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ABSTRACT
Security arguments were one of SHA-3 competition requirements.
Indeed, most of the second round candidates provide indifferen-
tiability proofs of their constructions. In this paper, we propose a
general framework for proving indifferentiability of hash functions.
Indeed, we propose a generic simulator design and a generic way
to compute a bound of the indifferentiability from a random oracle
of constructions using this simulator. The general bound provided
by our theorem is relevant, as we show in two examples of its ap-
plication, on chopMD and the sponge constructions. This work
participates to the effort of formalization and unification of secu-
rity proofs, to enable their verification and increase confidence in
the guarantees they provide.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs

General Terms
Security, Verification

Keywords
Indifferentiability, Hash Constructions,

1. INTRODUCTION
Motivation. As a keystone of the design of secure and reliable

systems, the security guarantees provided by cryptographic primi-
tives must be precisely appraised. Of course, the strategy consist-
ing in the systematic attack of constructions keeps helping to fulfil
better security goals. Nevertheless, repeatedly unsuccessful attacks
are not deemed sufficient to certify any cryptographic design any-
more. Indeed, provable security proposes a mathematical approach
to security which is nowadays widely adopted. This global ten-
dency is confirmed by the requirements imposed by NIST on can-
didates for the SHA-3 competition, aiming at the selection of a new

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

hash function to augment the Secure Hash Standard. Submissions
were invited to include “any security argument that is applicable,
such as a security reduction proof”.

As far as cryptographic hash functions are concerned, the no-
tion of indifferentiability of a random oracle is a currently well-
admitted security criterion. Initially introduced by Maurer et al.
in [22], the concept of indifferentiability was then publicized and
tailored to suit hash designs in [14]. It is based on the acknowl-
edgement that these functions are generally built as two-tier con-
structions. Inner-primitives are designed (e.g. blockciphers), which
should output bitstrings looking random to an outsider. They have
fixed input and output sizes. However, a lot of cryptosystems rely
on the ability to compute hash values for inputs of any size, or at
least up to a very large length (e.g. 264 bits). To address this, hash
designers use iteration based hash constructions (also called hash
designs) to enable domain extension. Indeed, they split the global
input to be hashed into several chunks and use them successively
to compute fixed length inputs to be fed to the inner-primitive. The
most popular domain-extension technique was proposed indepen-
dently by Merkle in [24] and Damgård in [15].

Intuitively, the idea behind indifferentiability of a random ora-
cle is to compare two idealized systems based on the actual hash
construction. On the one hand, the hash design when plugged on
random fixed input length inner-primitives yields the first system.
On the other hand, the second system consists of a random oracle
playing the role of the hash function and a simulator in place of the
inner-primitives. The hash design is said to be indifferentiable from
a random oracle as soon as there exists a simulator such that both
systems are indistinguishable. The difficulty to elaborate a good
simulator lies in the fact that the simulator does not have access to
the random oracle memory. As a result, an adversary trying to dis-
tinguish both systems can issue a query to the random oracle, with
the simulator being none the wiser. It is thus delicate for a simu-
lator to mimic the real-world consistency between inner-primitive
queries.

Related work and contributions. Though some flaws in the in-
differentiability security notion have been highlighted in [25], this
criterion remains a standard security goal to be achieved by hash
functions. Roughly, it allows to track down structural design weak-
nesses allowing generic attacks. Therefore, following Coron et al.
in [14], a lot of effort has been devoted to developing concrete se-
curity proofs of indifferentiability. Numerous SHA-3 candidates
which have been proposed have benefited of such a proof, amongst
which JH in [10], Grøstl in [1], Shabal in [11], Keccak in [7]. The
problem is though, as it is the case for public-key cryptography, that
while hash designs increase in number and complexity, their secu-
rity proofs become more and more involved and difficult to check.
To address this issue, a first possibility is to aim to broaden our view
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of what is required to ensure indifferentiability (e.g. [20]). In this
respect, Dodis et al. [18] propose for example a new security no-
tion, preimage-awareness, and show it to be a sufficient condition
for indifferentiability.

In a slightly different approach, our ambition is to provide a
framework and a generic simulator, along with a macro-theorem
to compute an indifferentiability bound, instead of proving every
novel construction from scratch. This work is not the first to aim to
address the lack of unified provable security infrastructure in which
to carry out indifferentiability proofs. It follows in the steps of
Chang et al. who provide in [12] generic proofs for respectively
most popular prefix-free padding designs, Bhattacharyya et al. who
propose in [9] a generic simulator and a list of events to optimally
bound indifferentiability of a certain number of domain extenders,
Shabal designers who set formal definitions of graph-based proofs
and present their proof of Shabal as a roadmap to carry out others
in [11]. A similar procedure is followed in Bhattacharyya et. al in
the proof of JH [10].

We propose a way to formalize the two-tier structure composed
of hash designs and inner-primitives they are built on top of. It cap-
tures all designs we are aware of, e.g. the SHA-3 finalists JH [26],
Grøstl [21], Keccak [8], Skein [19] and BLAKE [2], Shabal [11],
the EMD transform [5], HMAC and NMAC modes [4]... Our def-
inition generalizes that of generic domain extenders proposed by
Bhattacharyya et al. in [9] since it allows post-processing and mul-
tiple inner-primitives. After that, we provide a generic simulator
inspired from [9] and the numerous examples put to use in the
proofs mentioned above. In addition to being usable in a more
general setting, our simulator description features a detailed spec-
ification of the underlying graph. Then, we show that a series of
bad events can prevent the simulator from ensuring consistency ex-
isting between real-world hash values and inner-primitives results.
Not content with listing these four events, we group them together
and characterize them as events on a real-world counterpart of the
simulator graph. This enables us to state a theorem proposing a
generic simulator and a generic bound of the indifferentiability of
a construction and the simulator.

On the way to establishing the theorem, we highlight a particular
feature (namely a partial-injectivity property) that the hash con-
structions should meet in order for the theorem bound to be signif-
icantly low. This is useful in two aspects. First, it provides insight
on properties that designs should achieve to be minimally safe. Sec-
ondly, as the context of use of the theorem is large, the condition
steers the attempts of theorem users to massage their hash construc-
tion in order to obtain an interesting bound.

Eventually, we show on two examples that the bounds provided
by our theorem are relevant: for the chop solution, we achieve the
same result as Maurer and Tessaro in [23] in case of prefix-free
padding and a better bound than that of Chang and Nandi in [13]
in the general case. Moreover, the application of our result on the
sponge construction (underlying the Keccak design) highlights the
lack of an additional term in the bound provided by Bertoni et al.
in [7], as was anticipated but not justified by Bresson et al. in [11].

Outline. In the next section, we introduce our formalization
of oracles, adversaries and propose a generic definition to cap-
ture hash designs. It allows us to formally define indifferentiability
within our framework. In section 3, we detail the construction of a
generic simulator and the graph it is based on in a slightly restricted
context. We then define characteristic graphs, real-world counter-
parts of the simulator graph, and show how they can be used to
capture events of bad simulation. After stating our theorem, exam-
ples of application appear in section 4. We generalize in section 5
our theorem to an unrestricted context.

2. DEFINITIONS AND NOTATIONS
Mappings. Given a mapping f from A to B, a ∈ A and b ∈ B,

we denote by f.(a, b) the mapping g such that if a is in the domain
of f then g = f , otherwise g is such that g(a) = b and for any
x ∈ A, x 6= a, g(x) = f(x). A memory is a mapping from a finite
set of variables to values.

Lists. Given a setA, we denote byA∗ (resp. A+) the set of finite
lists with elements in A (resp. non-empty finite lists). The empty
list is denoted by [ ]. The append to the right of an element a ∈ A to
a list L ∈ A∗ is denoted by L : a. The selective append of a to L,
denoted by L.a, is defined by L.a = L, if a ∈ L and L.a = L : a,
otherwise. Given an indexed set A = (ai)i∈N, and an index set I,
[ai]i∈I denotes the list of elements ai for i ∈ I . We denote by Πi

the i−th canonical projection, i.e. ∀i = 1..n,Πi((e1, . . . , en)) =
ei. Moreover, dom(L) denotes the set {Π1(a)|a ∈ L}, and L(a)
is the set of elements of L with first component a.

Strings. Given a bitstring w, |w| denotes the length of w. For
s ≤ |w|, Lasts(w) and Firsts(w) denote the suffix of w, respec-
tively its prefix, of length s. For 1 ≤ m ≤ n ≤ |w|, w[m,n]
denotes the substring of w starting with its m-th bit and ending its
n-th bit. The concatenation of two bitstrings x and y is denoted by
x||y. A string of length 0 is denoted by λ.

Misc.. Given an integer x, dxe denotes the ceiling of x. We use
1 to denote the unit type. Symbol δϕ(x), where ϕ(x) is a boolean
condition depending on x evaluates to 1 if ϕ(x) holds and 0 oth-
erwise. Given a finite set A, the uniform distribution over A is
denoted by UA, the set of subsets of A is written P(A), and the
number of elements of A is denoted as |A|. Partial functions are
denoted by

part−→.

2.1 Formalization of Oracles and Adversaries
Following [3], we use oracle systems to describe cryptographic

schemes. An oracle system is a set of stateful oracles.

DEFINITION 1. An oracle system O is given by:
• a finite set NO = {O1, · · · ,On} of oracles with a distin-

guished oracle oF ∈ NO, the finalization oracle.
• for each oracle Oi, a countable set Mi of oracle memo-

ries (states) and an implementation Imp(Oi)Oj1
,··· ,Oji :

In(Oi) × MO −→ D(Out(Oi) × MO), where In(Oi) and
Out(Oi) are finite sets, called the query domain and the an-
swer domain of Oi, respectively, and MO = M1 × · · · ×
Mn. The notation Imp(Oi)Oj1

,··· ,Oji means that the im-
plementation Imp(Oi) of Oi has exclusive access to mem-
ories in

∏
k∈[1..n]−{j1,...,ji}Mk. However, while executing

Imp(Oi), the oracles Oj1 , · · · ,Oji may be called, which
causes reading and writing in Mj1 , · · · ,Mji .

Given a function k : {j1, · · · , ji} → N and t ∈ N, we
say that Imp(Oi)Oj1

,··· ,Oji is (k, t)-bounded, if one of its
executions makes at most k(jm) calls to Ojm and takes at
most time t.
• m̄O∈MO is the initial memory.
• we require that In(oF) = {true, false} and Out(oF)=1.

EXAMPLE 2.1. Consider the hash function ChopMD introduced
in [14] and inspired of [17]. It is obtained from the Merkle-Damgård
construction by chopping off the last s bits of the output in order
to prevent extension attacks, i.e. the ability of an adversary to find
the hash of a long message out of the hash of one of its prefixes.
This construction can be described as an oracle system that con-
tains two oracles: ChopMDs and F . The memory of ChopMDs
consists of a mapping Lchop and that of F of a mapping LF . Their
implementations are described in Figure 2.1 using an imperative
notation.
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Oracle ChopMDs

In(ChopMDs) = {0, 1}≤264

, Out(ChopMDs) = {0, 1}n−s
Imp(ChopMDs)

F (x) =
if x ∈ dom(Lchop) then
return Lchop(x)

else
l := d|x|/re;
w := x||10l∗r−|x|−1;
(w1, . . . , wl) := (w[1, r], . . . , w[r ∗ (l − 1) + 1, r ∗ l]);
a0 := 0n;
for j = 1 to l do
qj := aj−1||wj ;
aj ← F(qj);

endfor
af := Firstn−s(a

l);
Lchop := Lchop.(x, a

f );
return af

endif

Oracle F
In(F) = {0, 1}n+r, Out(F) = {0, 1}n
F(q) =
if q ∈ dom(LF ) then
return LF (q)

else
a← U{0,1}n ;
LF := LF .(q, a);
return a

endif

Figure 1: ChopMD Implementation

Two oracle systems O and O′ are said to be compatible iff they
have the same set of oracles, with same query and answer domains.
Compatible systems can however differ in the implementations and
memories. We therefore use the notation ImpO(Oi) and ImpO′(Oi)
for implementations in O and O′, to be able to distinguish them.

Consider an oracle system O. Adversaries interact with oracle
systems by making queries, and receiving answers. Such an inter-
action produces an exchange (for an oracle system O), which is a
triple (O, q, a) where O ∈ NO, q ∈ In(O) and a ∈ Out(O). Let
Xch denote the set of exchanges. Final exchanges are of the form
(oF,−,−), i.e. queries to the finalization oracle. The set of final
exchanges is denoted by XchF. The sets Que of queries and Ans of
answers are, respectively, defined by Que = {(O, q) | (O, q, a) ∈
Xch} and Ans = {(O, a) | (O, q, a) ∈ Xch}, while for a partic-
ular oracle Oi, Que(Oi) (resp. Ans(Oi),Xch(Oi)) only contains
elements of Que (resp. Ans,Xch) starting with Oi.

DEFINITION 2. An O-adversary A is given by a countable set
MA of adversary memories, an initial memory m̄A ∈ MA and func-
tions for querying and updating:

A : MA
part−→ D(Que×MA)

A↓ : Xch×MA → D(MA)

Informally, the interaction between an oracle system and an adver-
sary starts from the initial memory (m̄A, m̄O). Using A, A com-
putes a query to O and updates its memory. Upon receiving a query,
O updates its memory and replies to A, which in turn updates its
memory. This goes on until A calls the finalization oracle. We
formalize this interaction as the execution of a transition system,

defined below.

DEFINITION 3. A transition system T S consists of:
• a (countable non-empty) set M of memories (states), with a

distinguished initial memory m̄;
• a set Σ of actions, with a distinguished subset ΣF of finaliza-

tion actions;
• a (partial probabilistic) transition function st : M

part−→ D(Σ×
M).

A partial execution sequence of T S is a sequence η of the form

m0
X1−→ m1

X2−→ . . .
Xk−→ mk such that m0 = m̄,Xi ∈ Σ,

mi−1,mi ∈ M, and Pr[st(mi−1) = (Xi,mi)] > 0, for i =
1, . . . , k. If k = 1, then η is a step. IfXk ∈ ΣF ormk 6∈ dom(st),
then η is an execution sequence of length k. A probabilistic transi-
tion system T S induces a sub-distribution on executions, denoted
T S, such that the probability of a finite execution sequence η is

PR[T S = η] =

k∏
i=1

PR[st(mi−1) = (Xi,mi)]

A transition system is of height k ∈ N if all its executions have
length at most k; in this case, T S is a distribution.

DEFINITION 4. Let O be an oracle system and A be an O-
adversary . The composition A | O is a transition system such that
M=MA ×MO, the initial memory is (m̄A, m̄O), the set of actions
is Σ=Xch, and ΣF =XchF, and

stA|O(mA,mO)
def
= ((O, q),m′A)← A(mA);

(a,m′O)← O(q,mO);
m′′A ← A↓((O, q, a),m′A);
return ((O, q, a), (m′′A,m

′
O))

Let k : NO → N. An adversary is called k-bounded, if for every
O ∈ NO, the number of queries to O in every execution of A | O
is not greater than k(O). An adversary is called bounded, if it
is k-bounded for some k. Thus, k bounds the number of oracle
calls that can be performed by an adversary. To meaningfully state
security properties of oracle systems, we do not only need to bound
the number of oracle calls but also the adversary’s global running
time. Therefore, we rather consider bounds of the form (k, t) ∈
(NO → N) × N and talk about (k, t)-bounded adversaries, whose
set we denote Adv(k, t).

Security properties abstract away from the state of adversaries,
and are modeled using traces. Informally, a trace τ is an execution
sequence η from which the adversary memories have been erased.

DEFINITION 5. Let O be an oracle system.

• A partial trace is a sequence τ of the form m0
X1−→ m1

X2−→
. . .

Xk−→ mk, where m0, . . . ,mk ∈ MO and X1, . . . , Xk ∈
Xch such that for i = 1, . . . , k and Xi = (Oi, qi, ai),
Pr[Oi(qi,mi−1) = (ai,mi)] > 0. A trace is a partial trace
τ such that m0 = m̄O and Xk = (oF, _, _).
• An O-event E is a predicate over O-traces, whereas an ex-

tended O-event E is a predicate over partial O-traces.

We say that two finite partial traces τ1 and τ2 are concatenable
traces, denoted τ1 :: τ2, iff the last memory involved in τ1 is the
first involved in τ2.

The probability of an (extended) event is derived directly from
the definition of A | O: since the fact that each execution sequence
η ∈ Exec(A|O) induces a trace T (η) simply by erasing the adver-
sary memory at each step, one can define for each trace τ the set
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T −1(τ) of execution sequences that are erased to τ , and for every
(extended) event E the probability:

PR(A|O : E) = PR(A|O : T −1(E))
=

∑
{η∈Exec(A|O)|E(T (η))=true} PR(A|O : η)

In the sequel, we will consider functional oracles that respond
with the same answer to a query asked multiple times. Formally, we
say that an oracleO of O is functional and distributed asO∗, if 1.)
every memorym ∈ MO contains a variable LO that takes values in
Xch(O)∗, 2.) m̄O.LO is the empty list and 3.) the implementation
ofO is as follows, whereO∗(x) is a distribution on OutO (possibly
depending on input x):

Imp(O)(x) = if x ∈ dom(LO) then return LO(x)
else y ← O∗(x); LO := LO.(x, y); return y
endif

2.2 Hash construction indifferentiability
Cryptographic hash functions are usually built out of a set of

functions, called inner-primitives, that are applied successively to
blocks that constitute the input message. While the hash function
is supposed to take as input messages of any length and produce a
hash of a fixed length, the inner-primitives have fixed input/output
length. Therefore, hash functions are based on so-called domain
extenders [24, 15], that specify how the input message is split into
blocks and how the inner-primitives are applied to the current block
and the previous inner-primitive outputs.

In [9], a formal definition for domain extenders is presented
Though applicable to several known constructions, this definition
suffers from the fact that it does not capture constructions that in-
clude a post-processing function. Such a function is used to com-
pute the global hash result out of the multiple inner-primitive out-
puts. Another limitation is that it does not deal with the case of mul-
tiple inner-primitives. For instance, the Chop [14] and Grøstl [21]
constructions are out of scope of this definition. Therefore, we pro-
pose a new definition based on the notion of overlayer that allows
us to capture all hash functions based on domain extenders we are
aware of. A hash construction can then be described as an overlayer
applied to an oracle system, where this latter defines the inner-
primitives. The definition of overlayers exploits the fact that in
all known hash designs the order in which the inner-primitives are
called is input independent. In other words, the sequence of calls
of inner-primitives generated by every hash input is the prefix of a
statically known finite sequence [O1, . . . ,OL] of inner-primitives.

DEFINITION 6. Consider an oracle system O with oracles in
NO. An O-overlayer h is a tuple (InH,OutH, [O1, . . . ,OL], init,Θ,
(Hj)j∈{1..L},Hpost, Indpost) where:
• InH and OutH are finite sets of bitstrings defining query and

answer domain of the hash design.
• [O1, . . . ,OL] is the statically known sequence of oracles

in NO, which describes the order in which the oracles are
queried.
• init : InH → [1,L] outputs the number of oracle calls nec-

essary for computing the hash of x. Notice that init(x) de-
termines the exact sequence of these calls. Indeed, for com-
puting the hash of an input x, this sequence is the prefix of
[O1, . . . ,OL] of length init(x). We require that for any x, x′,
Oinit(x) = Oinit(x′), which we denote by O`ast.
• Θ : InH → ({0, 1}≤r)+: Θ(x) = (θ1(x), . . . , θinit(x)(x))

where θj(x) is the function of the input used to compute the
j-th query to oracle Oj . It usually consists in r-blocks of the
padded input x. We suppose that Θ is injective.

• functions H1 : {0, 1}≤r → In(O1) and Hj : {0, 1}≤r ×
Xch→ In(Oj) for j ≥ 2 compute the j-th query performed
byH using θj(x) and when j ≥ 2 the previous step exchange
with oracle Oj−1.
• Hpost : InH × Xch∗ → OutH and Indpost : InH →

P([1,L]): Hpost(x, [Q]k∈Indpost(x)) is the hash of x, ifQ =

(Ok, qk, ak)k∈[1,init(x)] is the list of exchanges generated by
the Hj functions for x.

The set of O-overlayers is denoted by O-OverL.

DEFINITION 7. The composition of an O-overlayer h with O
defines an oracle system which contains the oracles of O aug-
mented with the overlayer oracleH given by:
• the memoryLH of oracleH is a mapping from InH to OutH×

Xch∗; its initial value is the empty mapping;
• The implementation of oracleH is:

Imp(H)O
1,...,OL

(x) = if x ∈ dom(LH) then
return LH(x)

else
l := init(x);
(x1, . . . , xl) := Θ(x);
(O1, q1) := H1(x1);
a1 ← O1(q1);
Q := [(O1, q1, a1)];
for j = 2 to l do

(Oj , qj) := Hj(xj , (Oj−1, qj−1, aj−1));
aj ← Oj(qj);
Q := Q : (Oj , qj , aj);

endfor
af := Hpost(x, [Q]k∈Indpost(x));

LH := LH.(x, a
f , Q);

return af

endif

EXAMPLE 2.2. The oracle system chopMD can be seen as the
application of an overlayer to F . The statically known list of or-
acles is the list of length d 264

r
e whose elements are the oracle F ,

init(x) = d|x|/re, Θ(x) is the function padding x into w and then
cutting it into r-blocks, Hj(x, (F , qj−1, aj−1)) = aj−1||xj , and
finally Hpost(x, (F , q, a)) = Firstn−s(a). Eventually, Indpost(x) =
{init(x)}, since the only exchange used by Hpost is the last one
performed during an execution of ChopMDs.

EXAMPLE 2.3. The sponge construction [6] relies on an in-
ner primitive F , which is a random function from {0, 1}r+c into
{0, 1}r+c, where r is the length of blocks parsed during prepro-
cessing. The output size is parameterized by an integer we denote
K. While the general design deals with any possible K, in the se-
quel we assume for sake of simplicity that K = kr, and refer the
readers to [6] for more details. The sponge algorithm comprises
two phases: firstly, the input is padded using Padsp, an injective,
easily computable and invertible padding function outputting a bit-
string x1|| . . . ||xp of length p ∗ r. Then, the algorithm iteratively
applies a bitwise xor operation to xj and the first r-block of the pre-
vious answer fromF to compute its next query. Secondly, it queries
F k times more to get a collection of answers (ap+1, . . . , al). The
final output is then obtained by concatenation of the first r bits
of each aj: Firstr(a

p+1)|| . . . ||Firstr(al). The implementation is
provided in Figure 2.2.

The sponge hash oracle results from the composition of an over-
layer to F . As a bound Lsp, we choose as previously d 264

r
e. Func-

tion initsp is precised in Figure 2.2, as long as a formula for the in-
dex pmarking the last step of the first phase of the computation. We
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just write l and p for these integers in what follows. On top of that
we have Hpost(x, [(qj , aj)]j∈[p+1,...,l]) = Firstr(a

p+1)|| . . . ||Firstr(al),
which allows to precise Indpost = {p + 1, . . . , l}. We define
Hj(α, (F , qj−1, aj−1)) by (α||0c⊕aj−1). Moreover, we let θj(x) =
xj for j ∈ {1..p}, and θj(x) = λ for j ∈ {p + 1..l} (p and l de-
pend on input x).

In(Sponge) = {0, 1}≤264

, Out(Sponge) = {0, 1}K
Imp(Sponge)(x) =
if x ∈ dom(Lsp) then
return Lsp(x)

else
l := initsp(x);
w := Padsp(x);

p := |w|
r

;
(x1, . . . , xp) := (w[1, r], . . . , w[r ∗ (p− 1) + 1, r ∗ p]);
for j = 1 to p do
qj := (xj ||0c)⊕ aj−1;
aj ← F(qj);
Q := Q : (qj , aj);

endfor
for j = p+ 1 to l do
qj := aj ;
aj ← F(qj);
Q := Q : (qj , aj);

endfor
af := Firstr(a

p+1)|| . . . ||Firstr(al);
Lsp := Lsp.(x, a

f , Q);
return af

endif

where initsp = p+ k, with p = d|x|/re+ δLastr(x)=0r (the design
specifies that Padsp(x) should not end with 0r), and where k ∗ r is
the length of the output of the sponge construction.

Figure 2: Sponge Implementation

Indifferentiability of hash designs can be seen as a notion com-
paring an oracle system composed with a matching overlayer and
an idealization of the overlayer. The idealization usually used is
that of an independent random oracle. We denote by UH the oracle
system where H is the functional oracle distributed as the uniform
distribution on OutH.

DEFINITION 8. Consider an oracle O and an O-OverL h. The
system (HO,O) defined by the composition of h with O is said to
be indifferentiable from its idealization UH, if there is an oracle
set SUH that is (ks, ts)-bounded and such that the oracle systems
(HO,O) and (UH, SUH) are compatible and ε-indistinguishable,
for any adversary A ∈ Adv(k, t), Indiff(H,O, S) ≤ ε(k, t),
where Indiff(H,O, S) denotes

|Pr[A|(HO,O) : true]− Pr[A|(UH, SUH) : true]|

The oracle set S of this definition is usually refered to as the
simulator. It is not a stand-alone oracle system, since it requires
access to UH to compute its outputs.

3. A GENERIC SIMULATOR FOR HASH DE-
SIGNS BASED ON RANDOM FUNCTIONS

3.1 Particular inner-primitives
We can distinguish three categories of oracle systems O on top

of which hash constructions are built. The first case is when O
only contains independent oracles. Then, no component of state is
shared between any oracles of the system and no intern querying is
allowed. Therefore, oracle Oi can only modify its own component
of state Mi, but no other component, not even through querying
another oracle of the system. The other possibility is that some
oracles in the system depend on each other. We separately study
two kinds of dependencies: dependency via query and dependency
via shared memory. We choose the first situation as a starting point
to build and expose our generic approach.

In this section, we consider a given hash design using a set of
independent inner-primitives. The construction is modeled by an
overlayer h applied to an oracle system O. Our goal is to provide
a proof that the overlayer oracle H is indifferentiable from oracle
UH when O implements independent random functions. Formally,
we denote UO the oracle system compatible with O, such that any
oracle Oi of the system is functional and distributed as UOuti . We
must then provide an implementation for a generic simulator and
a way to compute a bound to the probability of distinguishing be-
tween the original system (UO,HUO) and its simulated counterpart
(SUH ,UH). We recall that the simulator has the same set of ora-
cles that O; we thus provide implementations for all oracles in O.
It could be the case that some of the oracles in O do not appear in
the overlayer static sequence of oracles to call. In such a case, it is
obvious that the oracle in the real and simulated world can be im-
plemented in the same way. As a result, we suppose that all oracles
in O do appear in the overlayer sequence.

3.2 Defining a simulator
When designing a simulator, one must be careful to preserve de-

pendencies between oracles of O and the overlayer oracle H. In-
deed, any inconsistency potentially allows the attacker to distin-
guish between the real and simulated world. In particular, if an
equality holds in the real world and can be efficiently checked by
the adversary, then the simulator has to contrive it to hold as well.
A well-known example of such a situation is the following: the ad-
versary can compute a hash value for x on its own, say h1, using
the oracles in O, and then verify the result by querying H and ob-
taining h2. If the simulator does not detect such trials, it is very
likely that equality between h1 and h2, while holding in the real
world, is not verified in the simulated world.

A first idea is to provide simulator with a way to represent de-
pendencies between O-queries with respect to H-queries. We are
interested in depicting what we call request chains, that is to say,
lists of exchanges with oracles in O corresponding to sequences of
requests of use to the computation of some hash value. To do that,
graphs appear to be well-suited data structures. They constitute our
point of departure.

DEFINITION 9. A simulator graph G = (vroot, V, E) is given
by:
• a root vroot,
• a finite vertex set V ⊆ Xch,
• a labeled edge setE ⊆ (V ∪vroot)×({1..L}×{0, 1}≤r)×
V such that:

1. for all (Oj−1, q, a), (Oj , q′, a′) ∈ V (with j ≥ 2), for
all (j, xj) ∈ {1..L} × {0, 1}≤r ,
((Oj−1q, a), (j, xj), (Oj , q′, a′)) ∈ E if and only if
q′ = Hj(xj , (Oj−1, q, a)),

2. for all (O1, q, a) ∈ V , (vroot, (1, x1), (O1, q, a)) ∈ E
if and only if q = H1(x1).
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The set of simulator graphs is denoted by SG, and we define
the initial simulator graph Ginit = (vroot, {vroot}, ∅). We now
provide a few useful definitions related to paths in this graph.

DEFINITION 10. A rooted path is a path starting with vertex
vroot. A vertex is rooted whenever it belongs to a rooted path. A
meaningful path is a rooted path such that if [(1, x1), . . . , (L, xL)]
is the list of labels on the sequence of edges, then there exists x such
that ∀j = 1..L, θj(x) = xj . Such a path is said to be complete
when L = init(x). Bitstring x is then said to label the complete
meaningful path to which it corresponds.

Intuitively, we want to catch the attempts of the adversary to
build a request chain which it could use to effictively compare a
hash value built on its own with the result of a query to H. The
expression ’last query of a hash value’ is a shorthand that we use to
name the last query to be performed to O during the computation
of a hash value in the real setting. First, let us acknowledge that
in most hash constructions, on the one hand, it is difficult for an
adversary to compute a hash value without querying for its match-
ing last query. On the other hand, it is difficult to perform this last
query without having performed before every other query of the
real chain of requests used to compute the hash result. Therefore,
a strategy to outsmart the adversary consists in trying to identify
potential last queries when they are asked to O.

To do so, we can use the graph: if the adversary has asked all
queries but the last necessary to build the hash value for a given
x, then when last query q is performed, there exists a rooted path
in the simulator graph to which q can be linked as the last vertex.
This would require an update of the graph by the simulator at every
query this latter receives. To describe such an update process, we
begin by defining the following function.

DEFINITION 11. We let E : V × V → P((V ∪ vroot) ×
({1..L}×{0, 1}≤r)×V ) be the function mapping a pair of vertice
(v, v′) to the (possibly empty) set of edges linking v to v′.

DEFINITION 12. A simulator graph update function updG is
a function which, on input an exchange (O, q, y) and a simulator
graph G = (vroot, V, E), outputs the simulator graph G′ given
by:
• V ′ = V ∪ {(O, q, y)};
• E′ = E∪{E((O, q, y), v), v ∈ V }∪{E(v, (O, q, y)), v ∈
V ∪ vroot}.

Assuming that there exists a bound tE of the execution time of
E independent of its inputs, the time required to update a graph G
containing α vertice is bound by 2αtE . This is a safe assumption
in the sense that the number of edges that can exist between two
vertice is finite. That being said, a simulator taking a very signifi-
cant amount of time to update its graph is not very interesting. We
discuss this in more details after specifying the simulator.

To put to work the simulating strategy suggested above, we need
an algorithm which, on input a graph and a query, identifies a rooted
path rendered complete by this query when it exists, and in such
a case provides the complete path and the hash input labeling it.
Such an algorithm is called a path-finder. Intuitively, it should have
a non-trivial output as soon as there exists a satisfactory path, and
any non-trivial output ofP should indeed correspond to a satisfying
answer.

DEFINITION 13. A path-finder algorithm P takes as input a
potential last query q ∈ InO`ast and a simulator graph G. Its
output is either triple (false, λ, [ ]), or triple (true, x, List), with
(x, List) ∈ InH × V ∗ such that:

1. if for any answer y to q, there exists in the updated graph
updG((O`ast, q, y), G) a complete meaningful path then we
have P(q,G) 6= (false, λ, [ ]).

2. ifP(q,G) = (x, [(O1, q1, y1), . . . , (Ol−1, ql−1, yl−1)]) then
for any answer y to q, there exists in the updated graph
updG((O`ast, q, y) , G) a complete meaningful path going
(in this order) through (Oj , qj , yj)j=1..(l−1) and (q, y) and
labeled by x.

We assume that the execution time of the path-finder algorithm
is bound by a time tP(α), where α is the number of vertice in the
input graph. We can safely assume that this time grows with α.
To provide a more precise estimation of the execution time, we can
consider the following rough specification for the path-finder. It
first proceeds to the a graph update with vertex (q, λ) and edges in
E(v, (q, λ)) for vertice v in its input graph. This yields a bound
of time of αtE for this operation. Then, the path-finder searches
for a path in the resulting graph, taking a time assessed as O(α2).
Eventually, it has to find the value of x labeling the future complete
path, which requires to invert Θ in some time tΘ.

In the event that P outputs some bitstring and request chain
(x, [v1, . . . , vinit(x)−1]), it must influence the answer y provided
by the simulator to match a query q. Indeed, we have pointed out
that the simulator must enforce equality between the hash value
for x and the post-processing applied to the full request chain.
If we denote vinit(x) = (O`ast, q, y), we would like to guarantee
Hpost(x, [vj ]j∈Indpost(x)) = H(x) in the simulated world. When
H is modeled as the oracle system UH, the only way to compute the
value for t = H(x) is to query the random oracle on x. After that,
we would have to provide the simulator with a sampling algorithm
to find a value for y such that the equation holds.

For a given value of t0, there is a set of values y such that
Hpost(x, [vj ]j∈Indpost(x)) = t0, which we denote PreIm(t0).
Notice here that if we have specified the overlayer such that OutH
is larger than the actual range of H, some sets PreIm(t0) are
empty. In the sequel we suppose that OutH is the range of H, so
that for all t0, PreIm(t0) contains at least one element. To choose
one value out of this set of solutions and preserve the original dis-
tribution of pairs (y, t), we define distribution H−1

post(x, List, t0, q)
such that for every y0 ∈ PreIm(t0), we have:

Pr[H−1
post(x, List, t0, q) = y0] =

Pr[y←UO`ast
:y=y0]

Pr[UH=t0]

Since the numerator does not depend on y0, we thus consider
the uniform distribution on PreIm(t0). We choose to denote the
algorithm sampling in PreIm(t0) like the distribution. We assume
that the execution time of this algorithm is upper bounded by time
tpost, which is independent of inputs.

DEFINITION 14. The generic simulator S is a set of oracles
compatible with O. These oracles have memories (LS , G) ∈ Xch×
SG, and the initial memory m̄ of a system containing the simulator
is chosen so that m̄.(LS , G) = ([ ], Ginit). Moreover O`ast is
implemented as follows:

ImpS(O`ast)H(q) = if q ∈ dom(LS) then
return LS(q)

elsif P(q,G) 6=⊥ then
(x, List) := P(q,G);
t← H(x);
y := H−1

post(x, List, t, q);
else y ← UO`ast ;
endif
G := updG((O`ast, q, y), G);
LS := LS .(O`ast, q, y);
return y
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This implementation is (ks, ts)-bounded, where ks(O) = δO=H,
and ts = 2αtE + tpost + tP(α) with α a bound of the number of
vertice in G. For any O 6= O`ast in NO, the simulator implemen-
tation is:

ImpS(O)H(q) = if q ∈ dom(LS(O)) then
return LS(O, q)

else y ← UO;
endif
G := updG((O, q, y), G);
LS := LS .(O, q, y);
return y

This implementation is (0, t′s)-bounded, where t′s = 2αtE with
α a bound of the number of vertex in G.

This simulator works completely independently of the fact that
an update might result in E creating a great number of edges be-
tween two given vertice of the simulator graph. However, we notice
that if it is possible that the path-finder can answer two distinct hash
inputs x, x′ corresponding to meaningful paths, the simulator can
only anticipate the adversary query for one of these inputs toH. As
a consequence, we highlight that the following partial-injectivity
hypothesis rather be satisfied by applications Hj .

DEFINITION 15. For j ≥ 2, function Hj : {0, 1}≤r × Xch →
In(Oj) is partially injective iff given (q, a) and q′ there exists a
unique u 6= λ such that Hj(u, (Oj−1, q, a)) = q′. Similarly, H1 :
{0, 1}≤r → In(O1) is partially injective iff given q′, there exists a
unique u 6= λ such that H1(u) = q′.

Besides, this hypothesis allows to bound quite accurately the ex-
ecution time of the simulator since E can create a maximum of
2 ∗ L edges between two vertice.

We stress that the partial injectivity assumption holds for both
examples we have presented in the previous section.

3.3 Bounding the indifferentiability advantage
Even though the path-finder can correct some obvious inconsis-

tencies, there are still cases in which it is not sufficient. When a last
query is made to the simulator, consistency can only be enforced if,
on the one hand, the path-finder can detect that it is a last query,
and on the other hand, there does not exist another value to which
the query is already bound. The first annoying event consists in
a query made to the inner primitive which is indeed going to be
a last query. Firstly, this can happen when the path-finder does
not detect being in presence of a last query. This occurs in case
all intermediate queries to the inner primitive have not previously
been performed, and the query is not visibly-rooted. Secondly, it
is also possible that our query becomes a last query after having
been asked directly, during a subsequent query to H. First possi-
bility is captured by event ULQ, for Undetected Last Query, while
the second event is called DQ-LQ for Direct Query-Last Query.
The second source of failure follows from a collision between two
last queries corresponding to different hash inputs, or between an
intermediate and a last query. These events are denoted SLQ, for
Same Last Query, and ILQ, for Intermediate and Last Query. They
correspond to those found in [9], which is not surprising this we
generalize this work.

We notice that the four events listed above can be visualized us-
ing the same kind of graph structure that we have defined for the
simulator. As a consequence, we adapt this latter to describe the
dependencies between O-queries. Thus, this new graph is built for
interactions involving the real setting (HO,O). There is an impor-
tant thing that our simulator graph definition does not capture: the

visibility of a vertex to the adversary. Indeed, if a vertex appears in
the graph as a result of a direct query to oracles in O, we should
consider the vertex as visible for the adversary. On the contrary, if
we consider a vertex appearing in the graph on behalf of interme-
diate queries, the adversary can only gather information about the
queries appearing in the final computation, namely, for exchanges
with an index in Indpost. These vertice are deemed partially visi-
ble to the adversary, while the remaining exchanges are considered
invisible. We take these elements into account in our definition for
a characteristic graph.

DEFINITION 16. A characteristic graph CG is defined by a tu-
ple (vroot, CV,CE,V) where :
• vroot, CV and CE are such that (vroot, CV,CE) ∈ SG
• V is a visibility map, which associates to every vertex in CV

a value in {V is, PV is, Inv} (standing for visible, partially
visible and invisible and are ordered this way).

The set of characteristic graphs is denoted by CG. We distinguish
a particular graph CGinit = (vroot, [ ], ∅,Vinit) with dom(Vinit)
= ∅ which we call the initial characteristic graph.

If we build a characteristic graph while the execution takes place,
updating it at each (direct or indirect) query of an oracle in O, we
notice that three of the bad events result in some kind of collision
in the graph. If a query is both intermediate and last query for
two hash inputs, it belongs to two distinct meaningful paths - note
that a loop on a vertex is possible. Likewise, two different hash
inputs with the same last query yield a collision between mean-
ingful paths. Moreover, event DQ-LQ results in the creation of an
edge between a meaningful path and a preexisting but not neces-
sarily rooted vertex. These three events can be merged into event
Collide corresponding to the issue of a query (O, q, y) creating a
collision between a meaningful path containing (O, q, y) and a ver-
tex of the updated1 graph. Finally, when an undetected last query
is performed, a meaningfully rooted vertex v from the non-visible
part of the graph becomes visible. Let P be the visible part of a
meaningful path from a root to vertex v, and let v′ be the head of P .
Of course, v′ is not linked to vroot by an edge, otherwise v would
be visibly rooted. Nevertheless, v′ is rooted, so that there exists
an edge from an non-visible rooted node to v′, first visible node of
path P . As a consequence, the probability of realizing event ULQ
is bounded by that of the adversary issuing a direct query to oracles
in O resulting in such a v′, an event we name Reveal.

We aim to express the bound to the indifferentiability of the hash
construction at hand in terms of the probability that these events oc-
cur. To enable this, we need to introduce a formal definition for the
sequence of characteristic graphs involved in an execution. To be
able to capture the occurence of Collide, we want this sequence to
contain every intermediate updated graph for intermediate queries
during a hash computation to be able to write our Collide event.
Since we already know how to compute probabilities of events on
traces, we choose to define a way to transform traces into charac-
teristic graph sequences. This in turn allows us to formalize events
expressed on graphs and their probabilities.

DEFINITION 17. A partial graph-trace is defined by a finite se-
quence CG0

v1−→ CG1
v2−→ . . .

vk−→ CGk of vertice vi and
characteristic graphs CGi = (vroot, CV

i, CEi,Vi) such that
(vroot, CV

i+1, CEi+1) = updG(vi, (vroot, CV
i, CEi)) and for

all v ∈ CV i,Vi+1(v) ≥ Vi(v).

Similarly to notations introduced for partial traces, partial graph-
traces τ1

G and τ2
G are concatenable as soon as last graph of τ1

G is the
1to take into account the possibility of creating a loop
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first appearing in τ2
G. It is denoted by τ1

G :: τ2
G. A graph-step is a

partial graph-trace of length 1. It does not necessarily correspond
to a step w.r.t. traces.

We can see any finite trace as the concatenation of a finite num-
ber of steps. Hence, if we have functions to transform steps into
partial graph-traces, we can use them as building blocks to define
a function mapping finite traces to partial graph-traces. There are
two kinds of actions which can be performed in a step, calls to or-
acles of O or calls toH. We define two distinct partial graph-trace
building functions to deal with the two possibilities. They take as
arguments a characteristic graph CG = (vroot, CV,CE,V), and
a list of exchanges with oracles in O and output the partial graph-
trace corresponding to the sequence of characteristic graphs created
by performing these successive calls to oracles in O.

DEFINITION 18. Let CG0 be a characteristic graph with vis-
ibility map V0, and v be a direct query to an oracle O in O and
its answer. The partial graph-trace building function for O calls is
defined as follows:
OTrBuilder(CG0, v) = CG0

v−→ CG1 where the visibility

map of CG1 is given by V1(v′) =

{
V0(v′) if v′ 6= v,
V0(v) = V is.

DEFINITION 19. We consider a characteristic graph CG0, a
query toH denoted x and the list [v1, . . . , vk] of exchanges with F
this query generates.

The partial graph-trace building function for H calls is given
by: HTrBuilder(CG0, x, [v1, . . . , vk]) = CG0

v1−→ CG1
v2−→

. . .
vk−→ CGk where, for i ∈ {0, .., (k− 1)} visibility map Vi+1 of

graph CGi+1 is defined as:

Vi+1(v) =

 V
i(v) if v 6= vi,

max(PV is,Vi(v)) if i ∈ Indpost,
max(Inv,Vi(v)) otherwise.

Using these definitions, we can proceed to the specification of
the function TrTransform mapping finite traces to partial graph-
traces. We choose to describe it using a an auxiliary function TrGr
turning every one-step partial trace into a partial graph-trace given
a characteristic graph as starting point. In case the step represents
an exchange with H, we need to use the list of exchanges with O
used to compute the output of H. We recall that LH stores triples
whose third component consist of these lists.

DEFINITION 20. Function TrGr transforms a step into a par-
tial graph-trace starting with characteristic graph CG as follows:
TrGr(m

X−→ m′, CG) ={
OTrBuilder(CG, (O, q, y)), if X = (O, q, y).
HTrBuilder(CG, x,Π3(m′.LH)), if X = (H, x, a).

DEFINITION 21. The trace transformer TrTransform is an ap-
plication that maps a trace of interaction with (F ,H) given by

m0
X1−→ m1

X2−→ . . .mk−1
Xk−→ mk to a graph-trace defined as

TrGr(m0
X1−→ m1, CGinit) :: . . . :: TrGr(mk−1

Xk−→ mk, CG),
whereCG denotes the last graph obtained by iteratively transform-
ing steps into partial graph traces until reaching memory mk−1 of
the trace.

We call graph-traces the images of traces by TrTransform. A
graph-event is a predicate EG over a graph-trace. To compute
its probability, we have to give the proper weight to graph-traces
which satisfy EG . This is done by taking into account all the exe-
cutions of all the traces which map to a given graph-trace.

DEFINITION 22. Let EG be a graph-event. Its probability is
given by:

PR(A|O : EG) =
∑

{η∈ExecSet}

PR(A|O : η)

where ExecSet = {Exec(A|O) | EG(TrTransform(T (η))) =
true}

DEFINITION 23. Let CG = (vroot, CV,CE,V) and CG′ =
(vroot, CV

′, CE′,V ′) be two characteristic graphs such that the

vertex CG
(O,q,y)−→ CG′ is a graph-step.

• Collide is true at graph-stepCG
(O,q,y)−→ CG′ iff (O, q, y) /∈

CV , there exists a meaningful path going through (O, q, y)
in CG′, and a collision between a rooted path containing
(O, q, y) and a preexisting vertex is created, i.e. there exists
(O′, q′, y′) ∈ CV ′ such that ((O, q, y), _, (O′, q′, y′)) ∈
CE′.
• Reveal is true at graph-step CG

(O,q,y)−→ CG′ if (O, q, y) is
the first visible vertex of a meaningful non-visibly rooted path
in CG′: V(O, q, y) = V is and ∃(O′, q′, y′) ∈ CV such
that a meaningful path goes through (O′, q′, y′), the edge
((O′, q′, y′), _, (O, q, y)) is in CE, V((O′, q′, y′)) 6= V is.

THEOREM 1. Let h be an overlayer using as inner-primitives
the oracle system idealized as UO. The composition of the overlayer
and UO yields oracle system (HUO ,UO). Bounds of the execution
time ofE, C−1

post and path-finderP are denoted by tE , tpost and tP .
Using the characteristic graph CG and the path-finder algorithm
described previously, we can define a simulator S as in section 3.2.
Then, for all adversary A ∈ Adv(k, t),
• S is (ks, ts)-bounded with ks(H) = 1, and ts = 2(k′ +

1)tE + tpost + tP(k′ + 1), where k′ =
∑
O∈O k(O).

• |Pr[A|(HUO ,UO) : true]− Pr[A|(UH, SUH ) : true]| ≤
Pr[A|(HUO ,UO) : FCollide∨Reveal]

where tE , tpost and tP respectively bound of the execution time of
E, C−1

post and path-finder P (this last time depends on the number
of vertice in its input graph, here bound by k′ + 1).

A formal proof of the theorem carried out in an extended version
of the logic CIL of [3] is provided in [16].

4. EXAMPLES OF APPLICATIONS

4.1 Computation of the Bound for ChopMDs

We consider the hash construction ChopMDs defined in sec-
tion 2.1, and a simulator S implemented as described in section 3.2.
We first compute the probability that FCollide happens when i-th
query (q, y) is (directly or indirectly) addressed to F . We assume
that the adversary issues a meaningful query, and assess the proba-
bility that (q, y) is linked to a vertex (q′, y′) ∈ CV ∪ {(q, y)} by
an edge ((q, y), _, (q′, y′)). For all pair (q′, y′) in CV , an edge is
added between (q, y) and (q′, y′) iff y = Firstn(q′). It means that,
to achieve our event, y has to coincide with the prefix of some q′ for
a vertex (q′, y′) ∈ CV ∪ {(q, y)}. This yields i candidates for q′.
Besides, y is drawn uniformly at random in {0, 1}n. Consequently,
the probability that an edge resulting in FCollide is created at query
i is bounded by i

2n .
We then evaluate the probability that the adversary reveals a non-

visible query whereasCollide has never happened. IfReveal hap-
pens with direct query (q, y), then there exists a non-visible ver-
tex (q′, y′) linked by an edge to (q, y) by definition of the event.
Hence, y′ = Firstn(q). Moreover, there is exactly one (q′, y′)
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linked to (q, y) since Collide does not happen. Besides, (q′, y′)
is at worst partially visible, so that the adversary knows at most
n − s first bits of y′ when issuing query q. The probability that
y′ = Firstn(q) is thus bounded by 1

2s . As a consequence, if a total
number of k(F) direct queries are performed to F , the probability
of FReveal ∧ G¬Collide is bounded by k(F)

2s for our events.

THEOREM 2. We consider theChopMDs construction and sim-
ulator S implemented as in section 3.2. For an adversary A ∈
Adv(k, t),

Indiff(ChopMDs,F , S) ≤ (ktot)(ktot + 1)

2n+1
+
k(F)

2s

where ktot = k(F) + L ∗ k(H).

Results concerning indifferentiability of the Chop construction
already appear in various works. In [14], Coron et. al. determine
a bound for this construction considering a random permutation in
place of F . In spite of this, it seems relevant to notice that their
proof results in a bound of O( (L∗ktot)2

2s ).
Later, Maurer and Tessaro show in [23] that using a prefix-free

padding function allows to conclude to a bound of O( (L∗ktot)2

2n ).
This result is particularly interesting, since it beats the usual birth-
day bound: indeed, n− s bits are output by the hash function, and
n is the output-length of the inner primitive. We notice assuming
prefix-free padding, we obtain the same bound. Since no mean-
ingful path can be obtained as an extension of a meaningful path,
Reveal can only happen when y′ = Firstn(q) belongs to an invis-
ible vertex. As a consequence, the adversary has to guess all n bits
of y′ and its probability of success is bounded by 1

2n . Our second
term is turned into k(F)

2n .
Eventually, in [13], Chang and Nandi provide a very refined

computation forChopMDs without assuming prefix-free padding.
It leads to a bound of
k2
tot

2n+1
+

(3(n− s) + 1) ∗ k(F) + (n− s) ∗ k(H)

2s
+

k(F) + k(H)

2n−s−1

orO( 3(n−s)(k(F)+k(H))
2s ). This improves the result given by [14],

quadratic in the number of queries. The result we obtain here is to
our knowledge the best current bound for the ChopMDs design.

4.2 Computation of the bound for Sponge

We are interested in the sponge design detailed in section 2.2.
We start by bounding the probability that Collide is realized at the
i-th fresh (direct or indirect) query (q, y) to F . Assuming (q, y)
belongs to a meaningful path, we assess the probability of creation
of an edge between (q, y) and vertex (q′, y′). In a sponge-based
characteristic graph, an edge links (q, y) to (q′, y′) iff Lastc(q′) =
Lastc(y). At step i, it yields a probability of i

2c that this equality is
satisfied for (q′, y′) ∈ CV ∪{(q, y)}. It follows that the probability
of FCollide is bound by ktot(ktot+1)

2c+1 for an interaction during which
a total number of ktot (direct and indirect) queries are issued to F .

We then assess the probability of FReveal ∧ G¬Collide. Assume
the event is realized at the issue of direct query (q, y). In the case
of the sponge design, when a vertex (q′, y′) is partially visible,
we must assume that the adversary knows the first r bits of y′.
Revealing a non-visible vertex consists in querying F on a value
q of which last c bits coincide with a (at most) partially visible y′.
The fact thatCollide has never happened allows to assert that there
is only one satisfying y′ for query q. Potential partial visibility of
y′ accounts for the fact that only the last c bits of y′ are random.
As a result, the probability of our event at step i is bounded 1

2c ,
and globally bounded by k(F)

2c for the complete interaction with
the adversary.

THEOREM 3. We consider the Sponge construction and sim-
ulator S implemented as in section 3.2. For an adversary A ∈
Adv(k, t),

Indiff(Sponge,F , S) ≤ ktot(ktot + 1)

2c+1
+
k(F)

2c

where ktot = k(F) + Lsp ∗ k(H).

In [7], Bertoni et. al. present a clever proof of the indifferentia-
bility the sponge construction concluding to a bound of ktot(ktot+1)

2c+1 .
We obtain a greater bound, containing a term which is omitted in
their final bound computation, as was first suggested in [11]. The
missing term corresponds to the probability that Reveal happens,
which, even though the authors propose a simulator different from
ours, should not be overlooked in their computation. Nevertheless,
it does not alter the merits of their proof which mainly lie in the
graph construction and simulator they propose.

5. GENERALIZATION DEPENDENT INNER-
PRIMITIVES HASH DESIGNS

In section 3, the scope of the result we provide is restricted by
our hypothesis that the inner-primitives contitute an oracle system
with independent oracles. In this section, we outline the theoretical
extensions needed to deal with other kinds of systems. We begin
with a special case of oracles sharing a memory, namely when a
pair of oracles implements a permutation and its inverse. Indeed, at
the heart of a great number of designs lie dedicated blockciphers.
However, we choose to limit ourselves to this instance of shared
memory, since we are not aware of examples which exhibit another
type of such dependency. Then, we move on to the case of oracles
whose implementations can call other oracles of the system. For
clarity of the presentation, we assume that in this latter situation, no
memory component is shared between any oracles. It is nonetheless
completely affordable to combine both generalizations to carry out
a proof for a hash design based on inner-primitives presenting both
aspects. In the sequel, we study a given construction modeled by
an overlayer h applied to an oracle system O.

5.1 Shared memory : dealing with permuta-
tions and their inverses

Let O and O−1 be a pair of oracles of O implementing a per-
mutation and its inverse between InO and OutO

2. We choose to
model O and O−1 by random permutations sharing a list variable
LO,O−1 . We say that O and O−1 are coupled oracles. In the sys-
tem UO, O is implemented by:

Imp(O)(q) = if q ∈ LO,O−1 then return y
else y ← UOutO−Π2(LF,F−1 );

LO,O−1 := LO,O−1 .(q, y); return y
endif

The implementation ofO−1 is similar. In the independent oracle
scenario, the simulator graph features one vertex type (Oj , _, _) per
oracle Oj of the system. In case of coupled oracles, we choose to
represent both exchanges with O and exchanges with O−1 by the
same type of vertex ((O,O−1), q, y). On top of that, the edge set
E remains defined as previously, as well as the functionE comput-
ing edge sets and the update function. The path-finder is provided
according to specifications of section 3.2.
2It is possible that the permutation only maps a subset of InO onto
OutO . In such a case, a similar reasoning can be carried out by
splitting the oracle arguments into a key and an input.
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That said, the simulator design depends on whether one of the
coupled oracles is the last oracle called by a hash computation. If
not, the simulator implements the coupled oracles using its shared
list variable LS to emulate the shared memory of O and O−1 by
updating queries (q, y) toO andO−1 in the form ((O,O−1), q, y).
We just provide below the simulator implementation of O, that of
O−1 is strictly the same.

ImpS(O)(q) = if q ∈ LS then return y
else a← UOutO−Π2(LS (O,O−1));

G := updG(((O,O−1), q, y), G);
LS := LS .((O,O−1), q, y); return y

endif

In case one of the coupled oracles is the last oracle called, we
assume without loss of generality that O`ast = O. In such a
case, we need to define the sampling algorithm H−1

post, enabling
the simulator to answer coherently with UH when it detects a last
query. As previously, let PreIm(t0) denote the set of values y
such that Hpost(x, [vj ]j∈Indpost(x)) = t0, for given x and list
[vj ]j∈Indpost(x) such that vinit(x) = (q, y). We recall that we men-
tioned the case when PreIm(t0) is empty in section 3, and ex-
cluded it by assuming that OutH was the range ofH. In the present
case, the simulator has, on top of the consistency constraint, to pre-
serve the one-to-one property of the mapping yield by our coupled
oracles. As a consequence, the sampling algorithm should not draw
uniformly in PreIm(t0) but in PreIm(t0)− LS(O,O−1). This
raises the issue that values available in PreIm(t0) might all al-
ready be bound to other arguments PreIm(t0) − LS(O,O−1)
might be empty. In such a situation, the sampling algorithm is
defined to output λ. As a consequence, it is easy to deduce the
implementation of O by using the path-finder and H−1

post.
As for the indifferentiability bound, on top of the Collide and

Reveal occurence, we need to bound the probability that λ is out-
put by the simulated O. Given a lower bound β of the cardinality
of PreIm(t0) indenpendent of of t0, we can have two results: 1.)
if the adversary asks max(k(O), k(O−1)) ≤ β queries, the prob-
ability that the simulator outputs λ is null, 2.) for the general case,
this probability is bounded by that of generating a β-collision on a
set of size |InO|.

5.2 Interdependent implementations
Let us now deal with the case of an oracle system O modeling

inner-primitives for which no memory is shared between oracles,
but such that the implementation of O in O queries a potentially
non-empty set ImpCalls(O) of other oracles in O. Reciprocally,
we let CalledBy(O) the set of oracles whose implementation call
that of O. We also assume that the oracles of O are all functional.
Considering such a situation can be made relevant by two possible
reasons. First, decomposing a hash design into an overlayer and an
underlying oracle system can result in an uninteresting bound (e.g.
if Hj do not verify the partial injectivity property of section 3).
Secondly, such a decomposition might not be possible according to
our definition of overlayer. Indeed, Hj are meant to depend on the
previous exchange only. For example, this is not the case for the
hash construction Grøstl [21].

We proceed with the adaptation of the definition of simulator
graph to this situation. In section 3, all exchanges appear as ver-
tice of the graph. Here, we choose to represent only exchanges of
oracles appearing in the static sequence of the overlayer, i.e. V ⊆
XchG = {(O, q, y)|O ∈ [O1, . . . ,OL]}. The update algorithm
specification requires a new function on top of the edge-computing
functionE. The idea is that for a givenO, there are other oracle im-

plementations depending onO, namelyO′ ∈ CalledBy(O). Thus,
an exchange (O, q, y) possibly completes a suite of [(Oi, qi, ai)]i
corresponding to the external call sequence O′ would perform to
compute an output y′ for some query q′. In such a case and if
O′ ∈ XchG, (O′, q′, y′) must be added to the simulator graph ver-
tex set. To formalize this, we propose the following definition.

DEFINITION 24. A vertex update function CreateVertex is a
function taking as arguments an exchange, an oracle, and a series
of lists and outputting a subset of XchG. It is assumed to be such
that: for all exchange (O, q, y), for all O′ ∈ CalledBy(O), for all
exchange (N ′, q′, y′) ∈ XchG and lists [LO′′ ]O′′∈ImpCalls(O′), then
(O′, q′, y′) ∈ CreateVertex((O, q, y), O′, [LO′′ ]O′′∈ImpCalls(O′))
if and only if there exists a sequence of exchanges [(Oi, qi, ai)]i in
[LO′′ ]O′′∈ImpCalls(O′) ∪ {(O, q, y)} such that if a call q′ to O′ is
executed in a memory state m where LO′′ are prefixes of m.LO′′
and LO : (q, y) is a prefix of m.LO then call O′(q′) provokes
exchanges [(Oi, qi, ai)]i and outputs y′.

Using such a function, we can write a formal description of the
update function of the simulator graph.

DEFINITION 25. A generalized simulator graph update func-
tion updG is a function which, on input an exchange (O, q, y), a
simulator graph G = (vroot, V, E) and the shared simulator state
LS , outputs the simulator graph G′ given by:

• a vertex set V ′ constructed out of V such that:
– if O appears in [O1, . . . ,OL], then (O, q, y) is added

to V ,
– for all O′ ∈ CalledBy(O) ∩ [O1, . . . ,OL], the vertex

set CreateVertex((O, q, y),O′, [LO′′ ]O′′∈ImpCalls(O′))
is added to V .

• E′ = E ∪ {E(v, v′), v ∈ V ∪ vroot, v′ ∈ V ′ − V } ∪
{E(v′, v), v ∈ V, v′ ∈ V ′ − V }.

With these new definitions, it is possible to build a satisfying
simulator following the same specification as in section 3 and to
obtain an identic version of our main theorem.

6. CONCLUSION
In this paper, we have introduced a generic framework for prov-

ing indifferentiability of hash designs. Indeed, we have proposed
a generic definition to capture hash constructions, namely overlay-
ers. We have specified a generic simulator along with an underlying
graph structure enabling the detection of potential last queries. On
top of that, we have highlighted a way to define another graph, the
characteristic graph, so as to evaluate a bound to the indifferen-
tiability of a random oracle of hash constructions with respect to
our generic simulator. This work paves the way to a formalization
of indifferentiability proofs allowing the generation of machine-
checkable proofs, and participates to the global effort towards au-
tomatic verification of security proofs.
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A Proof of the Theorem

In this section, we propose a formal proof of theorem 1. The proof proceeds by successive
modifications of the behavior of oracle systems, through progressive change of their imple-
mentations. This method is akin to game-based proofs, but puts to use elements of the proof
system developped in [BDKL10], which semantics is very close to that presented in this paper.
In this framework, the probabilistic transition systems formed by oracle systems interacting
with adversaries are compared thanks to an extension of the notion of probabilistic bisimula-
tion. Imperfect simulation is captured by the more refined concept of bisimulation up to some
bad event.

We choose to present the proof into two parts. Firstly, we provide in the next subsection
an informal description of the transformations carried out throughout the proof. Each step
consists in exhibiting a new oracle system, highlighting its differences with the previous one and
if necessary outlining the events when the simulation is imperfect. Each system is illustrated
by a corresponding figure. Along the sketch of the proof, we emphasize that it naturally falls
into three parts. Secondly, in subsection A.2, we provide the theoretical framework to define
and reason with the concept of bisimulation up to. We then give the complete implementations
of oracle systems at each step, and the relations between them.

A.1 Informal Proof Overview

LO1 , . . . , LOk
, Llast

updates

H

LH

updates

(O1, . . . ,Ok,O`ast)

x

af

q

y

Initial system. The initial system corresponds to the original setting. The adversary inter-
acts with the oracle system (H,O), where O consists of a finite number oracles assumed to be
independent (i.e. their implementations do not share a common memory). Oracle H uses the
oracles in O to compute its answer for adversaries, but these latter calls are not visible to the
adversary. We arbitrarily name oracles in O (O1, . . . ,Ok,O`ast). Note that this does not imply
that O1 is the first oracle called by H, O2 the second one... There is no reason for names to
coincide with the fixed ordered sequence [O1, . . . ,OL] of oracles that H calls successively. We
choose to represent all oracles in O as a single box. Calls from H to O are reprensented by the
dotted arrow. Adversary calls to H and their answers are generically denoted x and af , they
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are pictured by dashed arrows. Similarly, adversary calls to Oi or O`ast and their answers are
generically denoted q and y; they are also pictured by dashed arrows.
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Second system. In the first step of our proof, we want to differentiate the adversary’s
direct queries to oracles in O from that of H. To do so, let us define functions fOi and fO`ast

corresponding to the original implementations of oracles of O. We modify the implementa-
tions by inlining the code of fOi and fO`ast

in that of H. Then, we add a global list Direct
which stores tuples (O..., q, y) of exchanges with an oracle Oi or O`ast. Lastly, each oracle of
(O1, . . . ,Ok,O`ast) updates a graph G with every exchange.

Once these modifications are performed, H does not call oracles Oi’s and O`ast anymore; it
executes their original code itself. The coherence between H and (O1, . . . ,Ok,O`ast) is ensured
by their common dependence in lists LOi and Llast which store query and answers to Oi’s and
O`ast. As a consequence, Direct only contains direct adversary calls to (O1, . . . ,Ok,O`ast).

On the figure, functions fOi and fO`ast
are depicted by squares; they are executed on

arguments q, qj or ql and outputs a value y, which is represented by plain arrows.
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Third system. Oracle O`ast has a particular status; we know that in the original system,
to compute an answer for input x, the last query ql of H always goes to O`ast. Let us define
a function last step, consisting in the whole last block of computations of H: execution of
function fO`ast

, plus computation of the answer af . Evaluation of af uses the global H-
input x and list of queries Q. Thus, we define function last step taking as inputs ql,x and Q
and outputting a pair (al, af ) such that al = fO`ast

(ql) and af = H(x). At each execution,
function last step updates a list LastH with (ql, al, x, af , Q : (ql, al)). We remark that if a tuple
(q, y, , , ) belongs to LastH, then it belongs to Llast too. Nevertheless, it is not reciprocal, and
we cannot consider that fO`ast

is only executed through last step. Indeed, O`ast can appear
anywhere in the sequence of calls performed by H, not just only lastly.

When building the simulator, we explain the need for a path-finder algorithm P to detect
potential last queries when they are asked to O`ast. In this third system, we change the control
flow of O`ast to integrate this test. If, on given q and G, P outputs a tuple (true, x, List),
we have the oracle execute last step on q, x and List. This yields the computation of a value
y = fO`ast

(q) which O`ast forwards as an answer to the adversary, but also the computation of
a value t, corresponding to what H would answer on input x and list of queries List : (q, y).
Otherwise, if P outputs (false, λ, [ ]), O`ast executes fO`ast

.
Eventually, we make a difference between the three inputs (q, x, List) (or (ql, x, af )) of

last step: we say that the first one (q or ql) is an argument, and that the others ((x, List) or
(x,Q)) are parameters. This is to emphasize that the function realizes a mapping (or mathe-
matical function) of its input q, but not necessarily for the others. Indeed, fO`ast

implements
a mathematical function, but nothing prevents two H-inputs x to have an identical last query
q.

This system is the last of the first part of the proof, somewhat consisting in the unfolding
of the system.
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Fourth system. This fourth system is the first of the second part of the proof, in which
we actually modify the behaviors of the functions. The difference between this system and the
previous one lies in the independence of last step from fO`ast

. Indeed, at this step, last step
checks belonging to dom(LastH) and otherwise performs a drawing. List LastH stores the
results of its executions. While it still implements a mathematical function of its first argument
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onto its second argument, there is no reason that the answers y/al provided by last step and
fO`ast

for a same value of q/ql coincide. In case they do not, the third and fourth system are
not in a bisimulation relation.

As a result, we have to characterize this misbehavior and formalize it as predicates whose
probability of eventually happening we then bound. Let us informally specify the predicates
we detail in the next section. The problematic situation here arises as soon as some value q
belongs to both dom(Llast) and dom(LastH). This can happen in two ways: either an element
of dom(LastH) is added to dom(Llast) or the other way round.

• In the first case, if it happens during a call to O`ast, then it means that the oracle has
branched to execute fO`ast

after P has output (false, λ, [ ]). This is captured by predicate
ULQ (for Undetected Last Query). If it happens during a call to H, then it means that
fO`ast

is called during an intermediate (and not last) computation. This is captured by
predicate ILQ, for Intermediate and Last Query.

• In the second case, if it occurs during a call to O`ast, it means that it is the first time the
query is asked directly, so that it has been an intermediate query before. Then again,
ILQ captures this case. Eventually, if it occurs during a call to H, then either ILQ is
realized, or a previous direct query to O`ast is given as argument to last step. This latter
case is captured by predicate DQ− LQ for Direct Query and Last Query.
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Fifth system. When defining the third system, we have introduced function last step which
stores the results of its executions in LastH. We have stressed that this function implements a
mathematical function of the first component of LastH (i.e. q/ql) onto its second component
(y/al). This follows from the form of its implementation: it checks in LastH whether the
argument q/ql has already been assigned a value for y/al, in which case it takes it up as an
answer, and otherwise draws a novel answer. In both cases, computation of t/af using the
parameters x and list of queries ensues. The difference between the status of x and the list
and q/ql was emphasized by the use of the word ’argument’ to designate q/ql, while x and the
list were refered to as ’parameters’.

In the fifth system, we exchange the roles played by q/ql and x: x becomes the argument,
and q becomes a parameter. Indeed, we modify the code of function last step as follows.
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When provided with a triple (ql, x,Q) (or (q, x, List)), it checks whether there already is a
value for al (or y) associated to x in LastH, keeps it as an answer if there is, and draws a new
one otherwise. As a result, last step now implements a mathematical function from its third
component onto its second.

For fourth and fifth systems to behave similarly, there must be a one-to-one mapping
between first components q/ql of LastH and third ones. Indeed, if there are two distinct
values, say q and q′, associated by LastH to the same value of x, then we cannot guarantee
that the fifth system provides the same answer as the fourth. As first components of LastH
represent (real or potential) last queries, we call this event SLQ for Same Last Query. To be
thorough, we have to mention the possibility that two values for x correspond to one given q.
This cannot happen in an execution of either systems as a consequence of the second property
we impose on the path-finder. Indeed, if on input q it outputs some x, then execution H on x
has or will result in q being the last query for x.
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Sixth system. In this step, we again modify last step. This function either originally takes
up a stored value for y/al or draws a new one, and then computes a value for af or t using
Hpost and the parameters of the function. The idea of this step is to switch the order of the
computations. In the sixth system, firstly, a value for af or t is either taken up as stored or
drawn according to U(H), and only then a satisfying value for al/y is sampled using H−1

post. We

recall that H−1
post is defined to preserve the original distribution of pairs (y, t) (resp. (al, af )).

Using the fifth system implementation, we have seen that function last step maps its argument
x to the second component of LastH, y; that being said, there can potentially be distinct fourth
component (t or af ) associated to a given x. However, using the sixth system implementation,
there can only be one af/t value for a given x, while there can be distinct values of y. Indeed,
we recall that if Hpost is not injective when everything but y is fixed, there are more than one
possibility for y. Nevertheless, this does not lead to a simulation problem with respect to the
adversary. Indeed, even though two different y′s are drawn for a given x (one when executing
H, one when executing O`ast), only the value of y computed while executing O`ast is actually
used. We refer the reader to the formal proof below for more details about how we deal with
this technicality.

Therefore, we are left with one problematic case in which the programs potentially do not
behave similarly: when there are two t’s for an x. We are actually able to show, using the fact
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that non-empty strings x answered by the path-finder algorithm are correct values for x, that
this can never happen.

This is the last system of the second part of the proof.
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Seventh system. There starts the last part of the proof, which roughly consists in folding
back the system now that we are done modifying functions’ behaviors. In the sixth system,
H computes ((q1, a1), . . . , (ql, al)) but these values do not influence the final output. In the
seventh system, we suppress all these useless computations. Function last step is not relevant
anymore: only an execution of O`ast requires a computation of a value y using H−1

post. The
code shared between H and O`ast consists in the test of belonging to LastH and the draw of a
value otherwise. We denote this as function fU(H). We project list LastH to its sole necessary

components, which are the third and fourth (x and t/af ).
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q

can be seen as:

Direct, G

updates

S = (O1, . . . ,Ok,O`ast)
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x
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q

Final system. Eventually, we can consider fU(H) as the implementation ofH itself, and then
O`ast needs to issue a call to H when it detects a last query. The redundant list LH, identical
to LastH, can be suppressed, as can be LOi and Llast which are contained in Direct and only
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used in the simulator. Zooming out of the lefthandside figure, we obtain the righthandside
figure, our final goal.

A.2 Technical Details of the Proof

A.2.1 Theoretical Elements Used in the Proof

To relate two compatible oracle systems, we use an extension of the standard notion of bisim-
ulation. We recall that the interaction of oracle systems with adversaries are modeled as
probabilistic transition systems. The notion we introduce, bisimulation up to, captures the
bisimilarity of two probabilistic transition systems until one of their transitions fails to meet a
specific condition.

We consider two compatible systems O and O′. Given an oracle O of the systems, we define

the alloy implementation ̂Imp(O) of O, which behaves as the implementation of O in O on
input a state of MO, and as the implementation of O in O on input a state of MO′ . Formally,

we let M̂ be the alloy state space MO + MO′ . For every O ∈ NO, we let ̂Imp(O) be the disjoint
sum of ImpO(O) and ImpO′(O), i.e.

̂Imp(O) : In(O)× M̂→ D(Out(O)× M̂)

We are only interested in transitions having a positive probability to happen: we write

m1
(O,q,a)−→>0 m2 iff Pr[ ̂Imp(O)(q,m1) = (a,m2)] > 0.
The idea behind our notion of bisimulation is to find a relation between states of MO and

MO′ such that states in a same group offer, when performing a given transition step, the same
probability of reaching any another group. In the sequel, the relation is formalized as an
equivalence relation on the alloy state space M̂. As our systems are not unconditionnally in
bisimulation, we further introduce a predicate on triples of an exchange and a pair of memories.
The memories represent states before performing the exchange and after the exchange has
been performed. We can then lighten the requirements on the bisimulation relation using this
condition. We now provide our formal definition for bisimulation up to.

Definition 27 Let ϕ ⊆ Xch × M̂ × M̂ be a predicate and let R ⊆ M̂ × M̂ be an equivalence

relation. O and O′ are bisimilar up to ϕ, written O ≡R,ϕ O′, iff m̄ R m̄′, and for all m1
(O,q,a)−→ >0

m2 and m3
(O,q,a)−→ >0 m4 such that m1Rm3:

• stability: if m2Rm4 then

ϕ((O, q, a),m1,m2) ⇔ ϕ((O, q, a),m3,m4)

This captures that the condition has the same truth value on complete classes.

• compatibility: if ϕ((O, q, a),m1,m2), then

Pr[ ̂Imp(O)(q,m1) ∈ (a,C)] = Pr[ ̂Imp(O)(q,m3) ∈ (a,C)]

where C is the equivalence class of m2 under R.

This captures that the probability to reach a given class is the same for every state in the
source class.
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Bisimulations are closely related to observational equivalence and relational Hoare logic,
and allow to justify proofs by simulations. Besides, bisimulations up to subsume the Funda-
mental Lemma of [?].

In article [BDKL10], we have proven that:

Proposition 4 For all compatible oracle systems O and O′, every relation R and predicate ϕ
s.t. O ≡R,ϕ O′ and adversary A:

• Pr(A | O : true ∧ Gϕ) = Pr(A | O′ : true ∧ Gϕ)

• Pr(A | O : F¬ϕ) = Pr(A | O′ : F¬ϕ)

This proposition accounts for the following reasoning rule:

Proposition 5 For all compatible oracle systems O and O′, every relation R and predicate ϕ
s.t. O ≡R,ϕ O′ and adversary A:

|Pr(A | O : true)−Pr(A | O′ : true)| ≤ Pr(A | O : F¬ϕ)

Outline. In the sequel, we denote H1, . . . ,H8 the oracle systems which we introduce by
successive modifications of the implementations. Moreover, for each i ∈ [1..7], we define the
state space of Hi, denoted by Mi, and an equivalence relation Rii+1 and a predicate ϕii+1

such that Hi ≡ Ri
i+1 ,ϕi

i+1
Hi+1. Eventually, each of the three parts of the proof is concluded

by a lemma linking its first and last system, and we conclude using these three lemmas in the
end. When the modifications just concern a few lines of implementations, lines who differ in
the next system end with ↪→, while lines who differ from the previous system begin by ←↩. We
recall that given a list L, L(q) is the set of elements of first component q. When i is clear from
the context, we can use L(q) for elements of i-th component q. We use Πi,i+1(L) to denote the
list of pairs consisting in the projection on the i-th and (i+ 1)-th components of each element
of L.

A.2.2 Part 1: unfolding of the system

As highlighted in the informal presentation of the proof, this latter falls into three parts. We
first proceed to the unfolding of the system.

Here are the initial set of implementations (defining system H1). On the left, we provide
the initial code for H and on the right, implementations of oracles of O = (O1, . . . ,Ok,O`ast).
The state space of H1 is the product of lists LH, LOi and Llast, which realize a mapping from
their first onto their second argument.
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Imp(H)O
1,...,OL

(x) = if x ∈ dom(LH) then
return LH(x)

else
l := init(x);
(x1, . . . , xl) := Θ(x);
(O1, q1) := H1(x1);
a1 ← O1(q1);
Q := [(O1, q1, a1)];
for j = 2 to l do

(Oj , qj) := Hj(xj , (Oj−1, qj−1, aj−1));
aj ← Oj(qj);
Q := Q : (Oj , qj , aj);

endfor
af := Hpost(x, [Q]k∈Indpost(x));

LH := LH.(x, a
f , Q);

return af

endif

Imp(Oi)(q) = if q ∈ dom(LOi) then return LOi(q)
else y ← U(Oi);
LOi := LOi .(q, y);
return y
endif

Imp(O`ast)(q) = if q ∈ dom(Llast) then return Llast(q)
else y ← U(O`ast);
Llast := Llast.(q, y);
return y
endif
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Implementations of oracles in the second system H2 are as follows. M2 is an extension of
M1. Additional components are the list Direct and simulator graph G.

Imp(H)O
1,...,OL

(x) = if x ∈ dom(LH) then
return LH(x)

else
l := init(x);
(x1, . . . , xl) := Θ(x);
(O1, q1) := H1(x1);
if q1 ∈ dom(LO1) then
a1 := LO1(q1);
else a1 ← U(O1);
LO1 := LO1 .(q1, a1);
endif

 fO1

Q := [(O1, q1, a1)];
for j = 2 to l − 1 do

(Oj , qj) := Hj(xj , (Oj−1, qj−1, aj−1));
if qj ∈ dom(LOj ) then
aj := LOj (qj);
else aj ← U(Oj);
LOj := LOj .(qj , aj);
endif

 fOj

Q := Q : (Oj , qj , aj);
endfor

(O`ast, ql) := Hl(xl, (Ol−1, ql−1, al−1));
if ql ∈ dom(Llast) then
al := Llast(q

l);
else al ← U(O`ast);
Llast := Llast.(q

l, al);
endif

 fO`ast

Q := Q : (O`ast, ql, al);
af := Hpost(x, [Q]k∈Indpost(x));

LH := LH.(x, a
f , Q);

return af

endif

Imp(Oi)(q) = if q ∈ dom(Direct(Oi)) then
return Direct(Oi)(q)

else
if q ∈ dom(LOi) then
y := LOi(q);
else y ← U(Oi);
LOi := LOi .(q, y);
endif

 fOi

Direct := Direct.(Oi, q, y);
G := updG((Oi, q, y), G);
return y

endif

Imp(O`ast)(q) = if q ∈ dom(Direct(O`ast)) then
return Direct(O`ast)(q)

else
if q ∈ dom(Llast) then
y := Llast(q);
else y ← U(Oi);
Llast := Llast.(q, y);
endif

 fO`ast

Direct := Direct.(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y

endif

We let R1
2 be the equivalence relation between states of M1 and M2 defined by the equality

of states on their common components (i.e. everthing but Direct and G). The bisimulation
between the pair of systems is perfect; we thus choose ϕ1

2 = true.
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Set of implementations of the third system.
The state space M3 consists of an extension of M2 with an additional list, LastH, containing
5-component tuples, and realizing a mapping of the first component onto the second one.

Imp(H)O
1,...,OL

(x) = if x ∈ dom(LH) then
return LH(x)

else
l := init(x);
(x1, . . . , xl) := Θ(x);
(O1, q1) := H1(x1);
a1 ← fO1(q1);
Q := [(O1, q1, a1)];
for j = 2 to l − 1 do

(Oj , qj) := Hj(xj , (Oj−1, qj−1, aj−1));
aj ← fOj (qj);
Q := Q : (Oj , qj , aj);

endfor
(O`ast, ql) := Hl(xl, (Ol−1, ql−1, al−1));
if ql ∈ dom(Llast) then ↪→
al := Llast(q

l); ↪→
else al ← U(O`ast);
Llast := Llast.(q

l, al); ↪→
endif
af := Hpost(x, [Q]k∈Indpost(x));

LastH := LastH.(q
l, al, x, af , Q : (O`ast, ql, al));


last step(ql, (x,Q))

Q := Q : (O`ast, ql, al);
LH := LH.(x, a

f , Q);
return af

endif

31



Imp(O`ast)(q) = if q ∈ dom(Direct(O`ast)) then
return Direct(O`ast)(q)

else if P(q,G) = (true, x, List) then
if q ∈ dom(Llast) then ↪→
y := Llast(q); ↪→
else y ← U(O`ast);
Llast := Llast.(q, y); ↪→
endif
t := Hpost(x, [List : (q, y)]k∈Indpost(x));

LastH := LastH.(q, y, x, t, List : (q, y));


last step(q, (x, List))

Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y

else
y ← fO`ast

(q);
Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y

endif
endif

The rest of the Oi’s stay the same.
We let R2

3 be the equivalence relation between states of M2 and M3 defined by the equality
of states on their common components (i.e. everthing but LastH). The bisimulation between
the second and third systems is perfect; we thus choose ϕ2

3 = true.
To conclude this first part, we can state the following lemma, which follows from two

immediate applications of proposition 5.

Lemma 1 Systems H1 and H3 are indistinguishable, i.e. for all adversary A,

Pr(A | H1 : true) = Pr(A | H3 : true).
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A.2.3 Part 2: making last step independent

This second part comprises three transformations. As none of them changes Oi’s we omit to
mention them in this part. We could apply proposition OR for every transformation. However,
if we perform successive steps and get events to bound at each step, then we have a series of
events to bound in the matching series of distinct implementation sets. It is far more practical
to gather all the problematic events as a conjunction in a given set of implementations and to
bound the probability of the conjunction to be satisfied. As a result, to obtain a better overall
bound, trying to exhibit a global relation and property relating set 3 to set 6 seems to be a
better strategy.

To do so, we proceed as follows. We first present the third, fourth and fifth set of imple-
mentations, and provide a bisimulation-up-to relation ( Rii+1 , ϕ

i
i+1) between them. Then, we

propose a relation R3
6 and show that H3 and H6 are in bisimulation with respect to relation

R3
6 , up to ϕ3

4 ∧ ϕ4
5 ∧ ϕ5

6.
In the fourth set of implementations, the tests that q belongs to Llast are replaced by tests

of belonging to LastH, and last queries are not stored in Llast anymore.
The set of states M4 is the same as M3.
Imp(H)O

1,...,OL
(x) = if x ∈ dom(LH) then

return LH(x)
else
l := init(x);
(x1, . . . , xl) := Θ(x);
(O1, q1) := H1(x1);
a1 ← fO1(q1);
Q := [(O1, q1, a1)];
for j = 2 to l − 1 do

(Oj , qj) := Hj(xj , (Oj−1, qj−1, aj−1));
aj ← fOj (qj);
Q := Q : (Oj , qj , aj);

endfor
(O`ast, ql) := Hl(xl, (Ol−1, ql−1, al−1));

←↩ if ql ∈ dom(LastH) then ↪→
←↩ al := Π2(LastH(ql));

else al ← U(O`ast);
←↩ (((((((((((

Llast := Llast.(q
l, al);

endif
af := Hpost(x, [Q]k∈Indpost(x));

LastH := LastH.(q
l, al, x, af , Q : (O`ast, ql, al));


last step(ql, (x,Q))

Q := Q : (O`ast, ql, al);
LH := LH.(x, a

f , Q);
return af

endif
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Imp(O`ast)(q) = if q ∈ dom(Direct(O`ast)) then
return Direct(O`ast)(q)

else if P(q,G) = (true, x, List) then
←↩ if q ∈ dom(LastH) then ↪→
←↩ y := Π2(LastH(q));

else y ← U(O`ast);
←↩

((((((((((
Llast := Llast.(q, y);
endif
t := Hpost(x, [List : (q, y)]k∈Indpost(x));

LastH := LastH.(q, y, x, t, List : (q, y));


last step(q, (x, List))

Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y

else
y ← fO`ast

(q);
Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y

endif
endif

The rest of the Oi’s stay the same.
The idea of this step is to break the dependency between functions last step and fO`ast

.
In system H3, all executions of last step are performed via checking into Llast and answering
the stored value when there is one, whereas in H4, executions of last step look into and fill
in LastH. As a consequence, (potential) last queries appear in both lists in H3, while only in
LastH in H4. We can anticipate that if an element belongs to both lists in the fourth set of
implementations, there is very little chance that these latter map it to the same value.

Therefore, we define the following equivalence relation R3
4 . Let us denote by m3 ∈ M3

(resp. m4 ∈ M4) a state of system H3 (resp. H4). We say that m3 R3
4 m4 if they coincide on

every component but Llast. We additionally require that m3.Llast = m4.LlasttΠ1,2(m4.LastH).
To guarantee that given two related states, the performance of an exchange yields the same

behavior of our systems, we must ensure that we eliminate cases which would result in the
creation of a common element to dom(LastH) and dom(Llast) in system H3. This can happen
either by adding to dom(LastH) an element already belonging to dom(Llast), or the converse.
We can also consider whether the exchange is an H-request or an O`ast-request. Here is the
exhaustive list of possible cases:

1. During an exchange (O`ast, q, y), a query of LastH which does not belong to Direct(O`ast)
is not detected by P.

2. During an exchange (O`ast, q, y), a potential last query asked to O`ast for the first time
has been computed before, i.e. q ∈ dom(Llast)− dom(Direct(O`ast)).

3. During an exchange (H, x, af ), for a non-terminal index i, qi belongs to LastH. If m′ is
the state after the execution, and the last addition to m′.LastH is (q′, , x′, , Q′), then
there exists in m′.LastH a tuple (q, , x, , Q) such that q ∈ Head(Q′) (here q = qi).
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4. During an exchange (H, x, af ), ql already is in Llast. Two cases can arise, according to
whether ql ∈ Direct(O`ast). If not, then there exists an element (q′, , x′, , Q′) ∈ LastH
such that q ∈ Head(Q′).

We summarize this analysis by the following predicates:
ILQ( ,m,m′) :
∃(q, , x, , Q), (q′, , x′, , Q′) ∈ m′.LastH s.t. q ∈ Head(Q′).
ULQ((O`ast, q, y),m,m′) :
q ∈ dom(m.LastH)− dom(m.Direct(O`ast)) ∧ P(q,G) =⊥
DQ− LQ((H, x, af )m,m′) :
Last(m′.LH) = (x, af , Q : (ql, al)) s.t. ql ∈ m.Direct(O`ast)−m.LastH

These three predicates capture every possibility mentioned in the above list, as illustrated
in the following table.

add to Llast an element of LastH add to LastH an element of Llast
by calling O`ast (1.)ULQ (2.)ILQ

by calling H (3.)ILQ (4.) put in Llast by

{
H → ILQ
O`ast → DQ− LQ
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The fifth system is obtained out of the fourth system by exchanging the roles of q and
x in function last step. The set of states M5 is identical to M4 except that lists LastH are
assumed to realize a mapping from their third component onto their first and second component
(x 7→ (q, y)).

Imp(H)O
1,...,OL

(x) = if x ∈ dom(LH) then
return LH(x)

else
l := init(x);
(x1, . . . , xl) := Θ(x);
(O1, q1) := H1(x1);
a1 ← fO1(q1);
Q := [(O1, q1, a1)];
for j = 2 to l − 1 do

(Oj , qj) := Hj(xj , (Oj−1, qj−1, aj−1));
aj ← fOj (qj);
Q := Q : (Oj , qj , aj);

endfor
(O`ast, ql) := Hl(xl, (Ol−1, ql−1, al−1));
←↩ if x ∈ dom(LastH) then
←↩ al := Π2(LastH(x)); ↪→

else al ← U(O`ast); ↪→
endif
af := Hpost(x, [Q]k∈Indpost(x)); ↪→
LastH := LastH.(q

l, al, x, af , Q : (O`ast, ql, al));


last step(x, (ql, Q))

Q := Q : (O`ast, ql, al);
LH := LH.(x, a

f , Q);
return af

endif
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Imp(O`ast)(q) = if q ∈ dom(Direct(O`ast)) then
return Direct(O`ast)(q)

else if P(q,G) = (true, x, List) then
←↩ if x ∈ dom(LastH) then
←↩ y := Π2(LastH(x)); ↪→

else y ← U(O`ast); ↪→
endif
t := Hpost(x, [List : (q, y)]k∈Indpost(x)); ↪→
LastH := LastH.(q, y, x, t, List : (q, y));


last step(x, (q, List))

Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y
else
y ← fO`ast

(q);
Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y

endif
endif

The intuition behind this step is to switch the test of belonging to LastH from q to x.
Our implementations are well-defined as soon as list LastH maps its third component ’x’ to
a single second component y. This is not the case as soon as two different values of q are
linked to the same x in LastH. This corresponds to a predicate we name SLQ for same last
query. We notice that the contrary, namely, that two distinct values for x match the same q,
is not possible. Indeed, applications Θ and Hj are deterministic functions, and the property
of P implies that if x is an output of P then all the queries and answers necessary to the
computation of H(x) have already been performed and are thus fixed values. For the same
reasons, there is a unique list of questions Q corresponding to x once all drawings have been
performed.

As an equivalence relation R4
5 , we choose the equality on all components of the state.

The formalisation of SLQ is as follows:
SLQ(m,m′) :
∃(q, , x, , Q), (q′, , x′, , Q′) ∈ m′.LastH s.t. q = q′ ∧ x 6= x′
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Sixth set of implementations:
The set of states M6 is identical to M5 except that lists LastH here map their third element

onto their fourth (x 7→ t). Additionally, there can only be one value q and one list Q associated
to x via LastH.

Imp(H)O
1,...,OL

(x) = if x ∈ dom(LH) then
return LH(x)

else
l := init(x);
(x1, . . . , xl) := Θ(x);
a1 ← fO1q1;
Q := [(O1, q1, a1)];
for j = 2 to l − 1 do

(Oj , qj) := Hj(xj , (Oj−1, qj−1, aj−1));
aj ← fOjqj ;
Q := Q : (Oj , qj , aj);

endfor
(O`ast, ql) := Hl(xl, (Ol−1, ql−1, al−1));

fU(H)(x)


if x ∈ dom(LastH) then

←↩ af := Π4(LastH(x));
←↩ else af ← U(H);

endif

←↩ al ← H−1
post(x,Q, a

f , ql);

LastH := LastH.(q
l, al, x, af , Q : (O`ast, ql, al));


last step(x, (ql, Q))

Q := Q : (O`ast, ql, al);
LH := LH.(x, a

f , Q);
return af

endif

Imp(O`ast)(q) = if q ∈ dom(Direct(O`ast)) then
return Direct(O`ast)(q)

else if P(q,G) = (true, x, List) then

fU(H)(x)


if x ∈ dom(LastH) then

←↩ t := Π4(LastH(x));
←↩ else t← U(H);

endif

←↩ y ← H−1
post(x, List, t, q);

LastH := LastH.(q, y, x, t, List : (q, y));


last step(x, (q, List))

Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y

else
y ← fO`ast

(q);
Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y

endif
endif

38



The intuition behind this step is that we switch the order of computation of y and t. In
H5, y is computed first, and then used to compute t. In H6, t is computed first, and then used
to compute y, by means of the sampling algorithm H−1

post defined in section 2.2. This difference
in the order of computation modifies the properties of the states generated. System H5 deals
with states with LastH mapping x’s to y’s, but can potentially store two different values of t
for a given x. On the contrary, H6 operates on states with LastH mapping x’s to t’s, but has
good probability to store two different values of y for a given x.

To deal with the possibility of two y’s for an x, we choose an equivalence relation gathering
in a same class states of M6 with two different values for y given an x. We first define R6

between two states of M6. We use the function Forget2nd which ’forgets second components’,
and maps lists to sets as follows: Forget2nd(L : (q, y, x, t,Q)) = Forget2nd(L) ∪ {(q, x, t, Q)}
and [ ] is associated to ∅. Let m6, m̃6 be states of M6. Informally, we require from m6 and
m̃6 that they coincide on everything but maybe y’s, while imposing on y’s to be coherent
with the rest of the tuple. More precisely, m̃6 R6 m6 iff they coincide on every component
but list LastH, Forget2nd(m6.LastH) = Forget2nd(m̃6.LastH), and ∀(q, y, x, t,Q : (q, y)) ∈
m6.LastH,Hpost(x, [(Q; (q, y))]k∈Indpost(x)) = t.

The global definition for m5 ∈ M5 and m6 ∈ M6 is then that m5 R5
6 m6 iff:

• either they are equal,

• or there exists m̃6 ∈ M6 such that m5 = m̃6 and m̃6 R6 m6.

The condition (¬TwoT ) enforces that LastH realizes a mapping from its third component
x on its fourth t. It can be formalized as follows.

TwoT ( ,m,m′) :
m′.LastH = m.LastH : [(q, y, x, t,Q)] ∧ ∃(q′, y′, x′, t′, Q′) s.t. (x′ = x ∧ t 6= t′)

Thanks to the properties of the path-finder, this predicate is equivalent to false; indeed,
there is no such tuple in list LastH of a state of M6, and if such a tuple (q′, y′, x′, t′, Q′) exists
in a list LastH of a state of M5, then q = q′, y = y′ and Q = Q′. As a result of the application
of Hpost on equal inputs, we necessarily have t = t′.

Relating set 3 to set 6. We now propose a way to link the third system to the sixth via
a bisimulation relation up to ϕ3

4 ∧ ϕ4
5 ∧ ϕ5

6 We let R3
6 be the following equivalence relation.

Let m3 ∈ M3,m6 ∈ M6, we say that m3 R3
6 m6 iff:

• every component of state coincide but Llast and LastH.

• list LastH realizes a mapping from x to q and there is only one list Q per x.

• either (*) m3.LastH = m6.LastH and m3.Llast = m6.Llast tΠ1,2(m6.LastH)

• or (**) ∃m̃6 such that m̃6 R6 m6 and m̃6 verifies the above equalities: m3.LastH =
m̃6.LastH and m3.Llast = m̃6.Llast tΠ1,2(m̃6.LastH)

Stability holds because no predicate deals with values of y, and those are the only thing
which can differ between states m3 and m6.

We then have to justify compatibility. Let m3,m
′
3 ∈ M3 such that m3

(O,q,a)−→ >0 m
′
3 for O an

oracle in (H,O1, . . . ,Ok,O`ast). Let C denote the equivalence class of m′3 under relation R3
6 ;
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it contains one state of M3, m′3, and several states of M6. Let m6 ∈ M6 be a state in relation
with m3: m3 R3

6 m6. We show that pr[ImpH3(O)(q,m3) = (a,m′3)] = pr[ImpH6(O)(q,m6) =
(a,C ∩M6)], provided (ϕ3

4 ∧ ϕ4
5 ∧ ϕ5

6)((O, q, a),m3,m
′
3) holds. The compatibility follows from

this equality.
We know that m3 R3

6 m6. We let m̃6 be the state of M6 related to m6 such that there is
one y for an x in list m̃6.LastH. Then we define m5 (resp.m4) denote the state of M5 (resp.M4)
equal with m̃6. Similarly, we let m̃6

′ denote the particular state of C ∩ M6 containing only
one y per x in its list LastH, m′5 (resp.m′4) denotes the state of M5 (resp.M4) equal with m̃6

′.
Thus, we can state that C ∩M6 = Class( R5

6 ,m
′
5).

Moreover, by stability, for all states m′6 ∈ C, (ϕ3
4 ∧ ϕ4

5 ∧ ϕ5
6)((O, q, a),m6,m

′
6) holds. Still

by stability, (ϕ3
4∧ϕ4

5∧ϕ5
6)((O, q, a), m̃6, m̃6

′) does holds to. As a result of the states definition,
we can deduce that ϕ4

5(m5,m
′
5) and ϕ3

4(m4,m
′
4) hold too.

We can then derive the following equalities:

pr[ImpH6(O)(q,m6) = (a,C ∩M6)] = pr[ImpH6(O)(q,m6) = (a,Class( R5
6 ,m

′
5))]

= pr[ImpH5(O)(q,m5) = (a,Class( R5
6 ,m

′
5))]

since ϕ5
6((O, q, a),m6,m

′
6)

= pr[ImpH5(O)(q,m5) = (a,m′5)]

since Class( R5
6 ,m

′
5) = m′5

= pr[ImpH5(O)(q,m5) = (a,Class( R4
5 ,m

′
5))]

since Class( R4
5 ,m

′
5) = m′5

= pr[ImpH4(O)(q,m4) = (a,Class( R4
5 ,m

′
5))]

since ϕ4
5((O, q, a),m5,m

′
5) and m4 R4

5 m5

= pr[ImpH4(O)(q,m4) = (a,m′4)]

since Class( R4
5 ,m

′
5) = m′5 = m′4

= pr[ImpH4(O)(q,m4) = (a,Class( R3
4 ,m

′
4))]

since Class( R3
4 ,m

′
4) = m′4

= pr[ImpH3(O)(q,m3) = (a,Class( R3
4 ,m4))]

since ϕ3
4((O, q, a),m4,m

′
4) and m3 R3

4 m4

= pr[ImpH3(O)(q,m3) = (a,Class( R3
6 ,m

′
3))]

noticing that Class( R3
4 ,m

′
4) ∩M3 = Class( R3

6 ,m
′
6) ∩M3 = m′3

= pr[ImpH3(O)(q,m3) = (a,m′3)]

Lemma 2 The conclusion of this part is

H3 ≡ R3
6 ,Φ H6,

where Φ = ϕ3
4 ∧ ϕ4

5 ∧ ϕ5
6 = ¬(DQ− LQ) ∧ ¬(ILQ) ∧ ¬(ULQ) ∧ ¬(SLQ).
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A.2.4 Part 3: folding back the system

In the seventh set of implementations, the state space M7 is reduced to the lists LastH and
LH which are now storing pairs, lists Direct, LOi and Llast, and graph G.

Imp(H)O
1,...,OL

(x) = if x ∈ dom(LH) then
return LH(x)

else
if x ∈ dom(LastH) then
af := LastH(x);
else af ← U(H);
endif
LastH := LastH.(x, a

f );

 fU(H)(x)

LH := LH.(x, a
f );

return af

endif

Imp(O`ast)(q) = if q ∈ dom(Direct(O`ast)) then
return Direct(O`ast)(q)

else
if P(q,G) = (true, x, List) then

if x ∈ dom(LastH) then
t := LastH(x));
else t← U(H);
endif
LastH := LastH.(x, t);

 fU(H)(x)

y ← H−1
post(x, List, t, q);

Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y

else
if q ∈ dom(Llast) then
y := Llast(q);
else y ← U(O`ast);
Llast := Llast.(q, y);
endif

 call to fO`ast
(q)

Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y

endif
The relation between states of M6 and M7 is equality on common components G, Direct,

Llast and LOi , and in addition to that we require that Π3,4(m6.LastH) = m7.LastH and
Π1,2(m6.LH) = m7.LH. Since we just remove useless computations, we can choose ϕ6

7 = true.

41



Final set of implementations:
The final state space consists in list of pairs LastH and list Direct, and graph G.

Imp(H)O
1,...,OL

(x) = if x ∈ dom(LastH) then
af := LastH(x);
else af ← U(H);
LastH := LastH.(x, a

f );
return af

endif

Imp(O`ast)(q) = if q ∈ dom(Direct(O`ast)) then
return Direct(O`ast)(q)

else
if P(q,G) = (true, x, List) then
t← H(x);

y ← H−1
post(x, List, t, q);

else
y ← U(O`ast);
endif
Direct := Direct(O`ast, q, y);
G := updG((O`ast, q, y), G);
return y
endif

Imp(Oi)(q) = if q ∈ dom(Direct(Oi)) then
return Direct(Oi)(q)

else
y ← U(Oi);
Direct := Direct(Oi, q, y);
G := updG((Oi, q, y), G);
return y
endif

The relation between this final system and the previous one is equality on common com-
ponents.
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