1 IND-CCA2

For each of two games respectively evaluating data and nonce confidentialities, Crypto Verif reduces the advantage of every adversary \mathcal{A}

- making q_G queries to $Gen^{\mathcal{E}(k_{src},\cdot)}(\cdot)$, q_V queries to $Verif^{\mathcal{E}^{-1}(k_{src},\cdot)}(\cdot)$, and q_H queries to $\mathcal{H}(\cdot)$ in the game, and
- running the game in $T_{\mathcal{A}}$ time units,

to an expression depending on the advantage of an adversary \mathcal{B}

- making $q_G + 1$ queries to the encryption oracle $\mathcal{E}(k_{src}, \cdot)$ and q_V queries to the decryption oracle $\mathcal{E}^{-1}(k_{src}, \cdot)$ in a *IND-CCA2* game, and
- running a *IND-CCA2* game in $T_{\mathcal{B}}$ time units with $T_{\mathcal{B}} = T_{\mathcal{A}} + P_1(q_G, q_V, s)$ time units, where $P_1(q_G, q_V, s)$ is polynomial in q_G, q_V , and the message size s

We now evaluate the IND-CCA2 advantage of such an adversary $\mathcal B$ when using our encryption scheme.

By Theorem 3.2 in [4], there exist two adversaries \mathcal{C} and \mathcal{D} such that

 $\mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{\textit{IND-CCA2}}(\mathcal{B}) \leq 2 \times \mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{\textit{IND-CCA2}}(\mathcal{C}) + \mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{\textit{IND-CCA2}}(\mathcal{D})$ and

- \mathcal{C} and \mathcal{D} run in time $O(T_{\mathcal{B}})$,
- \mathcal{C} makes $q_G + 1$ queries to the encryption oracle $\mathcal{E}(k_{src}, \cdot)$ and q_V queries to $Verif^{\mathcal{E}^{-1}(k_{src}, \cdot)}(\cdot)$, and
- \mathcal{D} makes $q_G + 1$ queries to the left-right oracle $\mathcal{LR}(k_{src}, \cdot)$.

By Theorems 4.3 and 4.4 in [4]¹, there exist two adversaries \mathcal{F} and \mathcal{G} such that

$$\mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}(\mathcal{B}) \leq 2 \times \mathbf{Adv}_{\mathtt{HMAC-SHA-256}_{trunc}}^{SUF-CMA}(\mathcal{F}) + \mathbf{Adv}_{\mathtt{AES-CBC}}^{IND-CPA}(\mathcal{G})$$

and

- \mathcal{F} (resp. \mathcal{G}) uses the same resources as \mathcal{C} (resp. \mathcal{D}), except that
- each tag query of \mathcal{F} is 128 bits longer than that of \mathcal{C} .

By Theorem 4.8.1 in $[1]^2$, there exists an adversary \mathcal{I} such that

$$\mathbf{Adv}_{\mathtt{AES}-\mathtt{CBC},\mathtt{HMAC}-\mathtt{SHA}-\mathtt{256}_{trunc}}(\mathcal{B}) \leq 2 \times \mathbf{Adv}_{\mathtt{HMAC}-\mathtt{SHA}-\mathtt{256}_{trunc}}^{SUF-CMA}(\mathcal{F}) + 2 \times \mathbf{Adv}_{\mathtt{AES}}^{PRF}(\mathcal{I}) + \frac{(14 \times (q_G + 1))^2}{2^{128}}$$

and

• \mathcal{I} runs in time $O(T_{\mathcal{B}})$ and

¹We instantiate the parameter ℓ in Theorem 4.4 with 128, because the difference between the length of the ciphertext and the plaintext in our implementation of AES-CBC is 1 block of 128 bits.

²In Theorem 4.8.1, we instantiate n by 128 because we use AES-128, moreover the parameter σ is instantiated as follows: σ is the total number of 128 bits blocks generated by the $q_G + 1$ queries to the encryption oracle $\mathcal{E}(k_{src}, \cdot)$ made by \mathcal{F} . In our case $\sigma = 14 \times (q_G + 1)$.

• makes $14 \times (q_G + 1)$ queries to the encryption oracle modeling the encryption function of AES.

By Proposition 2.7 of $[3]^3$, there exists an adversary $\mathcal J$ such that

$$\mathbf{Adv}_{\mathtt{AES}-\mathtt{CBC},\mathtt{HMAC}-\mathtt{SHA}-\mathtt{256}_{trunc}}(\mathcal{B}) \leq 2 \times (\mathbf{Adv}_{\mathtt{HMAC}-\mathtt{SHA}-\mathtt{256}_{trunc}}^{PRF}(\mathcal{I}) + \frac{q_V}{2^{72}}) + 2 \times \mathbf{Adv}_{\mathtt{AES}}^{PRF}(\mathcal{I}) + \frac{196 \times (q_G + 1)^2}{2^{128}}$$

and

- \mathcal{J} runs in time $O(T_{\mathcal{B}})$ and
- makes q_V queries to the verification oracle of HMAC-SHA-256_{trunc}.

Now, for any function f, $\mathbf{Adv}_{f_{trunc}}^{PRF}(A) \leq \mathbf{Adv}_{f}^{PRF}(B)$ with A and B two attackers making the same queries and running the same time.

Hence, there exists an adversary \mathcal{L} which runs in time $O(T_{\mathcal{B}})$ and makes q_V queries to the verification oracle of HMAC-SHA-256, such that $\mathbf{Adv}_{\mathrm{HMAC-SHA-256}_{trunc}}^{PRF}(\mathcal{J}) \leq \mathbf{Adv}_{\mathrm{HMAC-SHA-256}}^{PRF}(\mathcal{L})$

We note comp-SHA-256 (resp. comp-SHA-256^{*}) the compression function used in SHA-256 (resp. its dual function). Using Lemma 5.2 from [2], we obtain

$$\mathbf{Adv}_{\mathrm{HMAC-SHA-256}}^{\mathit{PRF}}(\mathcal{L}) \leq \mathbf{Adv}_{\mathrm{comp-SHA-256}^*}^{\mathit{RKA}}(\mathcal{M}) + \mathbf{Adv}_{\mathrm{NMAC-SHA-256}}^{\mathit{PRF}}(\mathcal{L})$$

where \mathcal{M} is a related key adversary that performs two oracle queries and has time $O(T_{\mathcal{B}})$. By Theorem 3.3 of [2], there exists two adversaries \mathcal{N} and \mathcal{O} such that

$$\mathbf{Adv}_{\mathsf{NMAC-SHA-256}}^{\mathit{PRF}}(\mathcal{L}) \leq \mathbf{Adv}_{\mathsf{comp-SHA-256}}^{\mathit{PRF}}(\mathcal{N}) + \frac{(q_V - 1)q_V}{2} \times \left(2m \times \mathbf{Adv}_{\mathsf{comp-SHA-256}}^{\mathit{PRF}}(\mathcal{O}) + \frac{1}{2^{256}}\right)$$

and m = 4 is number of blocks per query of \mathcal{L} ,⁴ \mathcal{N} makes q_V queries and runs in $O(T_{\mathcal{B}})$ time, \mathcal{O} makes 2 queries and run in O(T), T being the time for one computation of comp-SHA-256. So,

$$\begin{aligned} \mathbf{Adv}_{\mathrm{HMAC-SHA-256}_{trunc}}^{PRF}(\mathcal{L}) &\leq & \mathbf{Adv}_{\mathrm{comp-SHA-256}^{*}}^{RKA}(\mathcal{M}) + \mathbf{Adv}_{\mathrm{comp-SHA-256}}^{PRF}(\mathcal{N}) + \\ & & \frac{(q_{V}-1)q_{V}}{2} \times \left(8 \times \mathbf{Adv}_{\mathrm{comp-SHA-256}}^{PRF}(\mathcal{O}) + \frac{1}{2^{256}}\right) \end{aligned}$$

Consequently,

$$\begin{split} \mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{IND-CCA2}(\mathcal{B}) &\leq 2 \times \mathbf{Adv}_{\mathtt{comp-SHA-256}^*}^{RKA}(\mathcal{M}) + 2 \times \mathbf{Adv}_{\mathtt{comp-SHA-256}}^{PRF}(\mathcal{N}) + \\ & (q_V - 1)q_V \times \left(8 \times \mathbf{Adv}_{\mathtt{comp-SHA-256}}^{PRF}(\mathcal{O}) + \frac{1}{2^{256}}\right) + \\ & \frac{q_V}{2^{71}} + 2 \times \mathbf{Adv}_{\mathtt{AES}}^{PRF}(\mathcal{I}) + \frac{196 \times (q_G + 1)^2}{2^{128}} \end{split}$$

Estimation. Here, we assume $q_V = 2^{20}$ and $q_G = 2^{30}$. We now bound the strength of the adversaries using estimations based on the current best attacks on AES (2^{126.1}) and comp-SHA-256 (2²⁵⁶):

³Here, we truncate from d = 256 bits (HMAC-SHA-256) to s = 72 bits. Moreover, O(256 + 72) = O(1).

⁴The input of SHA-256 is 14 * 16 bytes = 3.5 * 512 bits, now each block in SHA-256 is of size 512 bits, so we need 4 blocks.

For AES, if the attacker can make N_{AES} queries, its advantage can be estimated by $\frac{N_{\text{AES}}}{2^{126.1}}$. For SHA-256, if the attacker can make N_{SHA} queries to the compression function, then the advantage of the attacker can be estimated by $\frac{N_{\text{SHA}}}{2^{256}}$.

Here, we assume $N_{\text{AES}} \leq 2^{70}$ and $N_{\text{SHA}} \leq 2^{100}$. So,

$$\begin{split} \mathbf{Adv}_{\mathtt{AES}}^{P\!R\!F}(\mathcal{I}) &\leq 2^{-56.1} \qquad \mathbf{Adv}_{\mathtt{comp-SHA-256}^*}^{R\!K\!A}(\mathcal{M}) \leq 2^{-156} \\ \mathbf{Adv}_{\mathtt{comp-SHA-256}}^{P\!R\!F}(\mathcal{N}) &\leq 2^{-156} \qquad \mathbf{Adv}_{\mathtt{comp-SHA-256}}^{P\!R\!F}(\mathcal{O}) \leq 2^{-156} \end{split}$$

Hence, we obtain the following estimations:

$$\begin{aligned} \mathbf{Adv}_{\mathsf{HMAC-SHA-256}_{trunc}}^{PRF}(\mathcal{L}) &\leq 2^{-156} + 2^{-156} + 2^{39} \left(2^3 2^{-156} + 2^{-256}\right) \leq 2^{-113} \\ \mathbf{Adv}_{\mathsf{AES-CBC},\mathsf{HMAC-SHA-256}_{trunc}}^{IND-CCA2}(\mathcal{B}) &\leq 2.2^{-156} + 2.2^{-156} + 2^{40} \left(2^3 2^{-156} + 2^{-256}\right) + 2^{-51} + 2.2^{-56.1} + 2^{-59} \\ &\leq 2^{-50} \end{aligned}$$

2 Data Confidentiality

Below, we first recall the result from Crypto Verif.

For all adversaries \mathcal{A}

- making q_G queries to $Gen^{\mathcal{E}(k_{src},\cdot)}(\cdot)$, q_V queries to $Verif^{\mathcal{E}^{-1}(k_{src},\cdot)}(\cdot)$, and q_H queries to $\mathcal{H}(\cdot)$ in the FG game, and
- running the FG-game in T_A time units,

there exists an adversary ${\cal B}$

- making $q_G + 1$ queries to the encryption oracle $\mathcal{E}(k_{src}, \cdot)$ and q_V queries to the decryption oracle $\mathcal{E}^{-1}(k_{src}, \cdot)$ in the *IND-CCA2* game, and
- running the *IND-CCA2* game in $T_{\mathcal{B}}$ time units with $T_{\mathcal{B}} = T_{\mathcal{A}} + P_1(q_G, q_V, s)$ time units, where $P_1(q_G, q_V, s)$ is polynomial in q_G, q_V , and the message size s

such that

$$\mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{FG}(\mathcal{A}) \leq 2 \times \mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{IND-CCA2}(\mathcal{B})$$

From Section 1, we can deduce that

$$\begin{aligned} \mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{FG}(\mathcal{A}) &\leq & 4 \times \mathtt{Adv}_{\mathtt{comp-SHA-256}^*}^{RKA}(\mathcal{M}) + \\ & & 4 \times \mathtt{Adv}_{\mathtt{comp-SHA-256}}^{PRF}(\mathcal{N}) + \\ & & 2(q_V - 1)q_V \times \left(8 \times \mathtt{Adv}_{\mathtt{comp-SHA-256}}^{PRF}(\mathcal{O}) + \frac{1}{2^{256}}\right) + \\ & & \frac{q_V}{2^{70}} + 4 \times \mathtt{Adv}_{\mathtt{AES}}^{PRF}(\mathcal{I}) + \frac{196 \times (q_G + 1)^2}{2^{127}} \end{aligned}$$

where \mathcal{N} makes q_V queries and runs in $O(T_{\mathcal{B}})$ time, \mathcal{O} makes 2 queries and run in O(T), T being the time for one computation of comp-SHA-256.

Estimation. To obtain an estimation, we use the same values as in Section 1. We obtain:

$$\mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{FG}(\mathcal{A}) \leq 2 \times 2^{-50} \leq 2^{-49}$$

3 Nonce Confidentiality

Below, we first recall the result from Crypto Verif.

For all adversaries \mathcal{A} :

- making q_G queries to $Gen^{\mathcal{E}(k_{src},\cdot)}(\cdot)$, q_V queries to $Verif^{\mathcal{E}^{-1}(k_{src},\cdot)}(\cdot)$, q_H queries to $\mathcal{H}(\cdot)$, and nb_A tries in the *N*-conf game, and
- running the *N*-conf game in $T_{\mathcal{A}}$ times units,

there exists an adversary \mathcal{B} :

- making $q_G + 1$ queries to $\mathcal{E}(k_{src}, \cdot)$ and q_V queries to $\mathcal{E}^{-1}(k_{src}, \cdot)$ in the *IND-CCA2* game, and
- running the *IND-CCA2* game in $T_{\mathcal{B}}$ time units with $T_{\mathcal{B}} = T_{\mathcal{A}} + P_2(q_G, q_V, s)$ time units, where $P_2(q_G, q_V, s)$ is polynomial in q_G, q_V , and the message size s

such that:

$$\mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{N-conf}(\mathcal{A}) \leq \frac{nb_A + q_H + q_G}{2^{\eta_n}} + \mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{IND-CCA2}(\mathcal{B})$$

From Section 1, we can deduce that

$$\begin{aligned} \mathbf{Adv}_{\mathsf{AES-CBC},\mathsf{HMAC-SHA-256}_{trunc}}^{N-conf}(\mathcal{A}) &\leq \frac{nb_A + q_H + q_G}{2\eta_n} + 2 \times \mathbf{Adv}_{\mathsf{comp-SHA-256}^*}^{RKA}(\mathcal{M}) + \\ &2 \times \mathbf{Adv}_{\mathsf{comp-SHA-256}}^{PRF}(\mathcal{N}) + \\ &(q_V - 1)q_V \times \left(8 \times \mathbf{Adv}_{\mathsf{comp-SHA-256}}^{PRF}(\mathcal{O}) + \frac{1}{2^{256}}\right) + \\ &\frac{q_V}{2^{71}} + 2 \times \mathbf{Adv}_{\mathsf{AES}}^{PRF}(\mathcal{I}) + \frac{196 \times (q_G + 1)^2}{2^{128}} \end{aligned}$$

and \mathcal{N} makes q_V queries and runs in $O(T_{\mathcal{B}})$ time, \mathcal{O} makes 2 queries and run in O(T), T being the time for one computation of comp-SHA-256.

Estimation. To obtain an estimation, we use the same values as in Section 1 and we assume $nb_A = q_V = 2^{20}$ and $q_H = 2^{40}$. Moreover, in our case, $\eta_n = 96$. We obtain:

$$\mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{N-conf}(\mathcal{A}) \leq 2^{-55} + 2^{-50} \leq 2^{-49}$$

4 Unforgeability

Below, we first recall the result from *CryptoVerif.* For all adversaries \mathcal{A} :

- making q_G queries to $Gen^{\mathcal{E}(k_{src},\cdot)}(\cdot)$, q_V queries to $Verif^{\mathcal{E}^{-1}(k_{src},\cdot)}(\cdot)$, q_H queries to $\mathcal{H}(\cdot)$ in the UF-CMVA game, and
- running the UF-CMVA game in T_A time units,

there exists an adversary \mathcal{B} :

• making q_G queries to $\mathcal{E}(k_{src}, \cdot)$ and $q_V + 1$ queries to $\mathcal{E}^{-1}(k_{src}, \cdot)$ in the *INT-PTXT* game, and

• running the *INT-PTXT* game in $T_{\mathcal{B}}$ time units with $T_{\mathcal{B}} = T_{\mathcal{A}} + P_3(q_G, q_V, s)$ time units, where $P_3(q_G, q_V, s)$ is polynomial in q_G, q_V , and the message size s

such that:

$$\mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{\mathit{UF-CMVA}}(\mathcal{A}) \leq \mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{\mathit{INT-PTXT}}(\mathcal{B})$$

By Theorems 4.3 in [4], there exists an \mathcal{C} such that

$$\mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{UF-CMVA}(\mathcal{A}) \leq \mathbf{Adv}_{\mathtt{HMAC-SHA-256}_{trunc}}^{WUF-CMA}(\mathcal{C})$$

and

- \mathcal{C} uses the same resources as \mathcal{A} , except that
- each tag query of C is 128 bits longer than that of A.

By Proposition 2.7 of [3], there exists an adversary \mathcal{D} such that

$$\mathbf{Adv}_{\mathtt{AES}-\mathtt{CBC},\mathtt{HMAC}-\mathtt{SHA}-\mathtt{256}_{trunc}}(\mathcal{A}) \leq \mathbf{Adv}_{\mathtt{HMAC}-\mathtt{SHA}-\mathtt{256}_{trunc}}^{PRF}(\mathcal{D}) + \frac{q_V}{2^{72}}$$

and

- \mathcal{D} runs in time $O(T_{\mathcal{B}})$ and
- makes q_V queries to the verification oracle of HMAC-SHA-256_{trunc}.

Now, from Section 1, there exists adversaries $\mathcal{M}', \mathcal{N}', \mathcal{O}'$ such that

$$\begin{aligned} \mathbf{Adv}_{\mathsf{HMAC-SHA-256}_{trunc}}^{PRF}(\mathcal{D}) &\leq & \mathbf{Adv}_{\mathsf{comp-SHA-256}^*}^{RKA}(\mathcal{M}') + \mathbf{Adv}_{\mathsf{comp-SHA-256}}^{PRF}(\mathcal{N}') + \\ & & \frac{(q_V - 1)q_V}{2} \times \left(8 \times \mathbf{Adv}_{\mathsf{comp-SHA-256}}^{PRF}(\mathcal{O}') + \frac{1}{2^{256}}\right) \end{aligned}$$

and \mathcal{M}' is a related key adversary that performs two oracle queries and has time $O(T_{\mathcal{B}})$, \mathcal{N}' makes q_V queries and runs in $O(T_{\mathcal{B}})$ time, \mathcal{O}' makes 2 queries and run in O(T), T being the time for one computation of comp-SHA-256.

So,

$$\begin{aligned} \mathbf{Adv}_{\mathtt{AES-CBC},\mathtt{HMAC-SHA-256}_{trunc}}^{VC}(\mathcal{A}) &\leq & \mathbf{Adv}_{\mathtt{comp-SHA-256}^*}^{RKA}(\mathcal{M}') + \mathbf{Adv}_{\mathtt{comp-SHA-256}}^{PRF}(\mathcal{N}') + \\ & & \frac{(q_V - 1)q_V}{2} \times \left(8 \times \mathbf{Adv}_{\mathtt{comp-SHA-256}}^{PRF}(\mathcal{O}') + \frac{1}{2^{256}}\right) + \frac{q_V}{2^{72}} \end{aligned}$$

Estimation. Using the same value and estimation again, we obtain:

$$\mathbf{Adv}_{\mathtt{AES}-\mathtt{CBC},\mathtt{HMAC}-\mathtt{SHA}-\mathtt{256}_{trunc}}(\mathcal{A}) \quad \leq \quad 2^{-113}+2^{-52} \leq 2^{-51}$$

References

- [1] Bellare, M.: Symmetric encryption. https://cseweb.ucsd.edu/~mihir/cse207/w-se.pdf
- [2] Bellare, M.: New proofs for nmac and hmac: Security without collision-resistance (2006). URL https: //cseweb.ucsd.edu/~mihir/papers/hmac-new.html. An extended abstract of this paper appeared in Advances in Cryptology - Crypto 2006 Proceedings, Lecture Notes in Computer Science Vol. 4117, C. Dwork ed, Springer-Verlag, 2006.
- Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authentication code. J. Comput. Syst. Sci. 61(3), 362-399 (2000). DOI 10.1006/jcss.1999.1694. URL http://dx.doi.org/10.1006/jcss.1999.1694
- Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469-491 (2008). DOI 10.1007/s00145-008-9026-x. URL http://dx.doi.org/10.1007/s00145-008-9026-x