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Abstract. We give a decision procedure for the satisfiability of finite
sets of ground equations and disequations in the constructor theory : the
terms used may contain both uninterpreted and constructor function
symbols. Constructor function symbols are by definition injective and
terms built with distinct constructors are themselves distinct. This cor-
responds to properties of (co-)inductive type constructors in inductive
type theory. We do this in a framework where function symbols can
be partially applied and equations between functions are allowed. We
describe our algorithm as an extension of congruence-closure and give
correctness, completeness and termination arguments. We then proceed
to discuss its limits and extension possibilities by describing its imple-
mentation in the Coq proof assistant.

Among problems in equational reasoning, a crucial one is the word prob-
lem: does a set of equations entail another one? In 1947, Post and Markov [15,
7] showed that this is undecidable. What is decidable is whether an equation
between closed terms is the consequence of a finite conjunction of equations
between closed terms. This problem is called congruence-closure and its decid-
ability was established by Nelson and Oppen [11], and Downey, Sethi, and Tarjan
[6]. The algorithms that are described have a quasi-linear complexity. Nelson and
Oppen, and also Shostak, described methods to extend the scope of this closed
case with some specific equational theories: lists, tuples . . .

In general, semi-decision procedures over equations use syntactic methods
(replacement, rewriting . . . ). Hence the algorithm used for congruence-closure
is an exception since its principle is to directly build a set of term equivalence
classes. The link between congruence-closure and syntactic methods was estab-
lished by the concept of abstract congruence closure [2, 1].

Because of its simplicity and efficiency, this algorithm makes a good candidate
for an implementation of a Coq tactic. Moreover, we wish to extend the decision
procedure in order to cover specific properties of constructors for inductive and
co-inductive types in Coq:

– Injectivity : C x1 . . . xn = C y1 . . . yn ⇒ x1 = y1 ∧ · · · ∧ xn = yn
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– Discrimination : C x1 . . . xn 6= D y1 . . . yp

The Coq proof assistant already contained, on the one hand, the injection and
discriminate tactics, that deal with immediate consequences of an equation
between constructor-based terms, and on the other hand the autorewrite tactic
that allows us to normalize a term with respect to a set of oriented equations.
Those tactics cannot cooperate with each other, which we could do by designing
a tactic for congruence-closure with the constructor theory.

In 2001, I [4] proved in Coq the correctness of the congruence-closure algo-
rithm and designed a tagging system for the data structure allowing us to extract
proofs of the equations. That method was implemented in the Coq system in
2002 as a tactic named congruence. The proof production method used there is
similar to the one discovered and studied in detail by Nieuwenhuis and Oliveras
[12].

In 2003, I implemented an extended version of the congruence tactic that
included the constructor theory. No theoretical ground was given to support that
extension, so this is the purpose of this article. Our aim is thus to describe a de-
cision procedure that can decide the combination of the theories of constructors
and uninterpreted symbols, by extending the congruence-closure algorithm. This
is done by proving that the decision problem can be reduced to a finite set of
terms. Moreover, the higher-order logic of the Coq system advocates for solving
the problem for simply typed terms, allowing equations in functional types.

In this article, we will only manipulate closed terms (without variables), that
we will abusively call terms for clarity purposes. We will also talk about term
algebra instead of closed term algebra.

1 The congruence closure problem

The language for the theory of equality uses a distinguished binary relation
symbol ≈, which is supposed to be well-sorted (i.e. ≈-related terms have the
same sort). Hence this polymorphic relation symbol is a notation for a set of
monomorphic predicates (≈s)s∈S where S is the set of sorts.

In order to define the congruence-closure problem, we will first explain what
a congruence is.

Definition 1 (Congruence). A well-sorted relation ≈ over a first-order term
algebra is called a congruence if, and only if, the following conditions hold :

1. ≈ is an equivalence relation, i.e. satisfies these three rules :

t ≈ t
refl

s ≈ t

t ≈ s
sym

s ≈ u u ≈ t

s ≈ t
trans

2. Any n-ary function symbol f in the signature is a ≈-morphism, i.e. it satis-
fies the following congruence rule :

s1 ≈ t1 . . . sn ≈ tn

f(s1, . . . , sn) ≈ f(t1, . . . , tn)
congrf
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An interesting property is that congruence relations are stable under arbi-
trary intersection, thus for any well-sorted binary relation R over a term algebra,
there is a unique minimal congruence ≈R such that R ⊆≈R: ≈R is the intersec-
tion of all congruences coarser than R (there is at least one, which relates all
terms of the same sort).

The congruence-closure problem can be stated in two equivalent ways:

– Is the finite set of propositions {s1 ≈ t1, . . . , sn ≈ tn, u 6≈ v} satisfiable in
the theory of equality ?

– Is there a congruence that satisfies both s1 ≈ t1, . . . , sn ≈ tn and u 6≈ v ?

The problem can be generalized to any number of inequalities u 6≈ v, the
issue being to determine if one among them contradicts the equations s ≈ t.

The equivalence between the two questions relies on two arguments: first, if
the set of propositions is satisfiable, by an interpretation I, then the ≈ relation
defined by s ≈ t ⇔ I(s) = I(t) is a congruence such that si ≈ ti for any i and
u 6≈ v. Second, if we have a congruence ≈ such that si ≈ ti for any i and u 6≈ v,
then we can build an interpretation mapping any term to its ≈ equivalence class.
The interpretation is well-defined since ≈ satisfies the congruence rule, and it
satisfies the equations and the inequality.

The key fact in the proof of congruence-closure decidability is : if T is the
set of terms and subterms appearing in the problem instance, then any proof
derivation of the equation u ≈ v from the axioms using the rules refl, sym,
trans and congr, can be turned into a proof where only terms in T are used.
From the dual point of view, any interpretation satisfying locally the set of
axioms can be extended to the set of all terms.

Nelson and Oppen [10, 11] and Downey, Sethi, Tarjan [6], start from this
property to build algorithms representing equivalence classes by a forest of trees
(union-find structure), in order to obtain an optimal complexity.

1.1 Simply typed term algebra

Here, we wish to deal with simply typed terms, so we will use an encoding
corresponding to curryfied terms. This representation allows to represent partial
function application. This is done by restricting our first-order signatures to a
small subset of simply typed signatures.

Definition 2 (Simply typed term). A simply typed term algebra is defined
by giving a signature (S, Σ) such that:

– S =
⋃

n∈N Sn, where Sn+1 = Sn ∪ {s→s′|(s, s′) ∈ Sn × Sn} and S0 is a set
of base sorts α1, . . . , αn. The sorts in S \ S0 are called functional sorts.

– Σ contains only constants and a set of binary function symbols @s,s′ called
application symbols which take one argument s→s′, the second in s and
yields a result in s′.
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In practice, only a finite number of the sorts and application symbols will
be used since only a finite number of sorts will occur in a given problem. As an
abuse of notation, we will often omit the indices of application symbols, and we
will shorten @(@(f, x), y) as (f x y). Any first-order signature can be turned into
a simply typed signature by applying a curryfication mapping as follows:

Definition 3 (Curryfied signature). Let (S, Σ) be a first-order signature.
The corresponding currified signature is (Ŝ, Σ̂), where Ŝ is the set of simple sorts
generated by using S as the set of base sorts, and Σ̂ contains, for each function
symbol f : (s1, . . . , sn)→s ∈ Σ, a constant symbol f̂ : s1→(. . .→(sn→s)), along
with the n application symbols required to apply f̂ : @s1,s2→...→s, . . . ,@sn,s.

From now on, we suppose the symbol → is right-associative and will omit
unnecessary brackets. Every term t with sort s in the first-order term algebra
Σ can be mapped to a curryfied term t̂ with the same sort in the term algebra
generated by Σ̂, by following the next example :

f : (s1, s2, s3)→s

wwppppppppppp
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The reverse statement, however, is only true for terms with a base sort —
note that many simply typed signatures are not curryfied signature, e.g. if they
have symbols with sort (N→N)→N — and this gives us a bijection between
first-order terms and curryfied terms.

Example 1. The first-order signature for Peano arithmetic has S0 = {N} as sorts
and the following symbols:

{0 : ()→N ;
S : (N)→N ;
+ : (N , N)→N ;
× : (N , N)→N}

The sorts used in the corresponding curryfied signature are

S = {N ; N→N ; N→N→N }

and the set of curryfied symbols is :
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{ 0̂ : N ;
Ŝ : N→N ;
+̂ : N→N→N ;
×̂ : N→N→N ;

@N ,N : (N→N , N)→N ;
@N ,N→N : (N→N→N , N)→N→N}

Please note that we can express functional equations in the curryfied signa-
ture, such as: @(+̂,@(Ŝ, 0̂)) ≈ Ŝ.

We might think that allowing to express more intermediate properties (higher-
order equations) in the curryfied framework would allow us to prove more prop-
erties in the theory of equality, but this is not the case:

Lemma 1 (Conservativity of curryfication). The curryfication is conser-
vative with respect to congruence-closure, i.e. any derivation of û ≈ v̂ from
ŝ1 ≈ t̂1, . . . , ŝn ≈ t̂n in the curryfied system can be turned into a derivation in
the first-order system. The converse also holds.

Proof. By explicit tree transformation, only termination is tricky. Please note
that by construction, curryfied terms are fully applied.

2 Extension to constructor theory

We now wish to extend the historical algorithm in order to deal with datatype
constructors. Those constructors are injective function symbols, similarly to tu-
ples constructors. They also have a discrimination property: two different con-
structors in the same sort produce distinct objects. These properties are built
into the system Coq’s type theory: they hold for constructors of both inductive
and co-inductive type.

We do not claim here that those two properties are sufficient to characterize
those constructors. For example, inductive type constructors also have acyclicity
properties in the style of Peano’s axiom about the successor function S, which
satisfies ∀x, x 6≈ S x. These acyclicity properties have been studied in [14].

Other kinds of deductions can be based on the assumption that datatypes
are totally generated by their constructors: considering a finite type such as the
booleans, with two constant constructors T and F , we can deduce that the set of
propositions {g T ≈ a, g F ≈ a, g c 6≈ a} in unsatisfiable. This kind of property
is not included in our notion of constructor theory, which would be closer to
Objective Caml [13] sum types when taking in account the possibility of raising
exceptions.

Definition 4 (Signature with constructors). A signature with constructors
is a simply typed signature with some distinguished constants called constructors.
A constructor with shape Cα

i : τ1→(. . .→(τn→α)) where alpha is a base sort is
called a n-ary constructor of the sort α.
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By convention, we will now use lowercase letters for regular function symbols
and uppercase letters for constructor symbols. The notation Cα

i will refer to some
constructor of the base sort α, with the convention that identical constructors
will always have identical indices. We now have to explain a congruence satisfying
the constructor theory.

Definition 5 (Constructor theory). A congruence ≈ satisfies the constructor
theory over the signature Σ if, and only if, the following conditions hold:
– ≈ satisfies all instances of the following injectivity rule :

Cα
i s1 . . . sn ≈ Cα

i t1 . . . tn

si ≈ ti
inji if

{
Cα

i s1 . . . sn : α

Cα
i t1 . . . tn : α

– For any pair of terms C s1 . . . sn and D t1 . . . tp in sort α, such that C and
D are distinct constructors, C s1 . . . sn 6≈ D t1 . . . tp.

Since we allow equations between terms in any functional sort, we need to
give a semantic notion of constructor-generated term relatively to a congruence
≈. We will call such terms inductive term.

Definition 6 (Inductive term). A term t is inductive with respect to ≈ if,
and only if, t ≈ C for some constructor C or t ≈ (fx) for some term x and
inductive term f .

We can immediately remark that if s is inductive w.r.t. ≈ and s ≈ t, then t
is also inductive. This allows us to use the notion of inductive equivalence class,
which contains (only) inductive terms.

The problem we now wish to solve is the satisfiability of a finite set E of
ground equations and inequalities of terms inside a constructor theory, which is
equivalent to finding a congruence satisfying both the constructor theory and E.

Similarly to basic congruence-closure, we can see that congruences satisfying
the injectivity of constructors are closed under arbitrary intersection. We can
conclude that there exists a smallest congruence satisfying the equations of a
given problem and the injectivity rule. If there is a congruence satisfying this
problem in the constructor theory, then this smallest congruence also does since
it satisfies less inequalities.

In order to use those facts to design our algorithm, we must check that we
are able to reduce the decision problem to a finite set of terms, as is done for the
congruence-closure problems. Unfortunately, the set of terms and subterms from
the problem is not sufficient to decide our problem, as shown by the following
example.

Example 2. Let α, β be two base sorts, f ,C two symbols in sort β→α, D in sort
α, b in sort β, among which C and D are (distinct) constructors of the sort α.
Then {C ≈ f ; f b ≈ D} is unsatisfiable, since it allows to prove that C b ≈ D,
but the proof uses the term C b which does not appear in the initial problem.

C ≈ f b ≈ b
refl

C b ≈ f b
congr@

f b ≈ D

C b ≈ D
trans



Deciding equality in the constructor theory 7

In order to cope with this, we define application-closed sets of terms. As we
deal with closed terms, a sort can be empty in a signature Σ. This is the case if
no closed term can be built from symbols in Σ, e.g. if Σ = {f : β→β} then β is
an empty sort. The following definition takes this remark into account.

Definition 7 (Application-closed set). A set T of simply typed terms with
constructors is application-closed with respect to the congruence ≈ if for each
inductive equivalence class C in T/≈ with a functional sort τ→τ ′, if the sort τ
is non-empty then there exist terms t ∈ C and u ∈ T such that (tu) ∈ T .

Now, we can define a local version of the constructor theory which uses
a secondary relation  , in order to keep the term set considered as small as
possible. The  is just an asymmetric and external version of ≈ that allows its
left-hand side to be a term with a constructor in the head position that is not
mentioned in the problem. It is actually this local theory that will be decided by
the algorithm.

Definition 8 (Local constructor theory). Let T be a subterm-closed set of
terms and ≈ a well-sorted relation on T . ≈ is said to be a local congruence on
T if it is an equivalence relation on T satisfying every instance of the congr@

rule where terms occuring are in T .
Furthermore, a local congruence ≈ satisfies locally the constructor theory if,

and only if, there exists a relation  satisfying the following rules :

Cα
i ≈ f

Cα
i  f

promotion
Cα

i t1 . . . tk  u u tk+1 ≈ v

Cα
i t1 . . . tk tk+1  v

compose

Cα
i s1 . . . sn  u Cα

i t1 . . . tn  u

si ≈ ti
injection

and such that there is no term t ∈ T such that Cα
i s1 . . . sn  t and

Cα
j t1 . . . tp  t, where i 6= j and n and p are the respective arities of Cα

i

and Cα
j .

The theorem for completeness of the original congruence-closure algorithm
states that any local congruence is the restriction of a congruence on all terms.
Now we have this similar local notion for constructor theory, that we use to
formulate the theorem that restricts our decision problem to a finite set of terms.

Theorem 1 (Finite set restriction). Let E be a finite set of equations and
inequalities and T be a subterm-closed set of terms containing all the terms
occuring in E.

Let ≈ be a local congruence on T satisfying E and satisfying locally the theory
of constructors, such that T is application-closed for ≈.

Then there exists a congruence ≈∗ over the whole term algebra, which, on
the one hand, satisfies E and the theory of constructors, and on the other hand,
is a conservative extension of ≈, i.e. for all terms u, v in T , u ≈∗ v ⇔ u ≈ v.
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Proof. In order to prove this, we explicitly construct a binary tree model for all
terms and define the relation ≈∗ as relating terms having the same interpretation
in the model. We build this model so that ≈ is the restriction of ≈∗ to T .

Let S be the set of binary trees with leaves labelled by the set T/≈∪{eτ}τinS
where T/≈ is the set of equivalence classes modulo ≈ and and eτ is an arbitrary
object in sort τ , which will be the representation for unconstrained terms.

We also restrict S to contain only well-sorted trees, where every leaf and node
has a additional sort label, and for any node with sort τ , there is a sort τ ′ such
that the left son of the tree has sort τ ′→τ and the right son has sort τ ′. We also
require that eτ is labelled by the sort τ and that any equivalence class is labelled
by the sort of the terms it contains. Let Sτ be the subset of trees whose root has
sort τ .

The notation (s, t) stands for the well-sorted tree with s and t as (well-sorted)
subtrees. A tree is said to be inductive if it is an equivalence class containing an
inductive term (for ≈), or if it is not just a leaf.

We can then define the Appτ,τ ′ function from Sτ→τ ′ × Sτ to Sτ ′ as follows:
suppose we have a ∈ Sτ→τ ′ and b ∈ Sτ .

– if a = eτ→τ ′ , then Appτ,τ ′(eτ→τ ′ , b) = eτ ′

– if a is not a leaf then Appτ,τ ′(a, b) = (a, b)
– if a ∈ T/≈ then :

• if b ∈ T/≈ and there is ta ∈ a and tb ∈ b such that (ta tb) ∈ T , then
let c be the equivalence class of (ta tb), we put Appτ,τ ′(a, b) = c. This
definition is not ambiguous since ≈ is a congruence.

• otherwise
∗ if a is inductive, then Appτ,τ ′(a, b) = (a, b)
∗ else Appτ,τ ′(a, b) = eτ ′ .

Our interpretation domain is the set S. The interpretation of constants and
constructors is their equivalence class in T/≈: I(f) = f̄ , and we set I(@τ,τ ′) =
Appτ,τ ′ . Then ≈∗ is defined by s ≈∗ t ⇔ I(s) = I(t).

Now first, ≈∗ is a congruence relation since it is by construction an equiva-
lence relation, it is well-sorted since the Sτ sets are disjoint, and since
I(@(f, x)) = App(I(f), I(x)), ≈ satisfies the congruence rule.

Again by construction, terms in T are interpreted into their equivalence class
for ≈, so ≈∗ is conservative with respect to ≈, and satisfies E.

Then we show that ≈∗ satisfies the constructor theory, which is a bit techni-
cal, and too long to be detailed here, see [5], Theorem 2.13, pages 42–45 for the
full proof. This concludes the proof. ut

Now that we have reduced our problem to a more manageable one, we will
give a description of the algorithm itself.

3 The decision algorithm

3.1 Description

We now give an algorithm to decide problems with ground equations and in-
equalities and a constructor theory. This algorithm is very similar to the one in
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[6], except for the part concerning constructors. This algorithm is given by a set
of transition rules (read from top to bottom) between quintuples (T,E,M,U, S)
made of :

T : Set of Terms not up to date in the signature table and for marking
E: Set of unprocessed Equations (≈-constraints)
M: Set of unprocessed Marks ( -constraints)
U : Union-find structure (map from terms to equivalence classes)
S : Signature table

An equivalence class is a quadruple (r, L, R,C) made of:
r: the representative term for the class
L: Set of Left fathers of the class
R: Set of Right fathers of the class
C: Set of Constructor marks of the equivalence class, i.e. set of terms
 -related to terms in the class.

We write U(u) = (ū, L(u), R(u), C(u)) to simplify notation. A left (resp.
right) father of a class c is a term whose left (resp. right) subterm is in the
class c.

The union-find structure is best described as a forest of trees in which all
nodes contain a term and point to their father node, and the roots contain an
additional class quadruple. The class searching operation is done by following the
path from a node to the root. The union(U, s, t) operation merges two equivalence
classes by making s̄ an immediate child of t̄, thus making t̄ the representative
term for all terms in the former class of s, the sets of left and right fathers are
then merged, but t̄ keeps its original set C.

The signature table acts as a cache. It maps a pair of representative terms
(ū, v̄) to a term whose left (resp. right) immediate subterms are in the class of u
(resp. v), if such a term is registered, and otherwise it yields ⊥. The suppr(S, R)
operation removes bindings to terms in R from the table.

We start with a set A of equations and disequalities. The set A↓ is the set
of terms and subterms occuring in A. The set A+ (resp. A−) is the set of pairs
of terms appearing in an equation (resp. inequality) in A.

The transition rules for the algorithm are given in Figure 1. The Init rule
builds the initial structure, where all terms are apart, all equations and all con-
structor marks are pending in E and M .

Three issues are possible for the algorithm: the Refute rule detects if an
inequality inA has been proved false, it answers that the problem is unsatisfiable.
The Conflict rule concludes the computation if two terms made of distinct fully
applied constructors are proven equal. If there is no constraint left to propagate
and none of the above rules apply, then the problem is declared satisfiable using
the Ok rule.

The Merge and no-Merge rules are used to deal with pending equality
constraints, the no-Merge rule avoids unnecessary operations. The Merge
rule has to expunge all outdated information from the tables: remove fathers of
merged terms from the signature table and put them in T to re-process them
later.
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The Match and Mark rules allow to mark an equivalence class with the
inductive terms that belong to it. The Match rule propagates the consequences
of the injectivity rule to E. The Update1/2 rules are used to update the signature
table, propagate the consequences of the congruence rule to E, and propagate
marks from subterms to their left fathers.

Example 3. This first example is a very simple one used to illustrate how the
signature table works. In the U set, the notation s 7→ t stands for s̄ = t, and by
default ū = u. Similarly, C(t) = ∅ for all representative terms not mentioned.

Consider the signature S0 = {s}, Σ = {a : s, f : s→s} and the following
problem : {f a ≈ a, f(f a) 6≈ a}. A possible execution of the algorithm is given
in Figure 2.

Example 4. In order to illustrate the use of marks for constructors on equivalence
classes, we now give an example with both injection and discrimination. Consider
the following signature :

S0 = {bool, box},
Σ = {g : bool→box, B : bool→box, T : bool, F : bool}

The satisfiability problem {B ≈ g, g T ≈ g F} is solved by our procedure in
Figure 3.

3.2 Properties

Theorem 2 (Termination). Any successive application of the rules of the al-
gorithm reaches SAT or NOSAT in a finite number of steps.

Proof. By checking the rules, we remark that there is a rule that we can apply in
every situation and we can check that the tuples decrease for the lexicographic
ordering made of:

1. the number of equivalence classes in the Union-Find structure.
2. the union T ∪M , ordered by the multiset extension of the size of term sorts,

considering that identical sorts are bigger in T than in M .
3. the size of E

Theorem 3 (Correctness). The algorithm is correct, i.e. if it answers NOSAT
then the problem is unsatisfiable.

Proof. The proof is made by showing that the rules preserve key invariants and
that the side-conditions for final transitions ensure correctness. The detailed
proof can be found in [5], section 2.3.4, p. 51.

Completeness is proven in two steps: first, we prove that if the algorithm
reaches SAT then the equivalence relation induced by the union-find struc-
tures, together with the marking relation, gives a congruence that satisfies locally
the constructor theory.
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initialization rule

Sat(A)?

T0, E, M, U, ∅
Init

8>>><>>>:
T0 = {@(u, v) ∈ A↓}
E = A+

M = {(Cα
i , Cα

i )|Cα
i ∈ A↓}

U = u 7→ (u, {@(u, v) ∈ A↓}, {@(v, u) ∈ A↓}, ∅)

conclusion rules

∅, ∅, ∅, U, S

SAT
Ok

n
∀(u, v) ∈ A−, ū 6= v̄

T, E, M, U, S

NOSAT
Refute

n
∃(u, v) ∈ A−, ū = v̄

T, E, M ∪ {(t, Cα
i u)}, U, S

NOSAT
Conflict

8><>:
Cα

i u : α (fully applied)

Cα
j v ∈ C(t)

i 6= j

deduction rules

T, E ∪ {(s, t)}, M, U, S

T ∪ L(s) ∪R(s), E, M ∪ {(t, c)|c ∈ C(s)},
union(U, s, t), suppr(S, L(s) ∪R(s))

Merge
n

s̄ 6= t̄

T, E ∪ {(s, t)}, M, U, S

T, E, M, U, S
no-Merge

n
s̄ = t̄

T, E, M ∪ {(t, Cα
i u)}, U, S

T, E ∪ {(u, v)}, M, U, S
Match

(
Cα

i u : α (fully applied)

Cα
i v ∈ C(t)

T, E, M ∪ {(t, Cα
i u)}, U, S

T ∪ L(t), E, M, U{C(t)← C(t) ∪ Cα
i u}, S

Mark

8><>:
Cα

i u : τ→τ ′ (partially applied)

or

C(t) = ∅

T ∪ {t}, E, M, U, S

T, E ∪ {(t, s)}, M ∪ {(t, F v)|F ∈ C}, U, S
Update1

8><>:
t = @(u, v)

S(ū, v̄) = s

C(u) = C

T ∪ {t}, E, M, U, S

T, E, M ∪ {(t, F v)|F ∈ C}, U, S ∪ {(ū, v̄) 7→ t}
Update2

8><>:
t = @(u, v)

S(ū, v̄) = ⊥
C(u) = C

Fig. 1. Rules of our algorithm for the problem A
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SAT (f a ≈ a, f(f a) 6≈ a)?

{f a, f(f a)}, {(f a, a)}, ∅, ∅, ∅
Init

{f a, f(f a)}, ∅, ∅, {f a 7→ a}, ∅
Merge

{f(f a)}, ∅, ∅, {f a 7→ a}, {(f, a) 7→ f a}
Update2

∅, {(f(f a), f a)}, ∅, {f a 7→ a}, {(f, a) 7→ f a}
Update1 S(f̄ , f a) = f a

∅, ∅, ∅,


f a 7→ a
f(f a) 7→ a

ff
, {(f, a) 7→ f a}

Merge

NOSAT
Refute f(f a) = a = ā

Fig. 2. Satisfiability computation for {f a ≈ a, f(f a) 6≈ a}

Lemma 2 (Local completeness). If the algorithm reaches SAT , then the
relation ≈ defined by u ≈ v ⇔ ū = v̄ is a local congruence in A↓ which satisfies
locally the constructor theory.

To establish global completeness, we need a hypothesis: the set A↓ has to be
application-closed for ≈. This is not true in general. However the algorithm can
be adapted to detect if this occurs, and we can try to add terms to our term set
in order to have the terms we want fully applied. The incompleteness detection
is done in the following way :

– Initially, every class has UNKNOWN status.
– When a class with UNKNOWN status is marked with a partially-applied

constructor, it goes to INCOMPLETE status.
– When an Update rule is applied to a term (f x) and the class of f has

INCOMPLETE status, it goes to COMPLETE status.
– When classes are merged, they get the most advanced status of the two

merged classes, considering COMPLETE most advanced, INCOMPLETE
less advanced and UNKNOWN least advanced.

That way, when the algorithm reaches SAT , the final set is application-closed
if, and only if, no class is left with INCOMPLETE status. This said, global
completeness can be stated as follows:

Theorem 4 (Completeness). Let A a non-empty finite set of axioms, if the
algorithm reaches SAT from A and the final set is application-closed for ≈, then
A is satisfiable.

Proof. By using the previous lemma together with Theorem 1.

If all sorts are inhabited, we can add to the final state of the algorithm
the partially applied inductive terms, applied to arbitrary terms in the correct
sort. Once this is done, a re-run of the algorithm from this state will yield an
application-closed set of terms. Thus there is no need to carry on this process
more than once. Nevertheless, the first run is necessary to determine how to
complete the set of terms.
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SAT (B ≈ g, g T ≈ g F )?

{g T, g F}, {(B, g), (g T, g F )}, {(T, T ), (F, F ), (B, B)}, ∅, ∅
Init

{g T, g F}, {(g T, g F )}, {(T, T ), (F, F ), (B, B)}, {B 7→ g}, ∅
Merge

{g T, g F}, ∅, {(T, T ), (F, F ), (B, B)},


g T 7→ g F
B 7→ g

ff
, ∅

Merge

{g T, g F}, ∅, {(F, F ), (B, B)},


g T 7→ g F C(T ) = {T}
B 7→ g

ff
, ∅

Mark

{g T, g F}, ∅, {(B, B)},


g T 7→ g F C(T ) = {T}
B 7→ g C(F ) = {F}

ff
, ∅

Mark

{g T, g F}, ∅, ∅,

8<:
g T 7→ g F C(T ) = {T}

B 7→ g C(F ) = {F}
C(g) = {B}

9=; , ∅

Mark

{g F}, ∅, {(g T, B T )},

8<:
g T 7→ g F C(T ) = {T}

B 7→ g C(F ) = {F}
C(g) = {B}

9=; , ∅

Update2

{g F}, ∅, ∅,

8<:
g T 7→ g F C(T ) = {T}

B 7→ g C(F ) = {F}
C(g F ) = {B T} C(g) = {B}

9=; , ∅

Mark

∅, ∅, {(g F, B F )},

8<:
g T 7→ g F C(T ) = {T}

B 7→ g C(F ) = {F}
C(g F ) = {B T} C(g) = {B}

9=; , ∅

Update2

∅, {(F, T )}, ∅,

8<:
g T 7→ g F C(T ) = {T}

B 7→ g C(F ) = {F}
C(g F ) = {B T} C(g) = {B}

9=; , ∅

Match B F ≈ B T

{g F}, ∅, {(F, F )},

8<:
g T 7→ g F C(T ) = {T}

B 7→ g C(g) = {B}
F 7→ T C(g F ) = {B T}

9=; , ∅

Merge

NOSAT
Conflict F ≈ T

Fig. 3. Computation for {B ≈ g, g T ≈ g F}
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4 The congruence tactic

A previous version of the algorithm has been implemented in the Coq proof
assistant (version 8.0). This version is incomplete but the upcoming version 8.1
will allow you to benefit from a corrected version. The congruence tactic extracts
equations and inequalities from the context and adds the negated conclusion if
it is an equality. Otherwise, we add to the problem the inequalities H 6≈ C, H
which is a hypotheses which is not an equation and C the conclusion. We also
add H 6≈ H ′ for every pair of hypotheses h : H and h′ : ¬H ′ where neither H
nor H ′ are equalities.

Then the algorithm is executed with a fixed strategy. If the result is SAT it
fails to prove the goal. Otherwise it is instrumented to produce a constructive
proof of the equation that was proven to dissatisfy the problem. The method
used is similar to that explained in [4] and [9] and more recently in [12].

Moreover, the congruence tactic detects if the final set of terms is application-
closed and if not, it can complete it by adding extra terms with meaningless
constants, so that if the completed problem is unsatisfiable, the procedure can
ask the user for a replacement to these constants. We exemplify this with the
type of triples in the Coq system (type nat) :

Inductive Cube:Set :=
| Triple: nat -> nat -> nat -> Cube.

We now wish to prove :

Theorem incomplete : ∀ a b c d : nat,
Triple a = Triple b → Triple d c = Triple d b → a = c.

After having introduced the hypotheses by using the intros command, we are
able to extract the following set of equations :

{Triple a ≈ Triple b, Triple d c ≈ Triple d b, a 6≈ c}

The algorithm finds out that the set of equations is unsatisfiable, but the set of
terms had to be completed to become application-closed, so it fails to produce
the proof and explains it to the user :

Goal is solvable by congruence but some arguments are missing.
Try "congruence with (Triple a ?1 ?2) (Triple d c ?3)",
replacing metavariables by arbitrary terms.

The user may then give manually the additional terms to solve the goal :

congruence with (Triple a 0 0) (Triple d c 0).

5 Conclusion

The congruence tactic is a fast tactic which solves a precise problem, so it can be
used as a goal filter, to eliminate trivial subgoals. This is very useful when doing
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multiple nested case-analysis of which most cases are failure cases for example
when doing the proofs for the reflexion schemes used in [3].

The work lacks both a proper complexity analysis and some benchmarks, but
since it is quite specific it is difficult to compare with other tools.

An obvious improvement would be to add λ-abstraction to the term algebra.
This would require us to keep track of all possible β-reductions. Then, it would
be interesting to see what can be done with dependently-typed terms, since the
conclusion of the congr@ rule is ill-typed in that case. An exploration of the
relation between heterogeneous equality [8] and standard homogeneous equality
is needed for closed terms. Whichever extension will be done will have to keep
to the original aim: design a specific procedure which can solve a problem or fail
to solve it very fast so it can be used widely.
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