
UFR-IMAG
Université Joseph Fourier

Programming Language and Compiler Design,
2010/2011

Marion Daubignard
Yassine Lakhnech
Laurent Mounier

Series 1

Exercise 8
We build a set B of boolean expressions using the following elements:

• constants true and false,
• a set of boolean variables denoted Bool

• ¬ rule: if b ∈ B then (¬b) ∈ B
• ∧ rule: if b1, b2 ∈ B then (b1 ∧ b2) ∈ B

Write the formal sentence corresponding to the following english sentence and prove it: two
states that coincide on every boolean variable yield equal values for any expression in B.
Optional question : how can we adapt this statement for Bexp ?
Semantics of expressions in B:
We can copy what we did for BExp. States associate boolean values to boolean variables.
Let B denote the semantics function for expressions in B.

• B[true]σ = tt, B[false]σ = ff ;
• ∀z ∈ Bool, B[z]σ = σ(z);

• B[¬b]σ =
{
ff if B[b]σ = tt
tt otherwise

• B[b1 ∧ b2]σ =
{
tt if B[b1]σ = tt and B[b2]σ = tt
ff otherwise

What we want to prove the following property:
For any expression b ∈ B, if X is the set of boolean variables appearing in b,

∀x ∈ X,σ(x) = σ′(x)⇒ B[b]σ = B[b]σ′

By induction on b:

• if b = true, B[b]σ = B[true]σ = tt = B[true]σ′ = B[b]σ′,
• if b = false, B[b]σ = ff = B[b]σ′ (same as for true)

• if b is a variable z, B[z]σ = σ(z) H= σ′(z) = B[z]σ′

• We assume b satisfies the induction hypothesis. It means that if X denotes the set of
boolean variables appearing in b, then ∀x ∈ X,σ(x) = σ′(x)⇒ B[b]σ = B[b]σ′.
Let us show that the property is preserved when we use the ¬ rule to build other
expressions. By defintion of function B,

B[¬b]σ =
{
ff if B[b]σ = tt
tt otherwise

and

B[¬b]σ′ =
{
ff if B[b]σ′ = tt
tt otherwise

Our induction hypothesis yields B[b]σ = B[b]σ′, thus if B[b]σ = tt, then B[b]σ′ too, and
B[¬b]σ = ff = B[¬b]σ′. Moreover, if B[b]σ = ff , then B[b]σ′ too, and B[¬b]σ = tt =
B[¬b]σ′.

1



• We assume b1 and b2 satisfy the induction hypothesis. It means that if X is the set of
boolean variables appearing in b1 and b2, then ∀x ∈ X,σ(x) = σ′(x)⇒ B[b1]σ = B[b1]σ′

and ∀x ∈ X,σ(x) = σ′(x)⇒ B[b2]σ = B[b2]σ′.
Now we want to show that b1 ∧ b2 verifies the property. We take σ and σ′ such that
∀x ∈ X,σ(x) = σ′(x). By definition of the semantics function,

B[b1 ∧ b2]σ =
{
tt if B[b1]σ = tt and B[b2]σ = tt
ff otherwise

and

B[b1 ∧ b2]σ′ =
{
tt if B[b1]σ′ = tt and B[b2]σ′ = tt
ff otherwise

Two cases can arise : first, if B[b1]σ = tt and B[b2]σ = tt too. This provides B[b1∧b2]σ =
tt by definition of the semantics function. Moreover, applying our induction hypothesis,
B[b1]σ = B[b1]σ′(= tt) and B[b2]σ = B[b2]σ′(= tt). Then B[b1∧ b2]σ′ = tt, by definition
of the semantics function. We conclude to B[b1 ∧ b2]σ = B[b1 ∧ b2]σ′ in this case.
Secondly, if B[b1]σ = ff or B[b2]σ = ff , by definition of the semantics function,
B[b1∧b2]σ = ff . Moreover, as B[b1]σ = B[b1]σ′ and B[b2]σ = B[b2]σ′ (according to our
induction hypothesis), we have that B[b1]σ′ = ff or B[b2]σ′ = ff . Then, by definition
of the semantics function, B[b1 ∧ b2]σ′ = ff . We conclude to B[b1 ∧ b2]σ = B[b1 ∧ b2]σ′

in this case too.
As the conclusion holds in both cases, it holds in general: B[b1 ∧ b2]σ = B[b1 ∧ b2]σ′.

We adapt the statement for BExp:
In the definition of boolean expressions in the lecture, expressions a1 = a2 and a1 ≤ a2 play
the role of boolean variables of this exercise: they are atomic expressions whose ’meaning’
(i.e. value associated by the semantics function B) can change. Hence, if we want to
characterize the states for which meanings of boolean expressions of BExp coincide, we
have to impose that states give the same meaning to arithmetic expressions. We proved in
exercise 2 that if we impose on states to coincide on variables in V ar, then states give the
same meaning to arithmetic expressions.

2


