
UFR-IMAG
Université Joseph Fourier

Programming Language and Compiler Design,
2010/2011

Marion Daubignard
Yassine Lakhnech
Laurent Mounier

Homework - Version B.

Exercise 1

We define the syntactic category of bits B = {0, 1}. By b we denote a meta-variable ranging over
B. We define inductively a set of bitstrings BS by the following BNF:

bs := b | 0 bs 0 | 01 bs 10

where bs is a meta-variable ranging over the set of bitstrings BS. Of the following two statements,
one is wrong and one is right. You get to tell which is which and justify your answers by either
a proof (by induction) or a counter-example.

1. In the set of bistrings BS, all elements contain at least one 0.

2. Every bitstring in the set BS is a palindrome.

A palindrome is a sequence of symbols that reads the same from right to left or left to right (e.g.
‘Rise to vote sir’ is one, 1001 is one too).

The first statement is false. Indeed, the first rule provides that 1 belongs to BS, which is a
counter-example.

The second statement is true, let’s prove it by induction.
Basic case: the atoms of this set are bits in B. Moreover, 0 and 1 are indeed palindromes, so
that the property holds for atoms.
Case of the rule ’if bs ∈ BS then 0 bs 0 ∈ BS:
our induction hypothesis is that bs is a palindrome, and we have to show that 0 bs 0 is one too,
which is true (I skip the details).
Case of the rule ’if bs ∈ BS then 01 bs 10 ∈ BS:
our induction hypothesis is that bs is a palindrome, and we have to show that 01 bs 10 is one
too, which is true (I skip the details).
Conclusion : we have proven by structural induction on the set BS that every element of BS is
a palindrome.

Exercise 2

We consider the following program.

begin var z1 := 43;
var z2 := 5 ∗ (z1 − 1);
proc toto is z1 := 3 ∗ (z2 + z1);
begin var z2 := 1;
proc toto is z1 := z2 + 45;
proc q is call toto;
call q;
end
call toto;

end

1

You have been presented three different semantics for the While language with blocks and pro-
cedures: one with dynamic links for variables and procedures, another with dynamic links for
variables but static links for procedures, and finally one with static links for variables and pro-
cedures.
What values are associated to z1 and z2 at the end of this program according to each of the three
semantics you know ? Justify your answer (you can either draw the tree or precise the state or
the variable environment and the storage function after each ’;’).

Dynamic-dynamic semantics:

σ, envP

begin var z1 := 43; σ1 = σ[z1 7→ 43], envP

var z2 := 5 ∗ (z1 − 1); σ2 = σ1[z2 7→ 210] = σ[z1 7→ 43, z2 7→ 210], envP

proc toto is z1 := 3 ∗ (z2 + z1); σ2, env
1
P = envP [toto 7→ (z1 := 3 ∗ (z2 + z1))]

begin var z2 := 1; σ3 = σ2[z2 7→ 1], env1
P

proc toto is z1 := z2 + 45; σ3, env
2
P = env1

P [toto 7→ z1 := z2 + 45]
proc q is call toto; σ3, env

3
P = env2

P [q 7→ call toto]
call q; σ4 = σ3[z1 7→ 46], env3

P

end σ5 = σ4[z2 7→ σ2(z2)] = σ[z1 7→ 46, z2 7→ 210], env1
P ∗

call toto; σ6 = σ[z1 7→ 768, z2 7→ 210], env1
P

end σ, envP

Ask yourself why in *, the procedure environment is env1
P ... It is because we apply the sequence rule to

the body of the big block, and in the sequence rule, S1 and S2 are evaluated in the same environment!
Dynamic-static semantics:

σ, envP

begin var z1 := 43; σ1 = σ[z1 7→ 43], envP

var z2 := 5 ∗ (z1 − 1); σ2 = σ1[z2 7→ 210] = σ[z1 7→ 43, z2 7→ 210], envP

proc toto is z1 := 3 ∗ (z2 + z1); σ2, env
1
P = envP [toto 7→ (z1 := 3 ∗ (z2 + z1), envP)]

begin var z2 := 1; σ3 = σ2[z2 7→ 1], env1
P

proc toto is z1 := z2 + 45; σ3, env
2
P = env1

P [toto 7→ (z1 := z2 + 45, env1
P)]

proc q is call toto; σ3, env
3
P = env2

P [q 7→ (call toto, env2
P)]

call q; σ4 = σ3[z1 7→ 46], env3
P

end σ5 = σ4[z2 7→ σ2(z2)] = σ[z1 7→ 46, z2 7→ 210], env1
P

call toto; σ6 = σ[z1 7→ 768, z2 7→ 210], env1
P

end σ, envP

Static-static semantics:

envV , sto, envP

begin var z1 := 43; env1
V = envV [z1 7→ 1], sto1 = sto[1 7→ 43], envP

var z2 := 5 ∗ (z1 − 1); env2
V = env1

V [z2 7→ 2], sto2 = sto1[2 7→ 210], , envP

proc toto is z1 := 3 ∗ (z2 + z1); env2
V , sto

2, env1
P = envP [toto 7→ (z1 := 3 ∗ (z2 + z1), envP , env

2
V)]

begin var z2 := 1; env3
V = env2

V [z2 7→ 3], sto3 = sto2[3 7→ 1], , env1
P

proc toto is z1 := z2 + 45; env3
V , sto

3, env2
P = env1

P [toto 7→ (z1 := z2 + 45, env1
P , env

3
V)]

proc q is call toto; env3
V , sto

3, env3
P = env2

P [q 7→ (call toto, env2
P , env

3
V)]

call q; env3
V , sto

4 = sto3[1 7→ 46] = sto[1 7→ 46, 2 7→ 210, 3 7→ 1], env3
P

end env4
V = envV [z1 7→ 1, z2 7→ 2], sto5 = sto[1 7→ 46, 2 7→ 210], env1

P

call toto; env4
V , sto

6 = sto[1 7→ 768, 2 7→ 210], env1
P

end envV , sto, envP

2

