UFR-IMAG Université Joseph Fourier Programming Language and Compiler Design, 2010/2011 Marion Daubignard Yassine Lakhnech Laurent Mounier

Series 1

Exercise 1

Consider the following statement (z := x; x := y); y := z, and the environment σ_0 which maps every variables but x and y to 0, maps x to 5, and y to 7. Give a derivation tree of this statement.

Exercise 2

We consider the arithmetical expressions defined in the course lecture.

Let $a, a' \in \mathbf{Aexp}$, and σ, σ' two states. Let X be the set of variables appearing in a.

- 1. Prove that if $\forall x \in X \cdot \sigma(x) = \sigma'(x)$, then $\mathcal{A}[a]\sigma = \mathcal{A}[a]\sigma'$.
- 2. Prove that $\mathcal{A}[a[a'/x]]\sigma = \mathcal{A}[a]\sigma[x \mapsto \mathcal{A}[a']\sigma]$.

Exercise 3

We consider the following statements:

- while $\neg(x = 1)$ do (y := y * x; x := x 1) od
- while $1 \le x$ do (y := y * x; x := x 1) od
- while true do skip od

where x designates a variable of type \mathbb{Z} .

For each of the preceding statement, determine whether :

- 1. its execution loops in every state
- 2. its execution stops in every state
- 3. there are states from which the execution terminates, and some from which it does not.

Prove your answers.

Exercise 4

We wish to add the following statement to the **While** language:

repeat S until b

- 1. Provide the semantics rules in order to define repeat S until b without using the while b do \cdots od construction.
- 2. Prove that
 - (a) repeat S until \boldsymbol{b}

- (b) S; if b then skip else (repeat S until b).
- are semantically equivalent.
- 3. We want to prove that the statement repeat S until b does not add expressive power. To do so, give a function which transforms every program with the statement repeat S until b into a program in the While language. Is the given transformation computable? Compare the size of a program and its image resulting of the transformation.

Exercise 5

Prove that, for all statements S_1, S_2, S_3 , the following statements are semantically equivalent:

- 1. $S_1; (S_2; S_3)$
- 2. $(S_1; S_2); S_3$

Prove that, in general, S_1 ; S_2 is not semantically equivalent to S_2 ; S_1 .

Exercise 6

Prove that the natural operational semantics of the **While** language is deterministic.

Exercise 7

Define the semantics of the set of boolean expressions **BExp**.

Exercise 8

We build a set B of boolean expressions using the following elements:

- constants *true* and *false*,
- a set of boolean variables denoted Bool
- \neg rule: if $b \in B$ then $(\neg b) \in B$
- \wedge rule: if $b_1, b_2 \in B$ then $(b_1 \wedge b_2) \in B$

Write the formal sentence corresponding to the following english sentence and prove it: two states that coincide on every boolean variable yield equal values for any expression in B.

Optional question : how can we adapt this statement for **Bexp**? A set B of **BExp**, set of boolean expressions, can be constructed inductively from atoms *true* and *false* and using the following rules:

- \neg rule: if $b \in B$ then $(\neg b) \in B$
- \wedge rule: if $b_1, b_2 \in B$ then $(b_1 \wedge b_2) \in B$

Write the formal sentence corresponding to the following english sentence and prove it: two states that coincide on every boolean variable yield equal values for any expression in B.

Optional question : is it true for any expression in **Bexp** ?

Exercise 9

We consider the language defined by the following BNF:

$$\begin{array}{rrr} S & ::= & x := a \mid \mathsf{skip} \mid S_1; S_2 \mid \\ & & \mathsf{if} \ b \ \mathsf{then} \ S_1 \ \mathsf{else} \ S_2 \end{array}$$

What can we say about termination of programs written in this language (according to the natural semantics) ? Prove your statement.