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Abstract. The composition of security definitions is a subtle issue. As
most security protocols use a combination of security primitives, it is
important to have general results that allow to combine such definitions.
We present here a general result of composition for security criteria (i.e.
security requirements). This result can be applied to deduce security of
a criterion from security of one of its sub-criterion and an indistinguisha-
bility criterion. To illustrate our result, we introduce joint security for
asymmetric and symmetric cryptography and prove that it is equivalent
to classical security assumptions for both the asymmetric and symmetric
encryption schemes. Using this, we give a modular proof of computa-
tional soundness of symbolic encryption. This result holds in the case of
an adaptive adversary which can use both asymmetric and symmetric
encryption.

Keywords: Provable Security, Security Games, Probabilistic Encryp-
tion, Computational Soundness of Formal Methods.

1 Introduction

Provable security consists in stating the expected security properties in a for-
mally defined adversarial model and providing a mathematical proof that the
properties are satisfied by the designed system/protocol. Micali and Goldwasser
are probably the first to put forward the idea that security can be proved in
a formally defined model under well-believed rigorously defined complexity-
assumptions [GM84]. Although provable security has by now become a very
active research field there is a lack of a general “proof theory” for cryptographic
systems. As underlined by V. Shoup in [Sho04], security proofs often become
so messy, complicated, and subtle as to be nearly impossible to understand. Ide-
ally there should be a verification theory for cryptographic systems in the same
way as there are verification theories for “usual” sequential and concurrent sys-
tems (cf. [Cou90, MP92]).

As security proofs are mostly proofs by reduction a promising approach seems
to be one that is based on transforming the system to be verified into a sys-
tem that obviously satisfies the required properties. Sequences of games have

T. Dimitrakos et al. (Eds.): FAST 2006, LNCS 4691, pp. 47–64, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



48 M. Daubignard et al.

been recently proposed as a tool for taming the complexity of security proofs
[Sho04, BR04] and first implementations of tools that assisted in deriving such se-
quences have been developed [Bla06]. In particular, three types of transitions be-
tween games are proposed. One of the most powerful transitions is based on indis-
tinguishability. Informally, to bound the probability of an event Ei in game i and
the probability of event Ei+1 in game i+1, one shows that there is a distinguisher
algorithm D that interpolates between Game i and Game i+1, such that given an
element from distribution Pi, for i = 1, 2, D outputs 1 with probability Pr[Ei].
Hence, Pr[Ei] − Pr[Ei+1] = Pr[D(x) → 1|x ∈ P1] − Pr[D(x) → 1|x ∈ P2],
and hence, the indistinguishability assumption implies that Pr[Ei] − Pr[Ei+1]
is negligible.

In this paper we prove a theorem that provides a powerful instance of the
indistinguishability-based transition technique. This theorem can be used for
compositional verification of cryptographic libraries as it allows one to reduce
a security criterion into simpler ones. A typical use is to allow the comparison
of a criterion that involves a set of oracles (which can for example all use the
same challenge bit b) with a criterion that only involves a subset of the oracles.
As a simple application of this result, we can for instance prove the equivalence
of semantic security of one key and semantic security in the multi-party set-
ting [BBM00]. The advantage of applying our theorem in that case is that the
proof is done without having to design adversaries, the only thing to do is to
provide a partition of the criterion.

Moreover we believe that our main result is helpful when proving computa-
tional soundness of symbolic analysis for cryptographic protocols. This recent
trend in bridging the gap that separates the computational and symbolic views
of protocols has been initiated by Abadi and Rogaway [AR00]. In this paper,
they prove that symbolic equivalence of messages implies computational indis-
tinguishability provided that the cryptographic primitives are secure. This result
has then been adapted for protocols where the adversary is an eavesdropper and
has a passive behavior and the only allowed cryptographic primitive is symmetric
encryption [AJ01].

Various extensions of [AR00, AJ01] have been presented recently by adding
new cryptographic primitives [BCK05] or by removing the passive adversary hy-
pothesis. There are different ways to consider non-passive adversaries, this can
be done by using the simulatability approach [BPW03], by proving trace prop-
erties on protocols [MW04, CW05, JLM05]. Another possibility is to consider an
adaptive adversary as introduced by Micciancio and Panjwani [MP05]. In this
context, the adversary issues a sequence of adaptively chosen equivalent pairs of
messages (m1

0, m
1
1) to (mq

0, m
q
1). After query (mi

0, m
i
1) the adversary receives a

bit-string that instantiates either mi
0 or mi

1 and it has to tell which is the case.
The main improvement with respect to the result of Abadi and Rogaway [AR00]
is that the adversary has an adaptive behavior: it can first send a query (m1

0, m
1
1)

then using the result determine a new query and submit it. However Miccian-
cio and Panjwani only consider symmetric encryption. In order to illustrate how
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our main result can be used in such situations, we prove a similar result when
considering both asymmetric and symmetric encryption. Besides by using our
partition theorem, the proof we give is modular and hence easier to extend
to more cryptographic primitives than the original one. For that purpose, we
introduce new security criteria which define pattern semantic security and prove
that these criteria are equivalent to classical semantic security requirements. The
main interest of these criteria is to easily allow encryption of secret keys (either
symmetric or private keys).

Organization. In section 2 after recalling some basic definitions, we intro-
duce security criteria and some examples of cryptography-related criteria. A
powerful way of composing security criteria is introduced and proved in sec-
tion 3: the criterion partition theorem. Section 4 shows how to use this result
soundly. To illustrate this we prove that some composition of asymmetric and
symmetric encryption schemes can be directly stated secure by using the par-
tition theorem. Using this last result, section 5 proves computational sound-
ness of symbolic equivalence for an adaptive adversary using both asymmetric
and symmetric encryption schemes. Eventually, section 6 draws some concluding
remarks.

2 Preliminaries

2.1 Cryptographic Schemes

We first recall classical definitions for cryptographic schemes in the computa-
tional setting. In this setting, messages are bit-strings and a security parameter
η is used to characterize the strength of the different schemes, for example η can
denote the length of the keys used to perform an encryption.

An asymmetric encryption scheme AE = (KG, E , D) is defined by three algo-
rithms. The key generation algorithm KG is a randomized function which given
a security parameter η outputs a pair of keys (pk, sk), where pk is a public key
and sk the associated secret key. The encryption algorithm E is also a random-
ized function which given a message and a public key outputs the encryption
of the message by the public key. Finally the decryption algorithm D takes as
input a cipher-text and a secret key and outputs the corresponding plain-text,
i.e. D(E(m, pk), sk) = m, if key pair (pk, sk) has been generated by KG. The
execution time of the three algorithms is assumed to be polynomially bounded
by η.

A symmetric encryption scheme SE = (KG, E , D) is also defined by three
algorithms. The key generation algorithm KG is a randomized function which
given a security parameter η outputs a key k. The encryption algorithm E is
also a randomized function which given a message and a key outputs the en-
cryption of the message by this key. Finally the decryption algorithm D takes
as input a cipher-text and a key and outputs the corresponding plain-text, i.e.
D(E(m, k), k) = m. The execution time of the three algorithms is also assumed
polynomially bounded by η.
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A function g : R → R is negligible, if it is ultimately bounded by x−c, for each
positive c ∈ �, i.e. for all c > 0 there exists Nc such that |g(x)| < x−c, for all
x > Nc.

2.2 Turing Machines with Oracles

Adversaries are polynomial-time random Turing machines (PRTM) with oracles.
Oracles are also implemented using PRTMs. In order to detail the oracles an
adversary can query, the definition of an adversary A is for example:

Adversary A/O1, O2:
Code of A e.g: s ← O1(x)

Where the code of A can call two oracles using names O1 and O2. When ex-
ecuting this adversary A, we use the notation A/B1, B2 where B1 and B2 are
two PRTMs to denote that names O1 and O2 are respectively implemented with
oracles B1 and B2.

We use the standard λ-notation to concisely describe PRTMs obtained from
others by fixing some arguments. For instance, let G be a PRTM that has two
inputs. Then, we write λs.G(s, θ) to describe the machine that is obtained from
G by fixing the second argument to the value θ. Thus, A/λs.G(s, θ) denotes the
machine A that may query an oracle obtained from G by instantiating its second
argument by θ. The argument θ of G is defined in the context of A and may not
be known by A. So typically, A may be trying to compute some information on
θ through successive queries.

Moreover, adversaries are often used as sub-routines in other adversaries. Con-
sider the following description of a randomized algorithm with oracles. Here ad-
versary A′ uses A as a sub-routine. Moreover, A′ may query oracle O1. On its
turn A may query the same oracle O1 and additionally the oracle λs.F2(s, θ2).
The latter is obtained from F2 by fixing the second argument to θ2 which is
generated by A′.

Adversary A′/O1:
θ2←...
s←A/O1,

λs.F2(s, θ2)

2.3 Games and Criteria

A security criterion is defined as a game involving an adversary (represented by
a PRTM). The game proceeds as follows. First some parameters θ are generated
randomly using a PRTM Θ. The adversary is executed and can query an oracle F
which depends on θ. At the end, the adversary has to answer a bit-string whose
correctness is checked by an algorithm V which also uses θ (e.g. θ includes a bit
b and the adversary has to output the value of b). Thus, a criterion is given by
a triple consisting of three randomized algorithms:
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– Θ is a PRTM that randomly generates some challenge θ.
– F is a PRTM that takes as arguments a bit-string s and a challenge θ and

outputs a new bit-string. F represents the oracles that an adversary can call
to solve its challenge.

– V is a PRTM that takes as arguments a bit-string s and a challenge θ and
outputs either true or false. It represents the verification made on the result
computed by the adversary. The answer true (resp. false) means that the
adversary solved (resp. did not solve) the challenge.

As an example let us consider an asymmetric encryption scheme (KG, E , D). Se-
mantic security against chosen plain-text attacks (IND-CPA) can be represented
using a security criterion (Θ; F ; V ) defined as follows: Θ randomly samples the
challenge bit b and generates a key pair (pk, sk) using KG; F represents the pub-
lic key oracle (this oracle returns pk) and the left-right encryption oracle (given
bs0 and bs1 this oracle returns E(bsb, pk)); and V checks whether the returned
bit equals b.

Note that Θ can generate several parameters and F can represent several ora-
cles. Thus, it is possible to define criteria with multiples Θ and F . For example,
a criterion with two challenge generators Θ1 and Θ2, two oracles F1 and F2 and
a verifier V is denoted by (Θ1, Θ2; F1, F2; V ).

Let γ = (Θ; F ; V ). The advantage of a PRTM A against γ is defined as the
probability that A has to win its game minus the probability that an adversary
can get without accessing oracle F .

Advγ
A(η) = 2 (Pr[Gγ

A(η) = true] − PrRandγ(η))

where Gγ
A(η) is the Turing machine defined by:

Game Gγ
A(η):

θ←Θ(η)
d←A(η)/λs.F (s, θ)
return V (d, θ)

and PrRandγ(η) is the best probability to solve the challenge that an adversary
can have without using oracle F . Formally, let γ′ be the criterion (Θ; ε; V ) then
PrRandγ(η) is defined by:

PrRandγ(η) = max
A

(
Pr[Gγ′

A (η) = true]
)

where A ranges over any possible PRTM. For example when considering a crite-
rion γ = (Θ; F ; V ) where a challenge bit b is generated in Θ and V checks that
the adversary guessed the value of b, then PrRandγ(η) equals 1/2, in particular
this is the case for IND-CPA.

3 The Criterion Partition Theorem

Consider a criterion γ = (Θ1, Θ2; F1, F2; V1), composed of two challenge gen-
erators Θi, their related oracles Fi, and a verifier V1. Assume that F1 and V1
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do not depend on θ2 (which is the part generated by Θ2). Because of these
assumptions, γ1 = (Θ1; F1; V1) is a valid criterion. We are going to relate the
advantages against γ and γ1. To do so, let us consider the game Gγ

A(η) played
by an adversary A against γ:

Game Gγ
A(η):

θ1←Θ1(η)
θ2←Θ2(η)
s←A/λs.F1(s, θ1),

λs.F2(s, θ1, θ2)
return V1(s, θ1)

We define an adversary A′ against γ1 which tries to act like A. However, A′

does not have access to its challenge θ1 and hence it generates a new challenge
θ′1 (using Θ1) and uses it to answer queries made by A to F2.

Adversary A′/O1:
θ′1←Θ1(η)
θ2←Θ2(η)
s←A/O1,

λs.F2(s, θ′1, θ2)
return s

The game involving A′ against γ1, Gγ1
A′(η), is given by:

Game Gγ1
A′(η):

θ1←Θ1(η)
θ′1←Θ1(η)
θ2←Θ2(η)
s←A/λs.F1(s, θ1),

λs.F2(s, θ′1, θ2)
return V1(s, θ1)

Our aim is to establish a bound on

|Pr[Gγ
A(η) = true] − Pr[Gγ1

A′ (η) = true]|

To do so, we construct an adversary B that tries to distinguish game Gγ
A(η) from

game Gγ1
A′(η), i.e. B tries to distinguish the case where A uses correlated oracles

(i.e. the same θ1 is used by F1 and F2) from the case where A uses decorrelated
oracles (i.e. θ1 is used by F1 and a different θ′1 is used by F2), figure 1 gives
the intuition of how B works: B either simulates A with correlated oracles in
the upper part of the figure or A with decorrelated oracles. Finally, B uses the
answer of A in order to win its challenge. We introduce a new indistinguishability
criterion γ2 that uses a challenge bit b, in this criterion the adversary has to
guess the value of bit b. Our objective is to build a distinguisher B such that the
following equations hold:

Pr[Gγ2
B = true | b = 1] = Pr[Gγ

A(η) = true] (1)

Pr[Gγ2
B = false | b = 0] = Pr[Gγ1

A′ (η) = true] (2)
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Fig. 1. Correlated and Decorrelated Oracles

Indeed, using these equations we will be able to derive the following bound:

|Pr[Gγ
A(η) = true] − Pr[Gγ1

A′ (η) = true]| = Advγ2
B (η)

3.1 Construction of the Distinguisher

In the following, we give a methodology that tells us how to build the indistin-
guishability criterion γ2 and the adversary B. To do so, we need an assumption
on the form of the second oracle F2 from γ. This assumption is stated through
the following hypothesis.

Hypothesis 1. There exist three probabilistic random functions f , g and f ′

such that oracle F2’s implementation consists of two parts: λs.f(g(s, θ1), θ2) and
λs.f ′(s, θ2). The first part depends on both θ1 and θ2 whereas the second depends
only on θ2.

The idea when introducing two parts for oracle F2 is to separate the oracles
contained in F2 that really depend on both θ1 and θ2 (these oracles are placed
in f(g(...))) from the oracles that do not depend on θ1 (placed in f ′). Let us
illustrate this on the IND-CPA criterion with two keys: there are one left-right
encryption oracle and one public key oracle for each key. Θ1 generates the chal-
lenge bit b and the first key pair (pk1, sk1), Θ2 generates the other key pair
(pk2, sk2). Oracle F2 contains the left-right oracle related to pk2 and the pub-
lic key oracle that reveals pk2. Hence f ′ is used to store the public key oracle
whereas the left-right oracle has the form λs.f(g(s, θ1), θ2) where f performs
an encryption using key pk2 from θ2 and g((s0, s1), θ1) returns sb according to
the value of challenge bit b from θ1. It is possible to split the oracles differently
but this would not lead to interesting sub-criteria. In general it is always pos-
sible to perform a splitting that satisfies the previous hypothesis (for example,
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f ′ is empty and g(s, θ1) outputs both s and θ1), however this can lead to some
criteria against which adversaries may have a non-negligible advantage. In that
situation the partition theorem cannot be used to obtain that the advantage of
any adversary against the original criterion γ is negligible.

Adversary B plays against an indistinguishability criterion. It has access to
two oracles: Ô1 is implemented by the left-right oracle f ◦LRb, where LRb takes
as argument a pair and returns either the first or the second element according to
the value of bit b, i.e. LRb(x0, x1) = xb. Hence, we have f◦LRb(s0, s1) = f(sb, θ2)
and Ô2 is simply implemented by f ′. Notice now that we have the following
equations:

f ◦ LRb(g(s, θ′1), g(s, θ1)) = F2(s, θ1, θ2), if b = 1
f ◦ LRb(g(s, θ′1), g(s, θ1)) = F2(s, θ′1, θ2), if b = 0

More formally, our γ2 criterion is given by γ2 = (b, Θ2; f ◦ LRb, f ′; vb), where vb

just checks whether the bit returned by the adversary equals b.
We are now ready to give a distinguisher B such that equations (1) and (2)

hold:

Adversary B/Ô1, Ô2:
θ1←Θ1(η)
θ′1←Θ1(η)
s←A/λs.F1(s, θ1), // oracle F1

λs.Ô1(g(s, θ′1), g(s, θ1)), // part f of oracle F2

Ô2 // part f ′ of oracle F2

b̂ ← V1(s, θ1)
return b̂

Recall that A may query two oracles: F1 and F2 while B may query the left-
right oracle f ◦ LRb and f ′. Therefore, B uses Θ1 to generate θ1 and θ′1. It is
important to notice that θ1 and θ′1 are generated independently. Then, B uses A
as a sub-routine using λs.F1(s, θ) for A’s first oracle, and the pair of functions
λs.Ô1(g(s, θ′1), g(s, θ1)) and f ′ for F2.

The game corresponding to B playing against γ2 can now be detailed:

Game Gγ2
B (η):

b ←{0, 1}
θ2←Θ2(η)
b̂ ←B/λs.f(LRb(s), θ2),

λs.f ′(s, θ2)
return vb(b̂)

3.2 Comparing the Games

Let us now check equations (1) and (2). To do so, we first consider that b equals
1. Then game Gγ2

B can be detailed by introducing the definition of B within the
game:
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Game Gγ2
B (η)|b = 1:

θ2←Θ2(η)
θ1←Θ1(η)
θ′1←Θ1(η)
s←A/λs.F1(s, θ1)

λs.f(g(s, θ1), θ2),
λs.f ′(s, θ2)

b̂←V1(s, θ1)
return b̂ = 1

After the hypothesis we made about the decomposition of oracle F2, and when
detailing B, this game can be rewritten as follows, and rigorously compared to
the game played by adversary A against criterion γ:

Game Gγ2
B (η)|b = 1:

θ1←Θ1(η)
θ′1←Θ1(η)
θ2←Θ2(η)
s ←A/λs.F1(s, θ1),

λs.F2(s, θ1, θ2)
b̂←V1(s, θ1)
return b̂ = 1

Game Gγ
A(η):

θ1←Θ1(η)
θ2←Θ2(η)
s←A/λs.F1(s, θ1),

λs.F2(s, θ1, θ2)
return V1(s, θ1)

Therefore these two games are equivalent and so equation (1) holds:

Pr[Gγ2
B = true | b = 1] = Pr[Gγ

A(η) = true]

We now detail the game played by adversary B against γ2 when the challenge
bit b is 0. This game is compared to the game played by A′ against γ1.

Game Gγ2
B (η)|b = 0:

θ2←Θ2(η)
θ1←Θ1(η)
θ′1←Θ1(η)
s ←A/λs.F1(s, θ1),

λs.F2(s, θ′1, θ2)
b̂←V1(s, θ1)
return b̂ = 0

Game Gγ1
A′(η):

θ1←Θ1(η)
θ′1←Θ1(η)
θ2←Θ2(η)
s←A/λs.F1(s, θ1),

λs.F2(s, θ′1, θ2)
return V1(s, θ1)

It is easy to see that these two games can be compared: adversary B wins
anytime A′ loses, and thus:

Pr[Gγ1
A′ (η) = false] = Pr[Gγ2

B (η) = true|b = 0]

We can therefore evaluate our distinguisher’s advantage. For that purpose let us
first notice that as γ2 consists in guessing the value of a random bit b, PrRandγ2

equals 1/2. Furthermore γ and γ1 have the same verifier V1, hence PrRandγ is
equal to PrRandγ1 .
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Advγ2
B (η) = 2

(
Pr[Gγ2

B (η) = true] − PrRandγ2
)

= 2Pr[Gγ2
B (η) = true|b = 1]Pr[b = 1] +

2Pr[Gγ2
B (η) = true|b = 0]Pr[b = 0] − 1

= Pr[Gγ
A(η) = true] + Pr[Gγ1

A′ (η) = false] − 1
= Pr[Gγ

A(η) = true] − Pr[Gγ1
A′ (η) = true]

= Pr[Gγ
A(η) = true] − PrRandγ

+PrRandγ1 − Pr[Gγ1
A′(η) = true]

=
1
2
Advγ

A(η) − 1
2
Advγ1

A′(η)

Given an adversary A against γ, we were able to build an adversary A′ against
γ1 and an adversary B against γ2 such that:

∀η,Advγ
A(η) = 2Advγ2

B (η) + Advγ1
A′(η)

This is summed up in the following theorem which is our core result.

Theorem 1 (Criterion Partition). Let γ be the criterion (Θ1, Θ2; F1, F2; V1)
where:

1. V1 and F1 only depend on the challenge generated by Θ1, denoted by θ1.
2. There exist some PRTMs f , f ′ and g such that F2 is constituted of two parts:

λs.f(g(s, θ1), θ2) and λs.f ′(s, θ2)

Then, for any adversary A against criterion γ, there exist two adversaries B and
A′, such that:

∀η,Advγ
A(η) = 2Advγ2

B (η) + Advγ1
A′(η)

where γ2 = (Θ2, b; f ◦ LRb, f ′; vb) is an indistinguishability criterion and γ1 =
(Θ1; F1; V1).

This theorem can be used to prove that the advantage of any adversary against
a criterion γ is negligible. For that purpose, one has to provide a partition of
γ such that the advantage of any adversary against γ1 or γ2 is negligible. Then
we get that for an adversary A against γ, the advantage of A can be bounded
by the advantage of an adversary against γ1 and the advantage of an adversary
against γ2. The advantage of these two new adversaries are negligible and so the
advantage of A is also negligible.

4 Mixing Asymmetric and Symmetric Encryption

4.1 Cryptographic Game: N-PAT-IND-CCA

We introduce a security criterion that turns out to be useful for protocols where
secret keys are exchanged. This criterion is an extension of semantic security
against chosen cipher-text attacks (IND-CCA). In the classical N -IND-CCA
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criterion (see [BBM00] about N -IND-CCA and its reduction to IND-CCA), a
random bit b is sampled. For each key, the adversary has access to a left-right
oracle (the adversary submits a pair of bit-strings bs0, bs1 and receives the en-
coding of bsb) and a decryption oracle (that does not work on the outputs of the
left-right oracle). The adversary has to guess the value of b. Criterion IND-CPA
is the same as IND-CCA except that the adversary does not have access to the
decryption oracle.

Since it has no information concerning secret keys, the adversary cannot get
the encryption of a challenge secret key under a challenge public key. Therefore,
we introduce the N -PAT-IND-CCA criterion where the adversary can obtain the
encryption of messages containing challenge secret keys, even if it does not know
their values. For that purpose, the adversary is allowed to give pattern terms to
the left-right oracles.

Pattern terms are terms where new atomic constants have been added: pat-
tern variables. These variables represent the different challenge secret keys and
are denoted by [i] (this asks the oracle to replace the pattern variable by the
value of ski). Variables can be used as atomic messages (data pattern) or at a
key position (key pattern). When a left-right oracle is given a pattern term, it
replaces patterns by values of corresponding keys and encodes the so-obtained
message.

More formally, patterns are given by the following grammar where bs is a
bit-string and i is an integer. In the definition of pattern terms, we use two
binary operators: concatenation and encryption. Concatenation of patterns pat0
and pat1 is written (pat0, pat1). Encryption of pat with key bs is denoted by
{pat}bs. Similarly, when the key is a challenge key, it is represented by a pattern
variable [i].

pat ::= (pat, pat) | {pat}bs | {pat}[i]

| bs | [i]

The computation (evaluation) made by the oracle is easily defined recursively
in a context θ associating bit-string values to the different keys. Its result is a
bit-string and it uses the encryption algorithm E and the concatenation denoted
by “·” in the computational setting.

v(bs, θ) = bs

v([i], θ) = θ(ski)
v((p1, p2), θ) = v(p1, θ) · v(p2, θ)

v({p}bs, θ) = E(v(p, θ), bs)
v({p}[i], θ) = E(v(p, θ), θ(pki))

There is yet a restriction. Keys are ordered and a pattern [j] can only be
encrypted under pki if i < j to avoid key cycles. This restriction is well-known
in cryptography and widely accepted [AR00]. When the left-right pattern en-
cryption oracle related to key i is given two pattern terms pat0 and pat1, it tests
that none contains a pattern [j] with j ≤ i. If this happens, it outputs an error
message, else it produces the encryption of the message corresponding to patb,
v(patb, θ), using public key pki. To win, the adversary has to guess the value of
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secret bit b. In fact our acyclicity hypothesis only occurs on secret keys: when
considering pattern {{p}[j]}[j], the public key oracle related to key j can be called
and returns bit-string bs, then pattern {{p}bs}[j] can be used to get the awaited
result. We do not detail restrictions on the length of arguments submitted to
the left-right oracle, an interesting discussion on that point appears in [AR00].
The most simple restriction is to ask that both submitted patterns can only be
evaluated (using v) to bit-strings of equal length.

Henceforth, let AE = (KG, E , D) be an asymmetric encryption scheme. Then,
criterion N -PAT-IND-CCA is given by γN = (Θ; F ; V ), where Θ randomly gen-
erates N pairs of keys (pk1, sk1) to (pkN , skN ) using KG and a bit b; V verifies
whether the adversary gave the right value for bit b; and F gives access to three
oracles for each i between 1 and N : a left-right encryption oracle that takes as
argument a pair of patterns (pat0, pat1) and outputs patb completed with the
secret keys (v(patb, θ)) and encoded using pki; a decryption oracle that decodes
any message that was not produced by the former encryption oracle; and an
oracle that simply makes the public key pki available.

Then, AE is said N -PAT-IND-CCA iff for any adversary A, AdvγN

A (η) is
negligible. Note that N -PAT-IND-CCA with N = 1 corresponds to IND-CCA.

Proposition 1. Let N be an integer. If an asymmetric encryption scheme AE
is IND-CCA, then AE is N -PAT-IND-CCA.

Proof. We want to establish first that an IND-CCA asymmetric encryption
scheme is an N -PAT-IND-CCA secure one. We use the criterion reduction
theorem on N -PAT-IND-CCA (denoted by δN ). We now consider δN =
(Θ1, Θ2; F1, F2; V1), where the criterion partition has been performed the fol-
lowing way:

– Θ1 randomly generates the bit b and N − 1 pairs of matching public and
secret keys (pk2, sk2) to (pkN , skN ) using KG.

– Θ2 randomly generates the first key pair (pk1, sk1).
– F1 contains the oracles related to θ1; hence as neither pk1 nor sk1 can be

asked to this oracle (because of acyclicity), F1 does not depend on θ2.
– F2 contains the oracles related to key pair (pk1, sk1), it uses θ1 for the bit b

and the different keys needed to fill in patterns.
– V1 compares the output to b, and therefore only depends on θ1.

This splitting complies with the first hypothesis of theorem 1. Let us then check
whether the second hypothesis holds. The decryption and public key oracles
included in F2 only depend on θ2, we place them in f ′. We let the encryption
oracle be λs.f(g(s, θ1), θ2) where g((pat0, pat1), θ1) = v(patb, θ1) plays the role
of a left-right oracle, b being the challenge bit included in θ1, composed with the
valuation function v that completes patterns, and f(bs, θ2) = E(bs, pk1) is the
original encryption oracle.

The theorem can now be applied. It thus follows that for any adversary A
against criterion δN , there exist two adversaries B and A′, such that:

∀η,AdvδN

A (η) = 2Advγ2
B (η) + Advγ1

A′(η)
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where γ2 = (Θ2, b; f ◦ LRb, f ′; vb) is IND-CCA and γ1 = (Θ1; F1; V1) is criterion
δN−1.

Hence if we suppose that the asymmetric encryption scheme AE is IND-CCA
and N − 1-PAT-IND-CCA, then the advantages of A′ and B are negligible, so
the advantage of A is also negligible and AE is N -PAT-IND-CCA. Moreover,
as 0-PAT-IND-CCA consists in guessing a challenge bit without access to any
oracle, any adversary’s advantage against it is thus null, which obviously implies
that any encryption scheme is 0-PAT-IND-CCA. Using a quick recursion, it now
appears clearly that if an asymmetric encryption scheme is IND-CCA, it is also
N -PAT-IND-CCA for any integer N .

In this proof, we bound the advantage against N -PAT-IND-CCA by 2N times
the advantage against IND-CCA. This bound is not contradictory with the one
proposed by [BBM00] as the number of queries to each oracle is unbounded in
our model.

4.2 Cryptographic Game: N-PAT-SYM-CPA

In this section, we introduce a new criterion describing safety of a symmetric
encryption scheme. This definition is an extension of semantic security against
chosen plain-text attacks. The main difference with the N -PAT-IND-CCA cri-
terion is that there are no public key oracles and no decryption oracles. Hence
the left-right encryption oracles are similar to those presented in the previous
section and the adversary still has to guess the value of the challenge bit b. The
hypothesis related to acyclicity of keys still holds: ki can only appear encoded
by kj if i > j.

The N -PAT-SYM-CPA criterion is γN = (Θ, F, V ) where Θ generates N
symmetric keys and a bit b; F gives access to one oracle for each key: a left-
right encryption oracle that takes as argument a pair of patterns (pat0, pat1)
and outputs patb completed with the secret keys (v(patb, θ)) and encoded with
ki. Finally, V returns true when the adversary returns bit b.

Let γN be a criterion including the oracles detailed above. A symmetric en-
cryption scheme SE is said N -PAT-SYM-CPA iff for any adversary A, the ad-
vantage of A against γN , AdvγN

SE,A(η), is negligible in η.
Using the criterion partition theorem, it is possible to reduce criterion N -

PAT-SYM-CPA to criterion SYM-CPA. This can be done by using the same
partition as for criterion N -PAT-IND-CCA.

Proposition 2. Let N be an integer. If a symmetric encryption scheme SE is
SYM-CPA, then SE is N -PAT-SYM-CPA.

4.3 Cryptographic Games: N-PAS-CCA and N-PAS-CPA

These criteria combine both precedent ones. N asymmetric and symmetric keys
are generated along with a single challenge bit b. The adversary can access oracles
it was granted in both previous criteria (left-right encryption, public key and
decryption for the asymmetric scheme in N -PAS-CCA) and has to deduce the
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value of the challenge bit b. The acyclicity condition still holds on both primitives.
However, we authorize patterns using symmetric keys when accessing left-right
oracles from the asymmetric part. Hence symmetric encryption and symmetric
keys can be used under asymmetric encryption but the converse is forbidden.
The pattern definition has to be extended so that the adversary can ask for both
asymmetric and symmetric encryptions and asymmetric and symmetric keys.

Let γN be the criterion including the oracles detailed above. A cryptographic
library (AE , SE) is said N -PAS-CCA iff for any adversary A the advantage of A,
AdvγN

AE,SE,A(η), is negligible. The challenge bit b is common to asymmetric and
symmetric encryption, thus it is non trivial to prove that IND-CCA and SYM-
CPA imply N -PAS-CCA. However using our partition theorem, it is possible to
prove this implication.

Proposition 3. Let N be an integer. If an asymmetric encryption scheme AE
is IND-CCA and a symmetric encryption scheme SE is SYM-CPA, then the
cryptographic library (AE , SE) is N -PAS-CCA.

This can easily be adapted to prove variants of this property, for example let
us consider the IND-CPA criterion for the symmetric encryption scheme (the
adversary only has access to the left-right oracle and has to guess the challenge
bit) and the N -PAS-CPA criterion for a cryptographic library (the adversary has
access to public keys for the asymmetric encryption scheme, to left-right oracles
using patterns such that asymmetric secret keys cannot be asked to symmetric
encryption oracles).

Proposition 4. Let N be an integer. If an asymmetric encryption scheme AE
is IND-CPA and a symmetric encryption scheme SE is SYM-CPA, then the
cryptographic library (AE , SE) is N -PAS-CPA.

5 Computational Soundness of Adaptive Security

In this section, we prove computational soundness of symbolic equivalence for
messages that use both asymmetric and symmetric encryption in the case of an
adaptive adversary. This model has been introduced in [MP05]. Roughly, speak-
ing it corresponds to the case of a passive adversary that however can adaptively
chose symbolic terms and ask for their computational evaluation whereas in the
passive case [AR00], the adversary is confronted with two fixed symbolic terms.
The practical significance of this model is discussed in [MP05]. Our result is
an extension of the soundness result from [MP05], moreover we propose a more
modular approach which does not use any hybrid argument but is based on
proposition 4. Another improvement is that we allow the adversary to reuse
computational values within symbolic terms, constants in messages can be used
to represent any bit-string. To simplify things up, we do not consider polynomial
sequences of messages as in [MP05] but rather bounded sequences of messages.
In fact, to cope with the polynomial case, we need to extend theorem 1 in or-
der to handle a polynomial number of challenges. This extension is presented
in [Maz06].
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5.1 A Symbolic Treatment of Cryptography

Let SymKeys,PKeys,SKeys and Const be four disjoint sets of symbols rep-
resenting symmetric keys, public keys, secret keys and constants. Let Atoms be
the union of the previous sets. We assume the existence of a bijection []−1 from
PKeys to SKeys that associates to each public key the corresponding secret
key. The inverse of this function is also denoted []−1. The set Msg of messages
is defined by the following grammar.

Msg ::= SymKeys | Const | (Msg,Msg) | {Msg}s
SymKeys | {Msg}a

PKeys

Elements of SymKeys can be thought of as randomly sampled keys, elements
of Const as bit-strings. Term (m, n) represents the pairing of message m and n,
{m}s

k represents the symmetric encryption of m using key k and {m}a
pk repre-

sents the asymmetric encryption of m using public key pk. In the sequel, when
presenting examples, we use symbols 0 and 1. These are to be understood as ele-
ments of Const which computational interpretations are respectively bit-strings
0 and 1.

Next we define when a message m ∈ Msg can be deduced from a set of
messages E ⊆ Msg (written E 	 m) by a passive eavesdropper. The deduction
relation 	 is defined by the standard Dolev-Yao inference system [DY83] and is
given by the following rules:

m∈E
E�m

E�(m1,m2)
E�m1

E�(m1,m2)
E�m2

E�m1 E�m2
E�(m1,m2)

E�m E�k
E�{m}s

k

E�{m}s
k E�k

E�m
E�m E�pk

E�{m}a
pk

E�{m}a
pk E�pk−1

E�m

The information revealed by a symbolic expression can be characterized using
patterns [AR00, MP05]. For a message m ∈ Msg its pattern is defined by the
following inductive rules:

pattern
(
(m1, m2)

)
=

(
pattern(m1), pattern(m2)

)

pattern
(
{m′}s

k

)
= {pattern(m′)}s

k if m 	 k
pattern

(
{m′}s

k

)
= {�}s

k if m 
	 k
pattern

(
{m′}a

pk

)
= {pattern(m′)}a

pk if m 	 pk−1

pattern
(
{m′}pk

)
= {�}a

pk if m 
	 pk−1

pattern(m′) = m′ if m′ ∈ Atoms

The symbol � represents a cipher-text that the adversary cannot decrypt. As �
does not store any information on the length or structure of the corresponding
plain-text, we assume that the encryption schemes used here do not reveal plain-
text lengths (see [AR00] for details). Two messages are said to be equivalent if
they have the same pattern: m ≡ n if and only if pattern(m) = pattern(n).
Two messages are equivalent up to renaming if they are equivalent up to some
renaming of keys: m ∼= n if there exists a renaming σ of keys from n such that
m ≡ nσ.

Example 1. Let us illustrate this equivalence notion. We have that:
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– {0}s
k

∼= {1}s
k encryptions with different plain-text cannot be distinguished if

the key is not deducible.
– ({0}s

k, {k}a
pk, pk−1) 
∼= ({1}s

k, {k}a
pk, pk−1) but it is not the case if the key can

be deduced.

5.2 Computational Soundness

This model is parameterized by an asymmetric encryption scheme AE =
(KGa, Ea, Da) and a symmetric encryption scheme SE = (KGs, Es, Ds). Com-
putational semantics are given by a concretization function concr which can
be derived from the v function that was introduced previously. This algorithm
uses a computational substitution θ which stores bit-string values for keys. Con-
stants from Const represents bit-strings so the concretization of c from Const
is c itself.

concr((m1, m2), θ) = concr(m1, θ) · concr(m2, θ)
concr({m}a

pk, θ) = Ea(concr(m, θ), θ(pk))
concr({m}s

k, θ) = Es(concr(m, θ), θ(k))

concr(k, θ) = θ(k)
concr(c, θ) = c

Thus the computational distribution generated by a message can be obtained
by randomly sampling the necessary keys and using the concr function.

We consider a model where the adversary can see the computational version
of a bounded sequence of adaptively chosen messages. Let α be a bound on the
sequence length. The adaptive experiment proceeds as follows: the adversary
has access to one oracle which takes as argument a pair of messages (m0, m1)
and either outputs a concretization of m0 (oracle O0) or a concretization of m1
(oracle O1). These oracles work by randomly sampling the necessary keys then
using the concr function on either m0 or on m1. Finally, the adversary has to tell
against which oracle it is playing, O0 or O1. The advantage of A is defined by:

Advadpt
AE,SE,A(η) = Pr[A/O1 = 1] − Pr[A/O0 = 1]

Moreover there are restrictions on the sequence of messages submitted by the
adversary (m1

0, m
1
1) to (mq

0, m
q
1). Such a sequence is said to be legal if:

1. Messages (m1
0, ..., m

q
0) and (m1

1, ..., m
q
1) are equivalent up to renaming.

2. Messages (m1
0, ..., m

q
0) and (m1

1, ..., m
q
1) contain no encryption cycles, more-

over secret keys cannot be sent under symmetric encryptions.
3. The lengths of (m1

0, ..., m
q
0) and (m1

1, ..., m
q
1) are lower than α.

Proposition 5. If AE is an IND-CPA secure encryption scheme and SE is a
SYM-CPA secure encryption scheme, then the advantage of any legal adversary
A, Advadpt

AE,SE,A(η), is a negligible function in η.

This result can be used to model secure multicast as presented in [MP05].
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6 Conclusion

This paper contributes to the development of a proof theory for cryptographic
systems by providing a theorem that allows to decompose the proof of correctness
of a security criterion to the correctness of a sub-criterion and an indistinsguisha-
bility criterion. We apply this decomposition result to prove that given secure
asymmetric and symmetric encryption schemes we can combine them to obtain
a secure cryptographic library.

This security result can be used to easily prove computational soundness of
formal methods. This has been illustrated in the case of the adaptive setting for
asymmetric and symmetric encryption.

In future works, we intend to develop this computational soundness result to
the case of security protocols in general against an active adversary. We believe
that our partition theorem will also be useful in this situation, in particular by
giving simpler and more modular proofs of soundness.
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