Ingénierie des Protocoles : Examen

Stéphane Devismes

Lisez attentivement ce qui suit :

- Aucun document n'est autorisé.
- Le barême est donné à titre indicatif uniquement. Il est susceptible de changer!

1 Détecteur de défaillances (9 points)

Nous rappelons que tout détecteur de défaillances finalement parfait $\diamond \mathcal{P}$ satisfait la **complétude forte** et l'**exactitude finalement forte** :

Complétude forte : Tout processus qui tombe en panne finit par être suspecté en permanence par tous les processus corrects.

Exactitude finalement forte : Il existe un temps à partir duquel plus aucun processus correct n'est suspecté par un processus correct.

Questions.

- 1. Un détecteur de défaillances parfait \mathcal{P} satisfait la complétude forte et l'exactitude forte. Rappelez la définition d'exactitude forte. (0,5 point)
- 2. Que signifie $\diamond \mathcal{P} \prec \mathcal{P}$? Est-ce vrai? (Justifiez) (1 point)

1.1 Algorithme

On suppose un réseau **complet** sujet à des pannes définitives **initiales** de processus, c'est-à-dire que tout processus qui tombe en panne n'a jamais participé à aucun calcul. De plus, les liens de communications sont sujets à **des pertes équitables**.

Questions.

- 1. Dans ce système, proposez un algorithme réalisant le détecteur de défaillance finalement parfait. (2 points)
- 2. Prouvez la correction de votre algorithme. (2 points)

1.2 Consensus

On suppose maintenant un réseau **complet** sujet à des pannes définitives où

- les liens de communications sont **fiables**,
- chaque processus dispose d'un détecteur $\diamond \mathcal{P}$, et
- -n > 2t (n est le nombre de processus et t le nombre maximum de pannes).

Nous rappelons que le détecteur Ω renvoie l'identité d'un unique processus supposé correct. Il garantit qu'en un temps fini, il existe un processus correct ℓ tel que $\Omega_p = \ell$ pour toujours pour tout processus correct p.

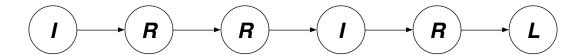


FIGURE 1 – Configuration initiale : p_0 est à gauche et p_{n-1} est à droite.

Questions.

- 1. Expliquez comment passer de $\diamond P$ à Ω . (0,5 point)
- 2. Rappeler la spécification du consensus. (1 point)
- 3. Expliquez comment résoudre le consensus dans ce système. (2 points)

2 Autostabilisation (12 points)

2.1 Comprendre un algorithme auto-stabilisant

On considère un réseau en « ligne » : $p_0, p_1, \dots p_{n-1}$. Le réseau est orienté : soit p_i un processus, on a

- si i > 0, alors p_i a un voisin de gauche, p_{i-1} ;
- si i < n-1, alors p_i a un voisin de droite, p_{i+1} .

Ci-dessous, nous proposons un algorithme, écrit dans le modèle à états, constitué de quatre règles. Dans cet algorithme, chaque processus p_i dispose d'une variable $p_i.S$ dont le domaine est $\{I, R, L\}$.

$$TR$$
 :: $(p_i.S = I) \land (i = 0 \lor p_{i-1}.S = R) \land (i = n-1 \lor p_{i+1}.S = I)$ $\mapsto p_i.S \leftarrow R$

$$TL$$
 :: $(p_i.S = R) \land (i = 0 \lor p_{i-1}.S = R) \land (i = n-1 \lor p_{i+1}.S = L)$ $\mapsto p_i.S \leftarrow L$

Clean ::
$$(p_i.S = L) \land (i = 0 \lor p_{i-1}.S = L) \land (i = n-1 \lor p_{i+1}.S = I)$$
 $\mapsto p_i.S \leftarrow I$

$$Err$$
 :: $(i \neq 0) \land [(p_i.S = R \land p_{i-1}.S \in \{I, L\}) \lor (p_i.S = L \land p_{i-1}.S = I)] \mapsto p_i.S \leftarrow I$

Questions.

- 1. Donnez la trace d'exécution des 6 premiers pas de calculs de l'algorithme à partir de la configuration initiale de la figure 1 en supposant un démon synchrone. (1,5 point)
- 2. Donnez la trace d'exécution des 8 premiers pas de calculs de l'algorithme à partir de la configuration initiale de la figure 1 en supposant un démon central qui choisit toujours le processus activable le plus à droite. (2 points)
- 3. Dans le pire des cas, combien d'actions Err peuvent être exécutée en fonction de n? Justifiez. (Vous pourrez illustrer votre propos avec un exemple.) (1 points)

2.2 Ecrire et prouver un algorithme auto-stabilisant

On considère un réseau en arbre bidirectionnel, enraciné en R et orienté. C'est-à-dire, chaque processus p peut lire l'état de n'importe quel voisin. De plus, chaque processus nonracine p connait le numéro de canal de son père dans l'arbre : ce numéro de canal est noté $p\`ere_p$. Nous désignons aussi par \mathcal{N}_p l'ensemble des numéros de canaux des voisins de p.

En outre, on suppose que chaque processus p connaît son numéro de canal dans l'ensemble \mathcal{N}_q de chacun de ces voisins q. Ainsi, p pourra tester si, par exemple, le pointeur $p \grave{e} r e_q$ de son voisin q le désigne comme son père dans l'arbre. Dans la suite, un tel test sera simplement écrit $p \grave{e} r e_q = p$.

Chaque processus p dispose enfin d'une entrée E_p booléenne de valeur constante (vrai ou faux).

Questions.

- 1. Ecrivez dans le modèle à états, un algorithme autostabilisant silencieux qui converge vers une configuration terminale où la variable Booléenne $Sortie_p$ de chaque processus p vaut vrai si et seulement s'il existe (au moins) un processus q tel que $E_q = vrai$. (3 points)
- 2. Prouvez que dans toute configuration terminale de votre algorithme, la variable Booléenne $Sortie_p$ de chaque processus p vaut vrai si et seulement si il existe (au moins) un processus q tel que $E_q = vrai$. (2 points)
- 3. Prouvez que votre algorithme converge vers une configuration terminale sous l'hypothèse d'un démon distribué faiblement équitable. (2 points)
- 4. Quel est le temps de stabilisation de votre algorithme en rondes? (0,5 point)