Series 1

Exercise 1

We consider the following 3-address code sequence:

1. \(a := 1 \)
2. \(b := 2 \)
3. \(e := a+b \)
4. \(d := b\times d \)
5. if \(a+b>0 \) goto 11
6. \(d := c-a \)
7. goto 8
8. \(d := a+b \)
9. \(e := e+1 \)
10. goto 3
11. \(b := a+b \)
12. \(e := c-a \)
13. if \(c > 3 \) goto 3
14. \(c := a+b \)
15. \(b := a-d \)
end

1. Split this sequence into basic blocks, and draw the resulting control flow graph.
2. Give the set of data-flow equations for computing available expressions.
3. Solve these equations.
4. Suppress redundant computations.

Exercise 2

We consider the following program:

\[\begin{align*}
 b & := 0 \\
\text{while } & d>0 \text{ do } \{ \\
 & a := b+c \\
 & d := d-b \\
 & e := a+f \\
 & \text{if } e > 0 \quad \{ f := a-d ; b := d+f \} \\
 & \quad \text{else} \\
 & \quad \{ e := a-c \} \\
 & \quad b := a+c \\
\} \]

1. Write the 3-address code sequence corresponding to this program.
2. Split this sequence into basic blocks, and draw the resulting control flow graph.
3. Give the set of data-flow equations for computing active variables.
4. Solve these equations.
5. Suppress useless assignments.

Exercise 3

We consider the two following CFGs. Modify these CFGs by performing constant folding.

```
x := 5
y := 0
z := x + y
x := z
z := x - y
x := z
t := z + x
```

```
x := 5
y := 1
z := x + y
x := z
z := x - y
x := z
t := z + x
```

Exercise 4

Same questions for the following example: