Series 1

Exercise 4
We wish to add the following statement to the While language:

\[\text{repeat } S \text{ until } b \]

The rules we add to the rules of natural semantics are:

- If \(B[b] \sigma' = \text{ff} \) then
 \[
 (S, \sigma) \rightarrow \sigma' \quad (\text{repeat } S \text{ until } b, \sigma') \rightarrow \sigma''
 \]
 \[
 (\text{repeat } S \text{ until } b, \sigma) \rightarrow \sigma''
 \]

- If \(B[b] \sigma' = \text{tt} \) then
 \[
 (S, \sigma) \rightarrow \sigma'
 \]
 \[
 (\text{repeat } S \text{ until } b, \sigma) \rightarrow \sigma'
 \]

Indeed, the meaning we want to give to this command is that we first perform \(S \) and then, according to whether \(b \) is true, we re-enter the repeat command or we stop.

Semantic equivalence proof
We prove that

- \(\text{repeat } S \text{ until } b \)
- and \(S; \text{if } b \text{ then skip else (repeat } S \text{ until } b) \)

are semantically equivalent.

To do this, we have to prove that for any states \(\sigma, \sigma' \) we have that \((\text{repeat } S \text{ until } b, \sigma) \rightarrow \sigma' \) iff \((S; \text{if } b \text{ then skip else (repeat } S \text{ until } b), \sigma) \rightarrow \sigma' \).

We first prove the \(\Rightarrow \) implication. We assume \((\text{repeat } S \text{ until } b, \sigma) \rightarrow \sigma' \) and have to prove \((S; \text{if } b \text{ then skip else (repeat } S \text{ until } b), \sigma) \rightarrow \sigma' \). Assuming \((\text{repeat } S \text{ until } b, \sigma) \rightarrow \sigma' \) is assuming that there exists a derivation tree \(T \) whose conclusion is this statement. Two cases can arise:

- the tree \(T \) can be the following:
 \[
 (S, \sigma) \rightarrow \sigma_1 \quad (\text{repeat } S \text{ until } b, \sigma_1) \rightarrow \sigma'
 \]
 \[
 (\text{repeat } S \text{ until } b, \sigma) \rightarrow \sigma'
 \]

In this case, we know that \(\sigma_1 \) exists and that \(B[b] \sigma_1 = \text{ff} \).

We are searching for a tree \(T' \) whose conclusion is \((S; \text{if } b \text{ then skip else (repeat } S \text{ until } b), \sigma) \rightarrow \sigma' \).

The program is the sequence of \(S \) and an if command. Such a tree \(T' \) would necessary look like:

\[
(S, \sigma) \rightarrow \sigma_2 \quad \text{(if } b \text{ then skip else (repeat } S \text{ until } b), \sigma_2) \rightarrow \sigma''
\]

\[
(S; \text{if } b \text{ then skip else (repeat } S \text{ until } b), \sigma) \rightarrow \sigma''
\]
for some candidate σ_2 we have to exhibit. If we look at the tree T, we see that we know $(S, \sigma) \rightarrow \sigma_1$. Hence we choose $\sigma_2 = \sigma_1$. Our tree T' becomes:

\[
(S, \sigma) \rightarrow \sigma_1 \quad \frac{(\mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma_1) \rightarrow \sigma'}{(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) \rightarrow \sigma'}
\]

We still have to replace σ, which we can do because we know that $B[b]_1 = \mathit{ff}$. Hence, we apply the if-false rule to derive a tree for $(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) \rightarrow \sigma'$. T' thus looks like:

\[
(S, \sigma) \rightarrow \sigma_1 \quad \frac{(\mathit{repeat} \ S \ \mathit{until} \ b, \sigma_1) \rightarrow \sigma_3}{(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) \rightarrow \sigma'}
\]

for some σ_3 we have to find. Looking at T, we see that $\sigma_3 = \sigma'$ fits.

\[
(S, \sigma) \rightarrow \sigma_1 \quad \frac{(\mathit{repeat} \ S \ \mathit{until} \ b, \sigma_1) \rightarrow \sigma'}{(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) \rightarrow \sigma'}
\]

is the derivation tree we are looking for. QED

- the tree T can be the following:

\[
(S, \sigma) \rightarrow \sigma' \quad \frac{\mathit{(repeat} \ S \ \mathit{until} \ b, \sigma \rightarrow \sigma')}{\mathit{(repeat} \ S \ \mathit{until} \ b, \sigma \rightarrow \sigma')}
\]

In this case, we know that σ' exists and that $B[b]_1 = \mathit{tt}$.

We are searching for a tree T' whose conclusion is $(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) \rightarrow \sigma'$. The program is the sequence of S and an if command. Such a tree T' would necessary look like:

\[
(S, \sigma) \rightarrow \sigma_1 \quad \frac{(\mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma_1) \rightarrow \sigma'}{(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) \rightarrow \sigma'}
\]

for some candidate σ_1 we have to exhibit. If we look at the tree T, we see that we know $(S, \sigma) \rightarrow \sigma'$. Hence we choose $\sigma_1 = \sigma'$. Our tree T' becomes:

\[
(S, \sigma) \rightarrow \sigma' \quad \frac{(\mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma') \rightarrow \sigma'}{(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) \rightarrow \sigma'}
\]

We still have to replace σ', which we can do because we know that $B[b]_1 = \mathit{tt}$. Hence, we apply the if-false rule to derive a tree for $(\mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma') \rightarrow \sigma'$. T' thus looks like:

\[
(S, \sigma) \rightarrow \sigma' \quad \frac{(\mathit{skip}, \sigma') \rightarrow \sigma'}{(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) \rightarrow \sigma'}
\]

It is the derivation tree we are looking for. QED

We then prove the \Leftarrow implication. We assume $(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) \rightarrow \sigma'$ and have to prove $(\mathit{repeat} \ S \ \mathit{until} \ b, \sigma) \rightarrow \sigma'$. Our assumption yields the existence of a derivation tree T whose conclusion is $(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) \rightarrow \sigma'$. It necessarily looks like:

\[
\begin{align*}
(S, \sigma) & \rightarrow \sigma_1 \\
(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma_1) & \rightarrow \sigma' \\
(S; \mathit{if} \ b \ \mathit{then} \ \mathit{skip} \ \mathit{else} \ (\mathit{repeat} \ S \ \mathit{until} \ b), \sigma) & \rightarrow \sigma'
\end{align*}
\]
\[(S, \sigma) \rightarrow \sigma_1 \quad \text{(if } b \text{ then skip else (repeat } S \text{ until } b), \sigma_1) \rightarrow \sigma'\]

\[(S; \text{if } b \text{ then skip else (repeat } S \text{ until } b), \sigma) \rightarrow \sigma' \]

with an actual state \(\sigma_1 \). '?' depends on the truth value of \(b \) in state \(\sigma_1 \).

Two cases can arise:

- if \(B[b] \sigma_1 = \text{ff} \), we know that \(T \) is the following tree:

\[\begin{align*}
(S, \sigma) \rightarrow \sigma_1 & \quad \text{(repeat } S \text{ until } b, \sigma_1) \rightarrow \sigma' \\
(S; \text{if } b \text{ then skip else (repeat } S \text{ until } b), \sigma) \rightarrow \sigma' \\
\end{align*} \]

We want to build a tree \(T' \) whose conclusion is \((\text{repeat } S \text{ until } b, \sigma) \rightarrow \sigma' \). Such a tree necessarily ends with the application of one of the rules for the repeat command. We know that: \((S, \sigma) \rightarrow \sigma_1 \), \((\text{repeat } S \text{ until } b, \sigma_1) \rightarrow \sigma' \), and \(B[b] \sigma_1 = \text{ff} \). Hence, it is the repeat-true rule we use to build \(T' \):

\[\begin{align*}
(S, \sigma) \rightarrow \sigma_1 & \quad (\text{repeat } S \text{ until } b, \sigma_1) \rightarrow \sigma' \\
(S; \text{if } b \text{ then skip else (repeat } S \text{ until } b), \sigma) \rightarrow \sigma' \\
\end{align*} \]

- Similarly, if \(B[b] \sigma_1 = \text{tt} \), we know that \(T \) is the following tree:

\[\begin{align*}
(S, \sigma) \rightarrow \sigma_1 & \quad (\text{skip}, \sigma_1) \rightarrow \sigma' \\
(S; \text{if } b \text{ then skip else (repeat } S \text{ until } b), \sigma) \rightarrow \sigma' \\
\end{align*} \]

Moreover, according to the skip rule, \(\sigma_1 = \sigma' \).

We want to build a tree \(T' \) whose conclusion is \((\text{repeat } S \text{ until } b, \sigma) \rightarrow \sigma' \). Such a tree necessarily ends with the application of one of the rules for the repeat command. We know that \((S, \sigma) \rightarrow \sigma' \), and \(B[b] \sigma' = B[b] \sigma_1 = \text{tt} \). So we can build \(T' \) as follows:

\[(S, \sigma) \rightarrow \sigma' \]

\[(\text{repeat } S \text{ until } b, \sigma) \rightarrow \sigma' \]