
Computational Indistinguishability Logic∗

Gilles Barthe
IMDEA Software

Madrid, Spain

Marion Daubignard
VERIMAG

Grenoble, France

Bruce Kapron
University of Victoria

Canada

Yassine Lakhnech
VERIMAG

Grenoble, France

ABSTRACT
Computational Indistinguishability Logic (CIL) is a logic for
reasoning about cryptographic primitives in computational
models. It captures reasoning patterns that are common in
provable security, such as simulations and reductions. CIL is
sound for the standard model, but also supports reasoning in
the random oracle and other idealized models. We illustrate
the benefits of CIL by formally proving the security of the
probabilistic signature scheme (PSS).

1. INTRODUCTION
Cryptography plays a central role in the design of secure

and reliable systems. Nevertheless, designing secure crypto-
graphic schemes is notoriously hard. Provable security [22]
advocates using a mathematical approach to security, in
which the security of a cryptographic scheme is formalized
as a mathematical statement of the form: “if a security as-
sumption holds for all adversaries, then the security goal is
achieved against all adversaries”. Moreover, the definition of
the adversary, of the security assumption, and of the security
goal are themselves subjected to mathematical rigour. Over
the years, provable security has become an essential tool for
validating the design of cryptographic schemes [37]. Never-
theless, there are concerns that provable security may have
reached its limits, and that it must embrace a style of math-
ematical reasoning that is more amenable to independent
verification. In response to these concerns, Halevi [24] ad-
vocates building computer-aided verification tools for prov-
able security. Tools like CryptoVerif [9] and CertiCrypt [6]
partially fulfill Halevi’s suggestion, by providing a rigorous
modeling language for describing cryptographic schemes and
stating their security, and tool support for checking the cor-
rectness of proofs. This approach has the benefit of general-
ity and has been successful in the verification of emblematic

∗This work was partially supported by French ANR
SESUR-012, SCALP, Spanish project TIN2009-14599 DE-
SAFIOS 10, and Madrid Regional project S2009TIC-1465
PROMETIDOS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

examples, e.g. for OAEP encryption and FDH signature, as
well as of a number of protocols.

A more foundational alternative is to develop models of
cryptography that capture at an appropriate level of abstrac-
tion the fundamental concepts of provable security. Mau-
rer [30, 29] defines a hierarchy of models and demonstrates
how many common concepts can be expressed more crisply
by picking the right level of abstraction, and illustrates how
this layer of abstractions provides new insights and suggests
generalizations of existing concepts. While the potential of
this foundational approach is far reaching, it is a challenge to
build practical verification tools supporting it. In our view,
the main difficulty in reconciling the foundational approach
with practical tools lies in the absence of proof systems that
capture the common reasoning principles that underlie cryp-
tographic proofs. Ideally, one would like to build abstract
proof systems that apply across abstraction layers and cap-
ture standard cryptographic proof techniques such as reduc-
tions or imperfect simulations.

Computational Indistinguishability Logic (CIL) is a logic
that supports concise and intuitive proofs across several mod-
els of cryptography. Its starting point is the notion of ora-
cle system, an abstract model of interactive games in which
adaptive adversaries play against a cryptographic scheme
by interacting with oracles. Oracle systems are inspired by
probabilistic process algebra, but do not commit to a par-
ticular model or syntax. As a result, they provide a uni-
fied foundation for cryptographic games, can be formalized
neatly in a proof assistant, and capture both the standard
model and idealized models such as the random oracle model
or ideal ciphertext model. Moreover, oracle systems pro-
vide a unifying semantics for the different languages used in
practical tools for cryptographic proofs: mathematics [34],
processes [9], λ-calculus [3], imperative programs [6].

CIL features a small set of rules that capture common
reasoning patterns, e.g. simulations and reductions steps.
The soundness of these rules may be established using (mild
variants of) concepts that are well understood by the pro-
gramming language and concurrency communities, such as
contexts and bisimulations. Moreover, CIL features inter-
face rules to connect with external reasoning. The use of
external reasoning offers a number of advantages. First of
all, it enforces a separation between proof steps which are
purely logical or information-theoretic from those which di-
rectly involve (reduction-based) security. Secondly, it allows
a presentation of the proof system which does not commit
to a particular syntactic representation for oracle systems
– rules specific to a particular representation may be intro-

duced as ”plug-ins” to the rules as presented. Thus, rules for
establishing external premises are not considered as part of
CIL. Instead, existing proof techniques, including automated
techniques, are used to establish external premises.

Although our long term objective is to enhance practical
tools for verifying cryptographic schemes, this paper focuses
on theoretical foundations of CIL. To illustrate the applica-
bility of CIL, we consider the Probabilistic Signing Scheme
(PSS), a widely used signature scheme that forms part of
the PKCS standard [7]. In summary, the main technical
contributions of the paper are: i) an abstract framework to
capture cryptographic games as oracle systems (Section 2);
ii) reasoning tools for oracle systems: context application
(Section 4), bisimulations and determinization (Section 5);
iii) a formal proof in CIL of PSS (Section 8).

Preliminaries. We use standard notation, e.g. 1 to denote
the unit type, (x, y) to denote pairs, and match . . . with
notation for pattern-matching. When pattern-matching is
driven by types, as for splitting a bitstring of size k into
bitstrings of size k0 and k1 with k = k0 + k1, we write

match x0 : {0, 1}k0 | x1 : {0, 1}k1 with y in

For a set A, D(A) denotes the set of distributions over
A. For a distribution with probability function p, we have
an associated random variable X, and for a ∈ A we write
Pr(X = a) for p(a). For a ∈ A, δ(a) denotes the Dirac
distribution on A. For the sake of readability, we often de-
scribe distributions in a style that is closer to programming
than to standard mathematics. We use monadic operators
for subdistributions, and add the subdistributions produced
by each return statement to obtain a distribution. Unit op-
erators that map a value to a distribution are sometimes
omitted. We use to denote arguments that are not used,
or elements of tuples whose value is irrelevant in the final
distribution. Finally, a distribution d over A lies in the range
of a predicate P over A, written range d P iff P a for every
a ∈ A such that d a > 0.

2. ORACLE SYSTEMS
Our starting point is a general framework for modeling

the interaction between an adversary and a cryptographic
scheme with oracles.

2.1 Oracle systems and adversaries
An oracle system is a stateful system that provides oracle

access to adversaries.

Definition 1. An oracle system O is given by:

• sets MO of oracle memories and NO of oracles;

• for each o ∈ NO, a query domain In(o), an answer
domain Out(o) and an implementation:

Oo : In(o)×MO → D(Out(o)×MO)

• an initial memory m̄O∈MO, and distinguished oracles
oI for initialization and oF for finalization, such that
In(oI)=Out(oF)=1. We let Res= In(oF).

Example 2.1. The Probabilistic Signature Scheme [7] (PSS
for short) is a generic signature scheme that transforms any
one-way trapdoor permutation f into a secure signature scheme,
and has been adopted as part of the PKCS standard.

A signature scheme is composed of a key generation algo-
rithm, a signing algorithm and a signature verification algo-
rithm. Key generation is a probabilistic algorithm that pro-
duces a pair (pk, sk) of matching public and private keys—
the size of the key is fixed by the security parameter. Signing
takes as input the private key and a message and returns a
valid signature; signing might be deterministic, as in FDH,
or probabilistic, as in PSS. The verification algorithm takes
as input the public key, a message m and a bitstring b and
verifies whether b is a valid signature for m; the verification
algorithm is deterministic, and yields a boolean value.

PSS involves hash functions H : {0, 1}∗ → {0, 1}k2 , and
F : {0, 1}k2 → {0, 1}k0 , and G : {0, 1}k2 → {0, 1}k1 . These
functions are modeled as random oracles. In addition, PSS
involves a (public) one-way permutation f and its (private)
inverse f−1 on bitstrings of length k with k = k0 + k1 + k2.

• The probabilistic signature oracle computes the signa-
ture of a message msg in two steps: first, it samples
uniformly a random value r in {0, 1}k1 ; then, it com-
putes w1 = H(msg|r), w2 = G(w1) ⊕ r and w3 =
F (w1), and returns f−1(w1|w2|w3).

• The signature verification algorithm V takes as input
a bitstring bs ∈ {0, 1}k and a message msg ∈ {0, 1}∗
and checks whether bs is a valid signature for msg.
It proceeds in two steps: first, it computes y = f(bs)
and parses it as w = w1|w2|w3 with w1 ∈ {0, 1}k2 ,
w2 ∈ {0, 1}k1 and w3 ∈ {0, 1}k0 ; then it computes
r = w2 ⊕ G(w1), and checks whether w1 = H(msg|r)
and w3 = F (w1).

Henceforth, for any bitstring bs ∈ {0, 1}k2+k1+k0 , we denote
by r(bs,m) the r-bitstring computed as in the verification
algorithm using hash values stored in memory m. For bs ∈
{0, 1}k and ` ≤ `′ ∈ [1, k], bs[`, `′] denotes the bit-string
corresponding to the bits of bs at positions `, . . . , `′ and bs[`]
denotes bs[1, `], i.e. the prefix of bs of length `.

Formally, PSS is modeled by the oracle system PSS0 s.t.

• a memory m is a tuple of values:

(m.pk,m.sk,m.LH ,m.LG,m.LF)

where m.pk and m.sk are the public and private keys,
m.LH ,m.LG,m.LF are finite functions simulating H,
G, F respectively (e.g. m.LH ∈ {0, 1}∗ ⇀fin {0, 1}k2).
Note that every partial function L has a domain dom L
and a range rng L, and may be viewed as a set; we often
use the notation L.x to denote the union L∪ {x}, and
[] to denote the empty partial function;

• the implementation of the initialization oracle oI is:

λx,m. let (pk, sk)← K in return (pk, sk, [], [], [])

• as initial memory one can choose any memory, as the
result of oI does not depend on the initial memory;

• the implementation of the finalization oracle is trivial:
it returns 1 without performing any other computation;

• the hash oracles OH , OF and OG implemented with
the functions OH , OF and OG, and the signing oracle
sign implemented with Osign. Their implementations
are given in Figure 1, where m[LH := L] denotes a
memory that agrees with m on all components except
LH that gets the value L.

OH(x,m) : if x ∈ dom LH then return (LH(x),m)
else let h← {0, 1}k2 in

return (h,m[LH := (x, h) · LH])

Osign(x,m) : let r ← {0, 1}k1 in
let (w1,m1)← OH(x|r,m) in
let (w2,m2)← OG(w1,m1) in
let (w3,m3)← OF (w1,m2) in
return (f−1(w1|w2 ⊕ r|w3),m3)

Figure 1: Implementation of oracles in PSS0. The
implementations OG and OF are similar to OH .

Notice that the signature verification algorithm is not part of
the oracle system. It is,however, used to state the security
of PSS (cf. Section 8).

Two oracle systems O and O′ are compatible iff they have
the same sets of oracle names, and the query and answer
domains of each oracle name coincide in both oracle systems.
When building a compatible oracle system from another one,
it is thus sufficient to provide its set of memories, its initial
memory and the implementation of its oracles.

Adversaries interact with oracle systems by making queries,
and receiving answers. An exchange (for an oracle system O)
is a triple (o, q, a) where o ∈ NO, q ∈ In(o) and a ∈ Out(o);
we let Xch be the set of exchanges. Initial (resp. final) ex-
changes are defined in the obvious way, by requiring that
o is an initialization (resp. finalization) oracle; the sets of
initial and final exchanges are denoted by XchI and XchF

respectively. The sets Que of queries and Ans of answers
are respectively defined as {(o, q) | (o, q, a) ∈ Xch} and
{(o, a) | (o, q, a) ∈ Xch}.

Definition 2. An adversary A (for an oracle system O)
is given by a set MA of adversary memories, an initial mem-
ory m̄A ∈ MA and functions for querying, and updating:

A : MA ⇀ D(Que×MA)
A↓ : Xch×MA → D(MA)

Informally, the interaction between an oracle system and an
adversary proceeds in three successive phases: the initializa-
tion oracle sets the initial memory distributions of the oracle
system and of the adversary. Then, A performs computa-
tions, updates its state and submits queries to O. In turn,
O performs computations, updates its state, and replies to
A, which updates its state. Finally, A outputs a result by
calling the finalization oracle.

2.2 Semantics
The purpose of this section is to define formally the inter-

action between oracle systems and adversaries, using (prob-
abilistic) transition systems.

Definition 3. A transition system S consists of:

• a (countable non-empty) set M of memories (states),
with a distinguished initial memory m̄;

• a set Σ of actions, with distinguished subsets of ΣI and
ΣF of initialization and finalization actions;

• a (partial probabilistic) transition function st : M ⇀
D(Σ×M).

A partial execution sequence of S is a sequence η of the form

m0
x1−→ m1

x2−→ . . .
xk−→ mk such that

m0 = m̄, xi ∈ Σ, mi−1,mi ∈ M, Pr[st(mi−1) = (xi,mi)] > 0

for i = 1 . . . k. If k = 1, then η is a step. If x1 ∈ ΣI and
xk ∈ ΣF or mk 6∈ dom(st), then η is an execution sequence
of length k. A probabilistic transition system S induces
a sub-distribution on executions, denoted S, such that the
probability of a finite execution sequence η is

Pr[S = η] = Πk
i=1Pr[st(mi−1) = (xi,mi)]

A transition system is of height k ∈ N if all its executions
have length at most k; in this case, S is a distribution.

Given a partial execution sequence η = m0
x1−→ m1 . . .

xk−→
mk, last(η) denotes the last memory in η: mk. Moreover,
we let view(η) = x1 . . . xk.

Definition 4. Let O be an oracle system and A be an
O-adversary . The composition A | O is a transition system
such that M=MA×MO, the initial memory is (m̄A, m̄O), the
set of actions is Σ=Xch, and ΣI =XchI and ΣF =XchF, and

stA|O(mA,mO)
def
= let ((o, q),m′A)← A(mA) in

let (a,m′O)← Oo(q,mO) in
let m′′A ← A↓((o, q, a),m′A) in
return ((o, q, a), (m′′A,m

′
O))

Let k : (NO → N). An adversary is called k-bounded, if
for every o ∈ NO, the number of queries to o in every ex-
ecution of A | O is not greater than k(o). An adversary is
called bounded, if she is k-bounded for some k. Thus, k
bounds the number of oracle calls that can be performed
by an adversary. To meaningfully state security properties
of oracle systems, we do not only need to bound the num-
ber of oracle calls but also the adversary’s global running
time. Therefore, we rather consider bounds of the form
(k, t) ∈ (NO → N) × N and talk about (k, t)-bounded ad-
versaries.

2.3 Events
Security properties abstract away from the state of adver-

saries, and are modeled using traces. Informally, a trace τ is
an execution sequence η from which the adversary memories
have been erased.

Definition 5. Let O be an oracle system.

• A partial trace is a sequence τ of the form

m0
x1−→ m1

x2−→ . . .
xk−→ mk

where m0 . . .mk ∈ MO and x1 . . . xk ∈ Xch such that

Pr[Ooi(qi,mi−1) = (ai,mi)] > 0

for i = 1 . . . k and xi = (oi, qi, ai). A trace is a partial
trace τ such that m0 = m̄O, and x1 = (oI, ,) and
xk = (oF, ,).

• An O-event E is a predicate over O-traces, whereas an
extended O-event E is a predicate over partial O-traces.

The probability of an (extended) event is derived directly
from the definition of A | O: since each execution sequence η
induces a trace T (η) simply by erasing the adversary mem-
ory at each step, one can define for each trace τ the set

T −1(τ) of execution sequences that are erased to τ , and for
every (generalized) event E the probability:

Pr(A|O : E) = Pr(A|O : T −1(E))
=

P
{η∈Exec(A|O)|E(T (η))=true} Pr(A|O : η)

Constructions and proofs in CIL use several common oper-
ations on (extended) events and traces. First, one can define
the conjunction, disjunction (and so on) of events; moreover,
one can define for every predicate P over Xch × MO × MO
the events “eventually P” FP and “always P” GP that corre-
spond to P being satisfied by one step and all steps of the
trace respectively. Moreover, let E be an (extended) event;
then we can define the event “E until P” E UP as follows.
For a trace τ of the form:

m0
x1−→ m1

x2−→ . . .
xk−→ mk

we set (E UP)(τ) = true iff there is a i ∈ [1, k] such that
P (xi,mi−1,mi) = true and E(τ [i−1]) = true, where τ [i−1]
is the partial trace:

m0
x1−→ m1

x2−→ . . .
xi−1−→ mi−1

Intuitively, E UP holds when P holds at some transition
in the trace and E holds before that. Moreover, we set
(E;P)(τ) = true iff E(τ [k − 1]) and P (xk,mk−1,mk). In-
tuitively, E;P holds when P holds at the last transition of
the trace and E holds before that. This type of temporal
reasoning turns out to be useful in proofs where the order
of events is important.

Reduction-based arguments require that adversaries can
partially simulate behaviors. In some cases, adversaries must
test whether a predicate ϕ ⊆ Xch × MO × MO holds for
given values based on their view, that is, the sequence of
queries-answers performed so far. A predicate for which
this is possible is said testable. A formal definition is given
in Definition 10.

We now turn to traces. Suppose that O,O′ are compatible
oracle systems, and that R ⊆ MO ×M′O. Given two traces
τ and τ ′, we write τ R τ ′ iff for every i = 1 . . . k, we have
mi R m′i, where:

τ = m0
x1−→ m1

x2−→ . . .
xk−→ mk

τ ′ = m′0
x1−→ m′1

x2−→ . . .
xk−→ m′k

Moreover, we say that two events E and E′ areR-compatible,
written E R E′, iff E(τ) is equivalent to E′(τ ′) for every
traces τ and τ ′ such that τ R τ ′.

3. CIL: STATEMENTS AND BASIC RULES
This introduces the judgments and basic rules of CIL.

Subsequent sections provide additional rules that are used
to carry reduction arguments (Section 4), simulation argu-
ments (Section 5) and interprocedural code motion, e.g. ea-
ger sampling (Section 6).

3.1 Judgments
CIL considers negligibility statements of the form O :ε E,

where E is an event and ε : ((NO → N) × N) → [0, 1]. A
statement O :ε E is valid, written |= O :ε E, iff for every
(k, t)-bounded adversary A with k ∈ ((NO → N)× N),

Pr(A|O : E) ≤ ε(k, t)

We also consider indistinguishability statements of the form
O ∼ε O′, where O and O′ are compatible oracle systems

which expect a boolean as result. A statement O ∼ε O′ is
valid, written |= O ∼ε O′, iff for every (k, t)-adversary A,

|Pr(A|O : r = true)− Pr(A|O′ : r = true)| ≤ ε(k, t)

where r = true is shorthand for Fλ(o,q,r).o=oF∧(r=true). CIL
statements support faithful definitions of standard security
assumptions such as DDH, or one-way permutations, and se-
curity properties such as IND-CPA, IND-CCA, or EF-CMA.

As cryptographic proofs often rely on assumptions, CIL
manipulates sequents of the form ∆ =⇒ φ, where ∆ is a set
of statements (the assumptions), and φ is a statement (the
conclusion). Validity extends to sequents ∆ =⇒ φ in the
usual manner. Given a set ∆ of statements, |= ∆ iff |= ψ for
every ψ ∈ ∆. Then ∆ |= φ iff |= ∆ implies |= φ. For clarity
and brevity, our presentation of CIL omits hypotheses, and
the standard structural and logical rules for sequent calculi.

3.2 Basic rules
The first set of rules supports equational reasoning:

O ∼0 O
O ∼ε O′

O′ ∼ε O
O ∼ε O′ O′ ∼ε′ O′′

O ∼ε+ε′ O′′

CIL features a rule that bears some similarity with the rule
of consequence in Hoare logic, has many useful instances,
and is trivially valid:

O :εi Ei (i ∈ I) E ⇒
W
i∈I Ei

URO :P
i∈I εi

E

In the sequel, we shall often omit the second premise in
derivations, as it is usually trivially valid. CIL also features
the trivially sound rule:

O{E}
POST-SO :0 ¬E

where the statement O{E} is used to indicate that an event
E holds for every execution of A|O, for all adversaries A.
Statements of the form O{E} can be established using Hoare
logics for probabilistic programs.

Besides, CIL features a rule to compute an upper bound on
the probability of an event from the number of oracle calls,
and from the probability that a single oracle call triggers
that event. Let ϕ be a predicate on Xch × MO × MO, and
define for every o ∈ NO the probability εo as

max
q∈Que,m∈MO

a∈Ans

X
m′∈MO

ϕ((o,q,a),m,m′)

Pr[Oo(q,m) = (a,m′)]

CIL features the rule:

FAILO :ε Fϕ

where ε = λ(k, t).
P
o∈NO

koεo.

The correctness of this rule follows directly from a stan-
dard union bound. This rule is used repeatedly in the proof
of PSS, and is used in many other examples, such as FDH
or OAEP. More general rules are sometimes required, e.g.
for the Switching Lemma. These rules are omitted.

4. CONTEXTS
This section introduces contexts, which provide a main

tool to perform reduction arguments. Informally, a context
C is an intermediary between an oracle system O and adver-
saries. One can compose a O-context C with O to obtain a
new oracle system C[O] and with a C[O]-adversary to obtain
a new O-adversary C ‖ A. Moreover, one can show that the
systems C ‖ A | O and A | C[O] coincide in a precise mathe-
matical sense. Despite its seemingly naivety, the relationship
captures many reduction arguments used in cryptographic
proofs and yields CIL rules that allow proving many schemes.

The definition of contexts is very similar to that of ora-
cle system, except that procedures are implemented by two
functions, one that transfers calls from the adversary to the
oracles, and another one that transfers answers from the or-
acles to the adversary—possibly after some computations.

Definition 6. An O-context C is given by:

• sets MC of context memories, an initial memory m̄C
and NC of procedures;

• for every c ∈ NC, a query domain In(c), an answer
domain Out(c), and two functions:

C→c : In(c)×MC → D(Que×MC)
C←c : In(c)× Xch×MC → D(Out(c)×MC)

• distinguished initial and finalization procedures cI and
cF s.t. In(cI) = Out(cF) = 1, and for all x and m ∈
MC:

range (C→cI (x,m)) (λ((o,),). o = oI)
range (C→cF(x,m)) (λ((o,),). o = oF)

We let ResC = In(cF).

An indistinguishability context is a O-context C such that
ResC = Res and C→cF(r,m) = δ((r,oF),m) for all r and m.

The sets QueC of context queries, AnsC of context answers,
and XchC of context exchanges are defined similarly to oracle
systems.

An O-context can be composed with the oracle system O
or with any O-adversary A, yielding a new oracle system
C[O] or a new adversary C ‖ A. We begin by defining the
composition of a context and an oracle system.

Definition 7. The application of an O-context C to O
defines an oracle system C[O] such that:

• the set of memories is MC×MO, and the initial memory
is (m̄C, m̄O);

• the oracles are the procedures of C, and their query
and answer domains are given by C. The initializa-
tion and finalization oracles are the initialization and
finalization procedures of C;

• the implementation of an oracle c is:

λqC, (mC,mO).
let ((o, qO),m′C)← C→c (qC,mC) in
let (aO,m

′
O)← Oo(qO,mO) in

let (aC,m
′′
C)← C←c (qC, (o, qO, aO),m′C) in

return (aC, (m
′′
C,m

′
O))

where the let · ← · in notation is used for monadic
composition, and return is used for returning the result
of the function.

The composition of an adversary with a context is slightly
more subtle and requires that the new adversary stores the
current query in its state.

Definition 8. The application of an O-context C to a
C[O] adversary A defines an O-adversary C ‖ A such that:

• the set of memories is MC×MA×QueC, and the initial
memory is (m̄C, m̄A,);

• the querying function is:

λ(mC,mA,).
let ((c, qC),m′A)← A(mA) in
let ((o, qO),m′C)← C→c (qC,mC) in
return ((o, qO), (m′C,m

′
A, (c, qC)))

• the update function is:

λ((o, qO, aO), (mC,mA, (c, qC))).
let (aC,m

′
C)← C←c (qC, (o, qO, aO),mC) in

return (m′C,A↓((c, qC, aC),mA),)

Likewise, one defines the O-event E ◦ C as the composition
of the C[O]-event E with the context C. The composition
relies on defining mixed C[O]-traces with steps of the form

(mC,mO)
(x,y)−→ (m′′C,m

′
O)

where x = (o, qO, aO) and y = (c, qC, aC) are defined accord-
ing to Definition 7 and there exists m′C such that

Pr[C→c (qC,mC) = ((o, qO),m′C)] > 0
Pr[Oo(qO,mO) = (aO,m

′
O)] > 0

Pr[C←c (qC, (o, qO, aO),m′C)] = (aC,m
′′
C)] > 0

Mixed traces can be projected to C[O]-traces and to O-
traces; we denote πC[O] and πO the projections to C[O]-traces
and O-traces respectively. Then, each C[O]-event E yields a
predicate Emix over mixed traces, defined as in (1) below :
it holds for a mixed trace if E holds on the projection of this
trace. A C[O]-event E also yields a predicate over O-traces,
defined as in (2) below : it holds for trace τ if there exists
a mixed trace τmix that projects to τ and for which Emix

holds.

(1) λτmix. E(πC[O](τmix))
(2) λτ. ∃τmix. πO(τmix) = τ ⇒ Emix(τmix)

Proposition 1. Let O,O′ be compatible oracle systems
and C be an O-context.

• If C is an indistinguishability context and |= O ∼ε O′
then |= C[O] ∼ε C[O′].

• For all C[O]-event E, if |= O :ε E◦C then |= C[O] :ε E.

To compute a bound on oracle queries performed by C ‖ A,
we define α : NC × NO → {0, 1} such that α(c, o) = 1 iff c
may call o, i.e., there are mc ∈ MC and q ∈ In(c) such thatP
m′c∈MC

Pr[C→(c)(mc, q) = (o,m′c)] > 0. Then, one can

prove that if A is (k, t) bounded then C ‖ A is bounded by

T (C, k, t) = (λo.
X
c∈NC

α(c, o)k(c), t+
X
c∈NC

k(c)T (c))

where T (c) is a bound on the time needed to compute both
C→c and C←c , for any arguments

5. BISIMULATION
Game-based proofs often proceed by transforming an or-

acle system into an equivalent one, or in case of imperfect
simulation into a system that is equivalent up to some bad
event. This section justifies this reasoning in terms of prob-
abilistic transition systems, using a mild extension of the
standard notion of bisimulation. More specifically, we de-
fine the notion of bisimulation up to, where two probabilistic
transition systems are bisimilar until the failure of a condi-
tion on their transitions. The definition of bisimulation is
recovered by considering bisimulations up to the constant
predicate true.

Let O and O′ be two compatible oracle systems. For every
oracle name, we let M̂ be MO + M′O and for every o ∈ NO,

we let Ôo be the disjoint sum of Oo and O′o, i.e.

Ôo : In(o)× M̂→ D(Out(o)× M̂)

We write m1
(o,q,a)−→>0 m2 iff Pr[Ôo(q,m1) = (a,m2)] > 0.

Definition 9. Let ϕ ⊆ Xch× M̂× M̂ and let R ⊆ M̂× M̂
be an equivalence relation. O and O′ are bisimilar up to ϕ,

written O ≡R,ϕ O′, iff m̄ R m̄′, and for all m1
(o,q,a)−→ >0 m2

and m3
(o,q,a)−→ >0 m4 such that m1 Rm3:

• stability: if m2 Rm4 then

ϕ((o, q, a),m1,m2) ⇔ ϕ((o, q, a),m3,m4)

• compatibility: if ϕ((o, q, a),m1,m2), then

Pr[Ôo(q,m1) ∈ (a,C)] = Pr[Ôo(q,m3) ∈ (a,C)]

where C is the equivalence class of m2 under R.

Bisimulations are closely related to observational equiva-
lence and relational Hoare logic, and allow to justify proofs
by simulations. Besides, bisimulations up to subsume the
Fundamental Lemma of [36].

Proposition 2. For all compatible oracle systems O and
O′, every relation R and predicate ϕ s.t. O ≡R,ϕ O′ and
adversary A:

• Pr(A | O : E ∧ Gϕ) = Pr(A | O′ : E′ ∧ Gϕ), for every
R-compatible pair of events E and E′,

• Pr(A | O : E U¬ϕ) = Pr(A | O′ : E′ U¬ϕ), for every
R-compatible pair of extended events E and E′.

Definition 10. Let ϕ : Xch × MO × MO → Bool. An
effective function Tϕ : Xch∗ × Que → Bool is called a ϕ-

tester, if for every trace τ of the form τ ′
(ok,qk,ak)−→ mk,, we

have ϕ((ok, qk, ak), last(τ ′),mk) = Tϕ(view(τ ′), (ok, qk)). A
predicate ϕ is called testable, if a ϕ-tester exists.

Proposition 3. For every oracle system O, every testable
predicate ϕ, every extended event E and every O-adversary
A, there exists an O-adversary ATϕ s.t.

Pr(A | O : E U¬ϕ) = Pr(ATϕ | O : E;¬ϕ)

One cane prove that if A is (k, t)-bounded and the evalu-
ation of Tϕ is bounded by T (ϕ) then ATϕ is bounded by

T (ϕ, k, t) = (k, t+ T (ϕ)
Ṗ
o∈NO

k(o)).

6. DETERMINIZATION
Bisimulation is stronger than language equivalence, and

cannot always be used to hop from one game to another. In
particular, bisimulation cannot be used for eager/lazy sam-
pling, or for extending the internal state of the oracle system.
The goal of this section is to introduce a general construc-
tion, inspired from the subset construction for determinizing
automata, to justify such transitions.

Definition 11. Let O and O′ be compatible oracle sys-
tems. O determinizes O′ by γ : MO → D(M′′O), written
O ≤det,γ O′, iff MO ×M′′O = M′O, and there exists m̄′′O such
that (m̄O, m̄

′′
O) = m̄′O, and γ(m̄O) = δm̄′′O , and for all o ∈ NO,

q ∈ In(o), a ∈ Out(o), m1,m2 ∈ MO and m′′2 ∈ M′′O:

Pr[γ(m2) = m′′2] p1 =
X

m′′1 ∈M′′O

Pr[γ(m1) = m′′1] p2(m′′1)

where:

p1 = Pr[Oo(q,m1) = (a,m2)]
p2(m′′1) = Pr[O′o(q, (m1,m

′′
1)) = (a, (m2,m

′′
2))]

We define a projection function π from O′-traces to O-traces
by extending the projection from MO×M′′O to MO to traces.

Proposition 4. Let O and O′ be such that O ≤det,γ O′,
and let E be a O-event. For every O-adversary A:

Pr(A|O : E) = Pr(A|O′ : E ◦ π)

We conclude this section by observing that it is possible to
combine determinization and bisimulation in a single con-
cept. By doing so, one obtains stronger proof rules that
yield more compact proofs. To simplify the presentation,
we chose to keep the two notions separate.

7. CIL: RULES AND SOUNDNESS
This section introduces additional rules that can be de-

rived from the results of the preceding sections, and states
the soundness of the logic. It also discusses methods to es-
tablish external premisses that are used in CIL rules.

7.1 Rules for contexts and oracles
First, CIL features composition rules that are an immedi-

ate application of the results of Section 4:

O ∼ε(k,t) O′
SUB

C[O] ∼ε(T (C,k,t)) C[O′]
O :ε(k,t) E ◦ C

NegSUB
C[O] :ε(T (C,k,t)) E

Then, CIL feature rules for oracles. These rules are conse-
quences of the results of Section 5, and involve equality of
oracle systems (up to ϕ). The rules (NegOR∀), (Neg3) and
(OR) are consequences of Proposition 2:

O :ε E ∧ Gϕ O ≡R,ϕ O′ E R E′
NegOR∀

O′ :ε E
′ ∧ Gϕ

O :ε E U¬ϕ O ≡R,ϕ O′ E R E′
Neg3

O′ :ε E
′ U¬ϕ

O :ε F¬ϕ O ≡R,ϕ O′
OR

O ∼ε O′

A useful instance of (Neg3), which is obtained by choosing
for E and E′ the constant events λτ. true, is :

O :ε F¬ϕ O ≡R,ϕ O′
Neg3

O′ :ε F¬ϕ

The rules (NegDET) and its counterpart rule (DET) are
consequences of Proposition 4:

O ≤det,γ O′ O′ :ε E ◦ π
NegDET

O :ε E

O ≤det,γ O′ O :ε E
NegDET

O′ :ε E ◦ π

O ≤det,γ O′
DET

O ∼0 O′

The rule (NegOR∃) captures imperfect simulations. It is
a consequence of the Proposition 3. In this rule, E is an
extended events:

O :ε(k,t) E;¬ϕ ϕ testable
NegOR∃

O :ε(T (ϕ,k,t)) E U¬ϕ

The proof system is sound.

Theorem 5. Every sequent ∆ =⇒ ϕ provable in CIL is
also valid, i.e. ∆ |= ϕ.

We have not investigated completeness and decidability, since
their practical importance seems rather limited, and most
likely would only hold under overly strong assumptions.

7.2 Derived rules and external premisses
Practical applications of the proof system benefit from us-

ing derived rules. For PSS, we rely on the derived rule (Up-
ToBad), whose derivation is given in Figure 2, and which can
be viewed as a generalization of the Difference Lemma [36],
a.k.a. the Fundamental Lemma [8]:

O′ :ε E
′ O′ :ε′ F¬ϕ O′ ≡R,ϕ O E R E′

UpToBad
O :ε+ε′ E

Likewise, practical applications of the proof system in-
volve establishing external premisses that fall out of the
scope of CIL statements. In the PSS example, the premisses
are established using standard mathematical reasoning.

More principled and automated methods for establishing
external premisses intrinsically depend on the language used
to implement oracles. If oracles are given as processes, one
would typically rely on process algebraic methods to estab-
lish bisimulations; on the contrary, one would use a rela-
tional Hoare logic if oracles are given as imperative pro-
grams. Likewise, one would use a Hoare logic to establish
negligibility statements.

8. PROBABILISTIC SIGNATURE SCHEME
In this section, we prove that PSS is secure in the random

oracle model.
A signing scheme is secure against existential forgery un-

der chosen message attack (EF-CMA), if it is not feasible
for the adversary to forge a new signature, even when given
access to a signing oracle and to the public key. Forgery is

modeled by the event ef-cma stating that the adversary has
returned a pair (r1,r2) that is a valid signature, and that
has not been produced by the signing oracle:

∃r1,r2. VSig (r1,r2) ∧ Fresh(r1,r2)

where VSig (r1,r2) and Fresh(r1,r2) are the following events:

VSig (r1,r2) = Fλ((o,q,), ,m). o=oF∧q=r1|r2∧V(R1,R2,m)

Fresh(r1,r2) = Gλ((o,q,a), ,). ¬(o=sign∧q=r1∧a=r2)

and V is the verification algorithm of the scheme—it takes
a message, and a forgery candidate, and a memory that
contains private data used to produce and check signatures.

The security of any signature scheme S against existential
forgery under chosen message attack, under the hypotheses
in ∆, can be stated in CIL as ∆ ⇒ S :ε ef-cma. In the case
of PSS the statement is of the form:

OW(f) :εOW Invert⇒ PSS :ε ef-cma

where PSS is the oracle system that describes PSS and
OW(f) :εOW Invert states the one-wayness of the permuta-

tion f , and ε = εOW + 1

2k2
+ (qs + qh)(qs

2k1
+

qf +qg+qh+qs

2k2
),

and qs, qh, qf , qg are bounds on the number of sign, OH ,
OF , and OG queries performed by the adversary, and where
k1, k2 are respectively the sizes OG’s and OH ’s output.

The formula OW(f) :εOW Invert asserts one-wayness of f ,
using the oracle system OW(f) and the event Invert defined
as follows. The system OW is composed of two oracles: oI

and oF. Informally, oI generates the public and inverse keys
for f as well as the challenge y. The oracle oF simply returns
1 without performing any computation. A memory of OW
has the form (pk, sk, y, b), where pk, sk are the public and
secret keys, y is the challenge and b ∈ {0, 1} only serves
to make sure that the memory remains unchanged after the
first call of oI. As y, pk, sk are generated by oI, the initial
memory is irrelevant except that it must ensure b = 0. The
implementation of oI is as follows:

λ(x,) if b = 0 then let y ← {0, 1}k in
let (pk, sk)← K in
let b← 1 in
return (pk, sk, y, b)

else return (pk, sk, y, b)

The event Invert is defined as:

Fλ((o,q,),m,). o=oF∧m=(pk, ,y,1)∧f(pk,q)=y

8.1 Random oracles
The hash functions are modeled as random oracles. More

precisely we define an oracle system ROM that simulates the
random oracle H, with random answers. The event Guess
occurs when the adversary guesses the hash of a value, r1,
i.e. outputs the hash r2 of r1 without querying it.

A memory of ROM is a partial mapping LH . ROM con-
tains an initialization oracle, a finalization oracle and OH .
The latter oracle has the same implementation as in PSS0

(modulo the type of the memories). The implementations
of the initialization and finalization oracles of ROM are as
follows:

oI = λ(x,m). (1, [])
oF = λ(x,m). match r1 : {0, 1}∗ | r2 : {0, 1}k2 with x in

return OH(r1,m)

O′ :ε E
′

UR
O′ :ε E

′ ∧ Gϕ O′ ≡R,ϕ O E R E′
NegOR∀

O :ε E ∧ Gϕ

O′ :ε′ F¬ϕ O′ ≡R,ϕ O
Neg3

O :ε′ F¬ϕ
URO :ε′ E ∧ F¬ϕ
URO :ε+ε′ E

Figure 2: Derivation of rule (UpToBad)

PSS1 ≡ϕ PSS2

(FAIL)

PSS2 :ε1 F¬ϕ

OW(f) :εOW Invert
NegSUB

PSS2 :εOW ef-cma2
(UpTo)

PSS1 :ε1+εOW ef-cma2
(NegDET)

PSS0 :ε1+εOW ef-cma2

FAIL
ROM :2−k2 Guess

(NegSUB)
PSS0 :2−k2 ef-cma1

(UR)
PSS0 :ε ef-cma

Figure 3: Proof tree for PSS

The event Guess is FGuessF where GuessF is:

λ((o, q,),m,m′).
match r1 : {0, 1}∗ | r2 : {0, 1}k2 with q in
o = oF ∧m′.LH(r1) = r2 ∧ r1 6∈ dom m.LH

For every oracle o, let εo denote:

Pr[Oo(q,m) = (a,m′) ∧ GuessF((o, q, a),m,m′)]

Note that εo = 0 if o 6= oF and εoF = 2−k2 . Therefore, using
rule (FAIL), we have ROM :2−k2 Guess.

We conclude this section with a mild subtlety. In order to
apply to ROM contexts who may contain procedures that
do not call OH , and as an oracle call has to be performed at
each step, we add a“dummy”oracle od = λ(x,m). (1,m). Of
course the “dummy” oracle does not invalidate the validity
of the derivation above.

8.2 Formal proof
The proof tree of PSS is given in Figure 3. We briefly

explain the proof tree below, in a bottom-up approach.
We can use the rule (UR) to perform a case analysis on

r1|r(r2,m) ∈ m.LH . It yields two new events ef-cma1 and
ef-cma2, by respectively adding to the F-formula the con-
juncts r1|r(r2,m) ∈ m.LH and r1|r(r2,m) 6∈ m.LH . Since
for every trace τ , if ef-cma(τ) then ef-cma1(τ) ∨ ef-cma2(τ),
(UR) yields:

PSS0 :2−k2 ef-cma1

PSS0 :ε−2−k2 ef-cma2

ff
=⇒ PSS0 :ε ef-cma (1)

The second branch PSS0 :2−k2 ef-cma1 is derived from
the properties of random oracles. The proof tree is:

(FAIL)
ROM : Guess (NegSUB)

PSS0 :2−k2 ef-cma1

To apply (NegSUB) we define a ROM-context CROM such
that PSS0 = CROM[ROM]1. A memory of CROM has the
form (pk, sk, LG, LF , LH). Its initial memory is the same
as the initial memory of PSS0. The procedures of CROM

are named cI, cF, cf , cg, ch and csign. The forward and

1More precisely, this equality holds modulo tuple associa-
tivity which can be captured using a bisimulation.

C→cI (x,mc) : return ((oI,1),mc)
C←cI (x, (o, q, a),mc) : let (pk, sk)← K in

return (pk, sk, [], [])

C→csign
(x,mc) : let r ← {0, 1}k1 in

return ((OH , x|r),mc)
C←csign

(x, (o, q, a),mc) : match x|r with q in
let (w2,m

′
c)← OG(a,mc) in

let (w3,m
′′
c)← OF (a,m′c) in

return (f−1(a|w2 ⊕ r|w3),m′′c)
C→cF(x,mc) : match r1|x′ : {0, 1}k with x in

match w1|w2|w3 with f(pk, x′) in
let (g,m′c)← OG(w1,mc) in
let r ← w2 ⊕ g in
return ((oF,r1|r),m′c)

Figure 4: Implementation of the forward and back-
ward implementations in CROM

backward implementations of cI, cF and csign are given in
Figure 4. The forward implementations of cf and cg sim-
ply call the “dummy” oracle od of ROM and do not modify
the context memory. Their backward implementations call
the implementations OG and OF to compute the requested
hashes. Eventually, the forward (respectively backward) im-
plementation of ch just passes along the query (respectively
the answer) to oracle H of ROM.

Next, we define the oracle system PSS1 (see Figure 5). In
this oracle system, we compute F (h) and G(h) each time h is
produced by H. To be consistent with PSS0, we introduce
two new variables L′F and L′G that have the same type as
LF and LG. The idea is to store the pre-computed hash
values in L′F and L′G, and to transfer them from L′F (resp.
L′G) to LF (resp. LG) once the values are requested to OF
and OG respectively. This is a case of eager sampling that
we handle with our determinization techniques. Indeed, we
can show that we have PSS0 ≤det,γ PSS1, where γ is as
follows. Consider a memory m of PSS0. Let X = (rng LH)\
(dom LG) (resp. Y = (rng LH) \ (dom LF)). Then, γ(m)
is the uniform distribution over all pairs (L′G, L

′
F) with L′G

(resp. L′F) a mapping (viewed as a set) in X → {0, 1}k1
(resp. Y → {0, 1}k0). Using rule (NegDET), we have:

PSS1 :ε−2−k2 ef-cma2 =⇒ PSS0 :ε−2−k2 ef-cma2 (2)

OH(x,m) :
if x ∈ domLH then return (LH(x),m)
else let w1|w2|w3 ← {0, 1}k2 × {0, 1}k1 × {0, 1}k0 in

let m1 ← m[LH := (x,w1) · LH] in
let m2 ← Upd(w1, w2 ⊕ r,G,m1) in
let m3 ← Upd(w1, w3, F,m2) in

return (w1,m3)

where Upd = λ(x,w,X,m). if x ∈ LX , L′X then (w,m)
else (w,m[L′X := (x,w) · L′X])

OG(x,m) :
if x ∈ domLG then return (LG(x),m)
else if x ∈ domL′G then

return (L′G(x),m[L′G
x→ LG])

else let g ← {0, 1}k1 in
return (g,m[LG := (x, g) · LG])

where m[L′G
x→ LG] =

m[LG := (x, L′G(x)) · LG, L′G := L′G \ (x, L′G(x))]

Osign(x,m) : let r ← {0, 1}k1 in
let (w1,m1)← OH(x|r,m) in
let (w2,m2)← OG(w1,m1) in
let (w3,m3)← OF (w1,m2) in
return (f−1(w1|w2 ⊕ r|w3),m3)

Figure 5: Implementation of oracles in PSS1

Next, we define the oracle system PSS2. We do a number
of changes w.r.t. PSS1:

1. We anticipate the computation of F (h) and G(h) re-
gardless of whether they have been previously com-
puted or not. This makes the new system differ from
the previous PSS1 in case OH produces a hash value
that has been either produced before for a different
input or directly queried by the adversary or by the
signing oracle.

2. We introduce a new variable y whose value is uniformly
sampled in {0, 1}k. This prepares for the one-way chal-
lenge.

3. In the implementation OH , we modify how w1|w2|w3

is determined by sampling a value u in {0, 1}k and
computing w1|w2|w3 as f(u)⊗ y, where ⊗ is the inner
law of group G. Since f is a permutation, both ways
of computing w1|w2|w3 are equivalent. In the signing
oracle, we do not perform the group operation and
compute w1|w2|w3 as f(u).

4. We introduce a list Lu that allows us find the value
u from which originates a H-hash computed as the k2

prefix of f(u)⊗ y.

The implementations of the oracles of PSS2 are given in
Figure 6. Now, let the predicate ϕ be defined on triples
((o, q, a),m,m′) as the conjunction of the clauses:

• if o = OH ∧ q 6∈ m.LH then
a 6∈ dom (m.LF ∪m.L′F ∪m.LG ∪m.L′G)

• if o = Osign then
w1 6∈ dom (m.LF ∪m.L′F ∪m.LG ∪m.L′G)

• if o = Osign then
∀g s.t. (w1, g) ∈ m′.LG, q | (w2 ⊕ g) 6∈ dom m.LH

where w1 = f(pk, a)[1, k2] and w2 = f(pk, a)[k2, k1 + 1].
Using (FAIL), we can establish PSS2 :ε1 F¬ϕ, with

ε1 = (qs + qh)(
qs
2k1

+
qf + qg + qh + qs

2k2
).

Indeed, a and w1, respectively w2, are freshly uniformly sam-
pled value in {0, 1}k2 , resp. {0, 1}k1 . Hence, the probability
of forcing ¬ϕ in a single call to an oracle is (qf + qg + qh +
qs)2

−k2 , resp. (qh + qs)2
−k1 .

Moreover, PSS1 and PSS2 are R-bisimilar until ϕ, where
R is such that mRm′ iff m and m′ coincide on their common
components, namely LH , LG, L

′
G, LF , L

′
F , pk, sk. Using the

rule (UpToBad), we obtain:

PSS2 :ε1 F¬ϕ
PSS2 ≡R,ϕ PSS1

PSS2 :εOW ef-cma2

9=;⇒ PSS1 :ε−2−k2 ef-cma2 (3)

The oracle implementations of PSS2 do not use the trapdoor
key sk. Therefore, it is easy to write PSS2 as a context C
applied to OW(f), i.e. PSS2 = C[OW(f)]. However, we
want to choose the context C such that:

ef-cma2 ◦ C⇒ Invert

To this end, we define the forward implementation of the
finalization procedure of C as follows (where oF denotes the
finalization oracle of OW(f)):

C→cF(x,mc) : match r1|r2 : {0, 1}k with x in
match w1|w2|w3 with f(pk,r2) in
let (g,m′c)← LG(w1) in
let r ← w2 ⊕ g in
let (u,w′1)← Lu(r1, r) in
return (oF,r2 � u)

When ef-cma2 is satisfied, we have w′1 = LH(w2) = w1,
and w3 = LF (w1) and w1|w2|w3 = f(u) ⊗ y. Since f is
homomorphic, it entails that u�r2 = f(sk, y), where� is the
inverse operation of ⊗ in group G. Hence, f(pk,r2 � u) = y
and Invert is satisfied. Therefore, we have:

OW(f) :εOW Invert =⇒ PSS2 :εOW ef-cma2 (4)

which concludes the proof.

9. RELATED WORK
Impagliazzo and Kapron [27] were the first to develop a

logic to reason about indistinguishability. Their logic is built
upon a more general logic whose soundness relies on non-
standard arithmetic; they show the correctness of a pseudo-
random generator, and that next-bit unpredictability im-
plies pseudo-randomness. Recently, Zhang [38] developed
a similar logic on top of Hofmann’s SLR system [26], and

OH(x,m) : if x ∈ dom LH then return (LH(x),m)
else
let u← {0, 1}k in
let w ← f(pk, u)⊗ y in
match w1|w2|w3 with w in
match M : {0, 1}∗ | r : {0, 1}k1 with x in
let m′ ← m[LH := LH · (x,w1),

L′F := L′F · (w1, w3),
L′G := L′G · (w1, w2 ⊕ r)
Lu := Lu · (M, r, u, w1)] in

return (w1,m
′)

Osign(x,m) :
let r ← {0, 1}k1 in
let u← {0, 1}k in
let w ← f(pk, u) in
match w1|w2|w3 with w in
let w′2 ← w2 ⊕ r in
let m′ ← m[LH := (x|r, w1), L′F := L′F · (w1, w3),

L′G := L′G · (w1, w
′
2)] in

return (u,m′)

Figure 6: Implementations of signing oracle and OH oracle in PSS2

reconstructs the examples of [27]. These logics have a lim-
ited applicability because of their lack of support for ora-
cles or adaptive adversaries and so cannot capture many of
the the standard patterns for reasoning about cryptographic
schemes.

Independently, Corin and den Hartog [16] prove seman-
tic security of ElGamal using a variant of a general purpose
probabilistic Hoare logic; again, their logic does not consider
oracles. Our logic CIL generalizes these frameworks by ac-
counting for oracles and adaptive adversaries. CIL also gen-
eralizes the specialized Hoare-like logic of Courant et al [18]:
this logic supports automated proofs of IND-CPA for en-
cryption schemes in the random oracle model. However, it
is not clear how to use it to show security of OAEP.

There have been similar efforts to develop computational
logics for protocols. One prominent example of such a logic
is Protocol Composition Logic (PCL) of Datta et al. [21],
which has been applied successfully to the IEEE 802.11i
wireless security standard and the IETF GDOI standard.
PCL is a computationally sound Hoare-like logic for indistin-
guishability; one important difference is that, being focused
on protocols, PCL does not provide support for standard
cryptographic constructions such as one-way functions. Mo-
tivated by work on PCL, Halpern [25] considers a first-order
logic, where ϕ → ψ means that Pr[ψ|ϕ] is overwhelming.
He provides a complete axiomatization and shows how a
qualitative proof of asymptotic security can be converted to
a qualitative proof of concrete security. It does not seem
straightforward to use Halpern’s logic for adaptative secu-
rity definitions and proofs.

Observational equivalence is a standard tool from pro-
gramming language theory and it can been used effectively
to express or approximate security properties such as se-
crecy, authenticity, or even anonymity. Abadi and Gor-
don [1] use observational equivalence to formulate secrecy
in the spi-calculus, and define a sound equational theory
for proving observational equivalence between two processes;
using the equational theory, they establish the security of
common protocols. While the spi-calculus relies on a sym-
bolic model of cryptography, Mitchell et al [33] develop a
theory of observational equivalence in a process algebra for
probabilistic polynomial time computation, and show how
to use the equivalence to reason about cryptographic primi-
tives. In particular, they develop a proof system for bisimu-
lation for their process algebra. Segala et al. [14, 35] develop
a model of probabilistic I/O-automata adapted to security
proofs and a corresponding approximated bounded proba-
bilistic simulation relations.

Observational equivalence in the symbolic and compu-
tational models can be related formally via computational
soundness results, which show that the security guarantees
that can be derived from reasoning in symbolic models re-
main meaningful in the computational model. In their semi-
nal work, Abadi and Rogaway [2] prove that symbolic obser-
vational equivalence is a sound abstraction of computational
observational equivalence. This line of work has been ex-
tended in many other works, e.g. [32, 31, 15]. However, there
are known limitations to computational soundness, and sev-
eral authors have attempted to circumvent them by devel-
oping proof systems or type systems that directly enforce
computational non-interference, see e.g. [19, 28], which is
closely related to computational observational equivalence.

A more direct approach is to develop a proof system for
reasoning about observational equivalence directly in the
computational model. One prominent example of this ap-
proach is Blanchet’s CryptoVerif [9], a semi-automatic tool
that allows carrying exact security proofs following the game-
based technique. CryptoVerif allows reasoning both about
primitives and protocols, and has been used successfully to
prove the security of many protocols, including Kerberos [10]
and of Full Domain Hash [11]—for the non-optimal bound.
It is difficult to assess CryptoVerif ability to handle automat-
ically more complex cryptographic proofs, e.g. for schemes
such as OAEP and PSS, or even for Coron’s improved bound
for FDH [17]. In addition, it remains challenging to gener-
ate independently verifiable proofs from successful runs of
CryptoVerif, see however [23].

Universal composability [12] is a paradigm for the design
of protocols using a very general simulation-based definition.
As discussed by Canetti [13], the UC framework can serve as
a basis for composable formal systems for security analysis,
and notes that such an approach is partly realized in the
work of Backes et al [4]. One drawback of tying a formal
approach to the UC framework are the inherent limitations
imposed by the strength of UC security definitions. This is
discussed in detail by Datta et al [20].

One central motivation for developing rigorous logics for
cryptography is that they can be formalized in a proof as-
sistant and then used to mechanically check the correct-
ness of cryptographic schemes. Machine checked proofs have
been suggested as a means to improve confidence in cryp-
tographic proofs, notably by Bellare and Rogaway [8] and
with more emphasis by Halevi [24]. Yet only a few cryp-
tographic primitives have been machine-checked. Backes
and co-workers [3] are developing a comprehensive frame-
work for machine-checking cryptographic proofs using the

Isabelle proof assistant. In a similar spirit, Barthe et al [6]
are developing CertiCrypt, which provides support for for-
malizing game-based proofs in the Coq proof assistant. CIL
and CertiCrypt are complementary and form an excellent
match, and we intend to combine them in the future.

10. CONCLUSION
Computational Indistinguishability Logic (CIL) is a gen-

eral logic that captures in a small set of rules many common
reasoning patterns in cryptographic proofs. We have focused
on a core logic and shown how many cryptographic tech-
niques (proofs by reduction, simulations, lazy/eager sam-
pling etc) are closely related to foundational notions in pro-
gramming languages semantics and process algebra (con-
texts, observational equivalence, determinization). There
are many relevant extensions to the core logic, e.g. condi-
tional reasoning and iterated oracle systems that are useful
for dealing with protocols.

One priority for future work is to integrate CIL with a
language-specific framework for cryptographic proofs, and
to develop heuristics for deciding whether a given relation is
a bisimulation up to. A longer term objective is to develop
sound and practical verification tools for cryptography. We
believe that programming languages theory and process al-
gebra will not only help establishing sound foundations, but
also practical techniques for these tools, and will eventually
have a lasting impact on provable security.

11. REFERENCES
[1] Mart́ın Abadi and Andrew D. Gordon. A calculus for

cryptographic protocols: The spi calculus. Inf.
Comput., 148(1):1–70, 1999.

[2] Mart́ın Abadi and Philipp Rogaway. Reconciling two
views of cryptography (the computational soundness
of formal encryption). Journal of Cryptology,
15(2):103–127, 2002.

[3] Michael Backes, Mathias Berg, and Dominique Unruh.
A formal language for cryptographic pseudocode. In
Proceedings of LPAR’08, pages 353–376.
Springer-Verlag, 2008.

[4] Michael Backes, Birgit Pfitzmann, and Michael
Waidner. A composable cryptographic library with
nested operations. In Sushil Jajodia, Vijayalakshmi
Atluri, and Trent Jaeger, editors, ACM Conference on
Computer and Communications Security, pages
220–230. ACM, 2003.

[5] Gilles Barthe, Benjamin Grégoire, Yassine Lakhnech,
and Santiago Zanella Béguelin. Beyond Provable
Security: Verifiable IND-CCA Security of OAEP,
2010. Submitted.

[6] Gilles Barthe, Benjamin Grégoire, and Santiago
Zanella Béguelin. Formal certification of code-based
cryptographic proofs. In Proceedings of POPL’09,
pages 90–101. ACM Press, 2009.

[7] Mihir Bellare and Philipp Rogaway. The exact
security of digital signatures – How to sign with RSA
and Rabin. In Proceedings of EUROCRYPT’96,
volume 1070 of Lecture Notes in Computer Science,
pages 399–416. Springer-Verlag, 1996.

[8] Mihir Bellare and Phillip Rogaway. The security of
triple encryption and a framework for code-based

game-playing proofs. In Proceedings of
EUROCRYPT’06, pages 409–426, 2006.

[9] Bruno Blanchet. A computationally sound mechanized
prover for security protocols. In IEEE Symposium on
Security and Privacy, pages 140–154. IEEE Computer
Society, 2006.

[10] Bruno Blanchet, Aaron D. Jaggard, Andre Scedrov,
and Joe-Kai Tsay. Computationally sound mechanized
proofs for basic and public-key Kerberos. In
Proceedings of ASIACCS’08, pages 87–99. ACM, 2008.

[11] Bruno Blanchet and David Pointcheval. Automated
security proofs with sequences of games. In Advances
in Cryptology – CRYPTO’06, volume 4117 of Lecture
Notes in Computer Science, pages 537–554.
Springer-Verlag, 2006.

[12] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. In FOCS, pages
136–145, 2001.

[13] Ran Canetti. Composable formal security analysis:
Juggling soundness, simplicity and efficiency. In Luca
Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors, ICALP (2), volume 5126 of
Lecture Notes in Computer Science, pages 1–13.
Springer, 2008.

[14] Ran Canetti, Ling Cheung, Dilsun Kirli Kaynar,
Moses Liskov, Nancy A. Lynch, Olivier Pereira, and
Roberto Segala. Analyzing security protocols using
time-bounded task-pioas. Discrete Event Dynamic
Systems, 18(1):111–159, 2008.

[15] Hubert Comon-Lundh and Véronique Cortier.
Computational soundness of observational
equivalence. In Proceedings of CCS’08, pages 109–118.
ACM Press, October 2008.

[16] Ricardo Corin and Jerry den Hartog. A probabilistic
Hoare-style logic for game-based cryptographic proofs.
In Proceedings of ICALP’06, volume 4052 of LNCS,
pages 252–263, 2006.

[17] Jean Sébastien Coron. On the exact security of Full
Domain Hash. In Proceedings of CRYPTO’00, volume
1880 of Lecture Notes in Computer Science, pages
229–235. Springer-Verlag, 2000.

[18] Judicaël Courant, Marion Daubignard, Cristian Ene,
Pascal Lafourcade, and Yassine Lakhnech. Towards
automated proofs for asymmetric encryption schemes
in the random oracle model. In Proceedings of CCS’08,
pages 371–380. ACM Press, 2008.

[19] Judicaël Courant, Cristian Ene, and Yassine
Lakhnech. Computationally sound typing for
non-interference: The case of deterministic encryption.
In Proceedings of FSTTCS’07, volume 4855 of Lecture
Notes in Computer Science, pages 364–375. Springer,
2007.

[20] Anupam Datta, Ante Derek, John C. Mitchell, Ajith
Ramanathan, and Andre Scedrov. Games and the
impossibility of realizable ideal functionality. In Shai
Halevi and Tal Rabin, editors, TCC, volume 3876 of
Lecture Notes in Computer Science, pages 360–379.
Springer, 2006.

[21] Anupam Datta, Ante Derek, John C. Mitchell, and
Bogdan Warinschi. Computationally sound
compositional logic for key exchange protocols. In

Proceedings of CSFW’06, pages 321–334. IEEE
Computer Society, 2006.

[22] Shafi Goldwasser and Silvio Micali. Probabilistic
encryption. Journal of Computer and System Sciences,
28(2):270–299, 1984.

[23] Jean Goubault-Larrecq. Towards producing formally
checkable security proofs, automatically. In
Proceedings of CSF’08, pages 224–238. IEEE
Computer Society, 2008.

[24] Shai Halevi. A plausible approach to computer-aided
cryptographic proofs. Cryptology ePrint Archive,
Report 2005/181, 2005.

[25] Joseph Y. Halpern. From qualitative to quantitative
proofs of security properties using first-order
conditional logic. In Proceedings of AAAI’08, pages
454–459, 2008.

[26] Martin Hofmann. A Mixed Modal/Linear Lambda
Calculus with Applications to Bellantoni-Cook Safe
Recursion. In Proceedings of CSL’97, pages 275–294,
1997.

[27] Russell Impagliazzo and Bruce M. Kapron. Logics for
reasoning about cryptographic constructions. Journal
of Computer and Systems Sciences, 72(2):286–320,
2006.

[28] Peeter Laud. On the computational soundness of
cryptographically masked flows. In Proceedings of
POPL 2008, pages 337–348. ACM, 2008.

[29] Ueli Maurer. Random systems: Theory and
applications. In Yvo Desmedt, editor, ICITS 2007,
volume 4883 of Lecture Notes in Computer Science,
pages 44–45. Springer-Verlag, 2009.

[30] Ueli Maurer, Krzysztof Pietrzak, and Renato Renner.
Indistinguishability amplification. In Alfred Menezes,
editor, Advances in Cryptology — CRYPTO 2007,
volume 4622 of Lecture Notes in Computer Science,
pages 130–149. Springer-Verlag, August 2007.

[31] Daniele Micciancio and Saurabh Panjwani. Adaptive
security of symbolic encryption. In Joe Kilian, editor,
Proceedings of TCC’05, volume 3378 of Lecture Notes
in Computer Science, pages 169–187. Springer-Verlag,
2005.

[32] Daniele Micciancio and Bogdan Warinschi. Soundness
of formal encryption in the presence of active
adversaries. In Proceedings of TCC’04, volume 2951 of
Lecture Notes in Computer Science, pages 133–151.
Springer, 2004.

[33] John C. Mitchell, A. Ramanathan, Andre Scedrov,
and Vanessa Teague. Probabilistic Polynominal-Time
process calculus and security protocol analysis. In
Proceedings of LICS’01, pages 3–8. IEEE Computer
Society, 2001.

[34] David Nowak. A framework for game-based security
proofs. In Proceedings of ICS’07, volume 4861, pages
319–333. Springer-Verlag, 2007.

[35] Roberto Segala and Andrea Turrini. Approximated
computationally bounded simulation relations for
probabilistic automata. In CSF, pages 140–156. IEEE
Computer Society, 2007.

[36] Victor Shoup. Sequences of games: a tool for taming
complexity in security proofs. Cryptology ePrint
2004/332, 2004.

[37] Jacques Stern. Why provable security matters? In
Advances in Cryptology – EUROCRYPT’03, volume
2656 of Lecture Notes in Computer Science, pages
449–461. Springer-Verlag, 2003.

[38] Yu Zhang. The computational SLR: a logic for
reasoning about computational indistinguishability.
IACR ePrint Archive 2008/434, 2008. Also in Proc. of
Typed Lambda Calculi and Applications 2009.

