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Abstract. This paper addresses the question of extending the usual approxima-
tion and sampling theory of continuous signals and systems to those encompass-
ing discontinuities, such as found in modern complex control systems (mode
switches for instance). We provide some evidence that the Skorokhod topology
is a good candidate for dealing with those cases in a uniform manner by showing
that, in the boolean case, Skorokhod uniformly continuous signals are exactly the
signals with uniform bounded variability.

1 Introduction

1.1 Problem statement

The question of how accurately a control system can be implemented on computers is
clearly an important one. For instance, this question arises when a satisfactory control
system has been obtained and has to be implemented: how the uncertainties arising from
a computer implementation will impair the obtained results in terms ofe.g.,stability?
This question also arises when considering fault tolerance: in highly critical systems,
fault tolerance is achieved by massive redundancy and voting. Though the computer
science view of fault tolerance advocates the use of exact voting (two redundant units
should agree bit-wise on their results)[11,8], in many systems, for instance in the Airbus
“fly-by-wire” systems, a smoother approach is taken which can be seen as a “topolog-
ical” approach. It consists of determining a “normal operation” neighbourhood into
which signals should stay according to the several sources of uncertainty that can im-
pair them. Then, the idea is that faults are detected if signals do not belong to the same
neighbourhood [5].

This question is a classical one, as far as “continuous control” is considered and
can be addressed by using classical distances. But modern control systems are more
and more based on mixed (or “hybrid”) techniques encompassing also non continuous
computations: switches, modes, etc.
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Our paper tries to extend the “classical approach” to these “hybrid systems”. In a
first section, we present this classical approach. We show here how approximation and
sampling can be dealt with in terms of uniform continuity. In a second section, we con-
sider the case of discontinuous signals and systems. Uniform bounded variability seems
to appear here as the analogue of uniform continuity, in that it characterises “slow”
varying signals that can be thoroughly sampled without loosing too much information.
However, uniform bounded variability doesn’t provide a nice topological framework. In
the third section, we show that the Skorokhod distance gives us the missing topological
framework as we can show that uniform bounded variability signals are exactly those
which are Skorokhod uniformly continuous. Furthermore, it encompasses both cases,
continuous and non continuous, and thus allows to deal with hybrid cases.

1.2 Related Works

Several approaches seem to have been followed for addressing the question:

– The topological approach initiated by Nerode [12,3] explicitly introduces the ap-
proximation and then tries to characterise it as a continuous mapping. This leads to
equip the approximation space with anad-hoc(small) topology.

– The equivalence or property preserving approaches followed for instance in
[10,1,6,7] tries to construct an approximation of a given system and to check
whether it is equivalent to or preserves some properties of the original system ex-
pressed in some logic.

– Finally, M. Broucke [9] mixes the two approaches and uses the Skorokhod distance
in order to define an approximate bisimulation between several classes of hybrid
systems. In this sense, her work is quite close from ours. However, the motivations
are slightly different: it doesn’t seem that uniformity is addressed and that a result
similar to theorem4 is obtained.

2 The Classical Continuous Framework

2.1 Basic Definitions

We consider systems that have to operate continuously for a long time for instance a
nuclear plant control that is in operations for weeks or an aircraft control that flies for
several hours. Thus, the horizon of our signals is not bounded. Hence, asignal x is
for us simply a function fromR+ to R and asystemis simply a functionf causally
transforming signals, that is to say, such thatf (x)(t) is only function ofx(t ′), t ′ ≤ t.

Thedelay operator∆ τ is such that(∆
τ x)(t) = x(t− τ), and a system isstationary

(or time invariant) if∀τ,S(∆
τ x) = ∆

τ(S x).
A signalx is uniformly continuous (UC)(figure1) if there exists a positive function

ηx from errors to delays, such that:

∀ε > 0,∀t, t ′, |t− t ′| ≤ ηx(ε)⇒ |x(t)−x(t ′)| ≤ ε

Such a definition can be rephrased in a functional way by introducing the|| ||∞ norm
on signals, defined as



η(ε)

ε

x x’

Fig. 1.A uniformly continuous signal

||x||∞ = inf
x′≈x

sup
t∈R+
|x′(t)|

where≈ denotes the equality “almost every where”, that is to say such that isolated
discontinuity points are not taken into account.

Then, a signalx is uniformly continuous if there exists a positive functionηx from
errors to delays, such that:

∀ε > 0,∀τ, |τ| ≤ ηx(ε)⇒ ||x−∆
τ x)||∞ ≤ ε

2.2 Retiming and Sampling

A retiming function is a non decreasing function fromR+ to R+. This is a very general
definition which has many possibilities. For instance, a piece-wise constant retiming
function can be seen as a sampler: ifx′ = x◦ r, and if r is piece-wise constant, then, at
each jump ofr, a new value ofx is taken and maintained up to the next jump. This allows
us to define a periodic samplerr, of periodTr by the piece-wise constant function:

r(t) = E(t/Tr)

whereE is the integer part function (see figure refpersamp).
Retiming allows us to restate the uniformly continuous signal definition, by saying

that a signalx is uniformly continuous if there exists a positive functionηx from errors
to delays, such that:

∀ε > 0,∀ retiming r, ||r− id||∞ ≤ ηx(ε)⇒ ||x−x◦ r||∞ ≤ ε

whereid is the identity retiming function.
We can then define asamplablesignal as a signal such that the sampling error can

be controlled by tuning the sampling period:
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Fig. 2.A periodic sampling retiming

Definition 1 (Samplable Signal).A signal x is samplable if there exists a positive func-
tion ηx from errors to sampling periods, such that:

∀ε > 0,∀ periodic sampling r,Tr ≤ ηx(ε)⇒ ||x−x◦ r||∞ ≤ ε

Then the following theorem obviously holds:

Theorem 1. A signal is samplable if and only if it is uniformly continuous.

2.3 From Signals to Systems

This framework extends quite straightforwardly to systems by saying that a systemS
is uniformly continuous (figure3) if there exists a positive functionηS from errors to
errors such that:

∀ε > 0,∀x,x′, ||x−x′||∞ ≤ ηS(ε)⇒ ||(S x)− (S x′)||∞ ≤ ε

and state the following theorem:

System

ε

η(ε)

Fig. 3.A uniformly continuous system



Theorem 2. A uniformly continuous stationary system, fed with a uniformly continuous
signal outputs a uniformly continuous signal.

Proof. Givenx UC, SUC, andε > 0,

∀x′, ||x−x′||∞ ≤ ηS(ε)⇒ ||(S x)− (S x′)||∞ ≤ ε

and

∀τ, |τ| ≤ ηx(ηS(ε))⇒ ||x− (∆
τ x)||∞ ≤ ηS(ε)

Thus,

∀τ, |τ| ≤ ηx(ηS(ε))⇒ ||(S x)− (S(∆
τ x)||∞ ≤ ε

But S(∆
τ x) = ∆

τ(S x). We thus get

ηSx= ηx◦ηS

This theorem says that given an acyclic network of UC systems, one can compute maxi-
mum delays on system interconnection, sampling periods and maximum errors on input
signals such that errors on output signals be lower than given bounds. This provides us
thus with a nice approximation theory.

2.4 Generalisation

This extends to any distance between signals:

Definition 2 (Uniformly continuous signals).A signal x is UC for the distance d if
there exists a positive, error to delay functionηx such that:

∀ε > 0,∀τ, |τ| ≤ ηx(ε)⇒ d(x,∆ τ x)≤ ε

Definition 3 (Uniformly continuous systems ).A system is UC for the distance d if
there exists a positive, error to error functionηS such that:

∀ε > 0,∀x,x′,d(x,x′)≤ ηS(ε)⇒ d((S x),(S x′))≤ ε

In this generalised background, the same theorem holds:

Theorem 3. A uniformly continuous stationary system S, fed with a uniformly contin-
uous signal x outputs a uniformly continuous signal:

ηSx= ηx◦ηS



3 Uniform Bounded Variability Signals

We now consider boolean signals and we want to find some concept more or less equiv-
alent to uniform continuity in the sense that it characterises “slowly” varying signals
that can be sampled. For the sake of simplicity, we restrict ourselves in the remaining of
the paper topiece-wise continuoussignals,i.e.,signals for which there exists an increas-
ing and either finite or diverging sequence of times{t0, . . . tn, . . .} such that the signal is
continuous in every open interval]tn, tn+1[. For this kind of signal we can introduce a
discontinuity count function

Definition 4 (Discontinuity count function). dct1,t2
(x) is the function counting the

number of discontinuity points of a signal x in an interval[t1, t2].

dct1,t2
(x) = card{t | x(t−) 6= x(t+)∧ t1≤ t ≤ t2}

where, as usual,x(t−),(x(t+)) is the left (right) limit ofx at t.

When applied to boolean signals, this allows us to define these “slowly varying
signals” as those signals which only have a bounded number of discontinuities in any
time interval of given length:

Definition 5 (Uniform bounded variability signal (UBV)). A boolean signal x has
UBV (figure4) if there exists a function from discontinuity counts to delays,ηx, such
that:

∀n∈ N+,∀t, t ′, |t− t ′| ≤ ηx(n)⇒ dct,t ′(x)≤ n

whereN+ denotes the set of positive integers. This definition “patches” the continuity
one, but, in general the only interesting value forn is 1. ThenTx = ηx(1) is the minimum
stable time of the signal.

x -�
∆ ≥ Tx

-�
∆
′ ≥ Tx

Fig. 4.Uniform bounded variability

This definition could allow us to adapt the previous approximation theory to boolean
signals. For instance we could definesamplableboolean signal, as those signals for
which a sampling period can be found such that a given minimum number of samples
can be drawn at each constant valued interval. Then, clearly, samplable boolean signals
correspond to uniform bounded variability ones.

However, this is not a topological definition and it lacks many of its appealing fea-
tures, e.g., triangular inequality. For instance we cannot derive from it a convenient
definition for systems. Furthermore, it is not clear how this definition combines with
the classical one for mixed signals.



4 Skorokhod Distance

4.1 Definition

This distance [2] has been proposed as a generalisation of the usual distance so as to
account for discontinuities.

Definition 6 (Skorokhod distance).

dS(x,y) = inf
bi jective retiming r

||r− id||∞ + ||x−y◦ r||∞

We see here the idea of this definition: instead of comparing the signals at the same
times, we allow shifts in time before comparing points, provided the shifts are bijective,
i.e., we don’t miss any time. In this definition, the use of bijective retimings is funda-
mental. Otherwise, it could be easily shown that it would not be a distance: for instance
symmetry and triangular inequality could be violated.

4.2 Skorokhod Distance and Uniform Bounded Variability

Let us show here that the Skorokhod distance can replace the non topological concept
of uniform bounded variability. This is the main result of the paper and is summarised
in the following theorem:

Theorem 4. A boolean signal has uniform bounded variability if and only if it is Sko-
rokhod uniformly continuous.

Proof. The proof is based on the following lemmas:

Lemma 1. A bijective retiming is both increasing and continuous and its inverse is
continuous: it is an homeomorphism.

This is a classical property whose proof is omitted.

Lemma 2. If r is a bijective retiming with||r− id||∞ ≤ δ , then

dc0,t−δ
(x)≤ dc0,t(x◦ r)≤ dc0,t+δ

(x)

In other words, a bounded bijective retiming preserves the number of discontinuities.
This is due to the fact that is is an homeomorphism which preserves limits.

The proof then proceeds as follows:

Only if part: Let Tx be the minimum stable time associated withx. Let us show thatx
hasηx(ε) = inf{ε, Tx

3 } as time to error function.
Let r be a retiming with||r− id||∞ ≤ ηx(ε) andt a discontinuity point ofx with, for

instancex(t−) = 0,x(t+) = 1. We then have:

t ′ ∈ [t− Tx

2
, t[⇒ x(t ′) = 0

t ′ ∈]t, t +
Tx

2
]⇒ x(t ′) = 1



r being non decreasing, existst1 defined by

t1 = sup{t ′ | r(t ′)< t}= inf{t ′ | r(t ′)> t}

with

|t− t1|<
Tx

2

Let us consider now the bijective retimingr ′ such that:

r ′(t− Tx

2
) = t− Tx

2
r ′(t) = t1

r ′(t +
Tx

2
) = t +

Tx

2

and defined by linear interpolation between these points:

t ′ ∈ [t− Tx

2
, t]⇒ r ′(t ′) = t− Tx

2
+

t1− (t− Tx
2 )

Tx
2

(t ′− (t− Tx

2
))

t ′ ∈ [t, t +
Tx

2
]⇒ r ′(t ′) = t1 +

t + Tx
2 − t1
Tx
2

(t ′− t)

Clearly ||r ′− id|| ≤ ε holds over[t− Tx
2 , t + Tx

2 ], and||x− x◦ r ◦ r ′||∞ = 0 holds on the
same interval3.

Then the proof can proceed by induction on the sequence of discontinuity points of
x.

If part: Let us show that ifx can have two discontinuity points arbitrarily close, it is
not possible to find a valueηx(0.5) such that, for any retimingr,

||r− id||∞ ≤ ηx(0.5)⇒ dS(x,x◦ r)≤ 0.5

Effectively,x must have an unbounded number of couples of discontinuity points closer
thanηx(0.5)/2. There is thus a timet1 for which this numbern1 of such discontinuity
points is larger than 1/ηx(0.5).

On the other hand, it is easy to construct a retimingr with ||r − id||∞ ≤ ηx(0.5)
which “erases” every couple of discontinuity points closer thanηx(0.5)/2:

Let t, t ′ such a couplet ′−ηx(0.5)/2< t < t ′. On can find two other pointst ′′, t ′′′

such thatt ′′ < t < t ′ < t ′′′ < t ′′+ ηx(0.5) and take:

3 It may be the case thatx(t) 6= x◦ r ◦ r ′(t) because nothing has been assumed of the value ofx at
the discontinuity pointt. It is here that the concept of equality “almost everywhere” is useful.



r(t ′′) = r(t ′′′) = t ′′

Any bijective retiming||r ′− id||∞ ≤ 0.5 satisfies according to lemma2

dc0,t1
(x◦ r ◦ r ′)≤ dc0,t1+0.5(x◦ r)

But
dc0,t1

(x◦ r) = dc0,t1
(x)−n1

asr erasedn1 discontinuities, and

dc0,t1+0.5(x◦ r)< dc0,t1
(x)

asx cannot haven1 non erasable discontinuities in[t1, t1 +0.5]
Thus,

dc0,t1
(x◦ r ◦ r ′)< dc0,t1

(x)

||x−x◦ r ◦ r ′||∞ = 1

which contradicts the hypothesis

dS(x,x◦ r)≤ 0.5

One clearly sees the idea of this theorem: ifx has uniform bounded variability, one
can find a continuous bounded retiming which has the same effect as a bounded but
possibility discontinuous one. On the contrary, if variability is unbounded this is no
more possible because a discontinuous retiming can erase discontinuity points which
are too close from each other, while a continuous retiming cannot. Then the distance
between signals that don’t have the same number of discontinuities cannot get smaller
than 1.

4.3 Skorokhod distance and|| ||∞

As for continuous signals and systems, it is obvious that the Skorokhod distance en-
compasses the usual|| ||∞ one because for anyx,y, dS(x,y)≤ ||x−y||∞:

Theorem 5. A uniformly continuous signal is Skorokhod uniformly continuous.

This clearly shows that the Skorokhod distance can both deal with discontinuous sig-
nals, like booleans, and continuous ones. It is thus a good candidate for dealing with
mixed casesi.e.,systems dealing with both continuous and, say, boolean signals as well
as signals which are “piece-wise uniformly continuous”.



5 Conclusion and Open Questions

This paper has thus addressed the question of extending the usual approximation and
sampling theory of continuous signals and systems to those encompassing discontinu-
ities, such as found in modern complex control systems (mode switches for instance).
We have provided some evidence that the Skorokhod topology is a good candidate for
dealing with those cases in a uniform manner.

Yet, much remains to do in order to achieve this goal. In particular, two important
issues have to be raised here:

Multiple input-output systems:we only treated here the case of single input-output
systems. The case of multiple ones is much more involved: what are the systems that
are uniformly continuous in their several inputs? Some hints on the subject have been
proposed in [5], but not linked with the topological approach followed here.

Links with stability: in fact, even the classical approach presented in section2 is unsat-
isfactory, as it only applies to stable systems and it is well-known that many controllers
are not stable. For instance the celebrated PID controller is not stable, since it contains
an integral part, and hence, it is not uniformly continuous (figure5). Thus controllers
cannot be analysed in isolation of the systems they intend to stabilise and uniform con-
tinuity only applies to the closed loop system (figure6).

Controller

η

Fig. 5.An unstable system

This problem is likely to arise similarly in our framework and raises the question of
stability characterisation and of feed-back stabilisation in the case of mixed continuous-
discontinuous signals and systems. In particular, it would be tempting to interpret criti-
cal race avoidance and protocols within this framework [4].
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