1 and we assume nbA = qV = 220

and qH = 240. Moreover, in our case, ηn = 96. We obtain:

AdvN−confAES-CBC,HMAC-SHA-256trunc
(A) ≤ 2−55 + 2−50 ≤ 2−49

4 Unforgeability

Below, we first recall the result from CryptoVerif. For all adversaries A:

• making qG queries to GenE(ksrc,·)(·), qV queries to V erifE
−1(ksrc,·)(·), qH queries to H(·) in the UF−

CMV A game, and

• running the UF−CMV A game in TA time units,

there exists an adversary B:

• making qG queries to E(ksrc, ·) and qV + 1 queries to E−1(ksrc, ·) in the INT-PTXT game, and
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• running the INT-PTXT game in TB time units with TB = TA + P3(qG, qV , s) time units, where
P3(qG, qV , s) is polynomial in qG, qV , and the message size s

such that:

AdvUF−CMVAAES-CBC,HMAC-SHA-256trunc
(A) ≤ AdvINT−PTXTAES-CBC,HMAC-SHA-256trunc

(B)

By Theorems 4.3 in [4], there exists an C such that

AdvUF−CMVAAES-CBC,HMAC-SHA-256trunc
(A) ≤ AdvWUF−CMAHMAC-SHA-256trunc

(C)

and

• C uses the same resources as A, except that

• each tag query of C is 128 bits longer than that of A.

By Proposition 2.7 of [3], there exists an adversary D such that

AdvUF−CMVAAES-CBC,HMAC-SHA-256trunc
(A) ≤ AdvPRFHMAC-SHA-256trunc

(D) +
qV
272

and

• D runs in time O(TB) and

• makes qV queries to the verification oracle of HMAC-SHA-256trunc.

Now, from Section 1, there exists adversaries M′,N ′,O′ such that

AdvPRFHMAC-SHA-256trunc
(D) ≤ AdvRKAcomp-SHA-256∗(M′) + AdvPRFcomp-SHA-256(N ′) +

(qV − 1)qV
2

×
(
8×AdvPRFcomp-SHA-256(O′) +

1

2256
)

and M′ is a related key adversary that performs two oracle queries and has time O(TB), N ′ makes qV
queries and runs in O(TB) time, O′ makes 2 queries and run in O(T ), T being the time for one computation
of comp-SHA-256.

So,

AdvUF−CMVAAES-CBC,HMAC-SHA-256trunc
(A) ≤ AdvRKAcomp-SHA-256∗(M′) + AdvPRFcomp-SHA-256(N ′) +

(qV − 1)qV
2

×
(
8×AdvPRFcomp-SHA-256(O′) +

1

2256
)

+
qV
272

Estimation. Using the same value and estimation again, we obtain:

AdvUF−CMVAAES-CBC,HMAC-SHA-256trunc
(A) ≤ 2−113 + 2−52 ≤ 2−51
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