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Abstract. We propose in this paper a historical perspective of programming is-
sues found in the implementation of control systems, based on the author’s obser-
vations for more than fifteen years, but especially during the Crisys Esprit project.
We show that in contrast with the asynchronous tradition of computer scientists,
control engineers were naturally led to a synchronous practice that was later for-
malised and generalised by computer people. But, we also show that, for the sake
of robustness and distribution those practitioners had to incorporate some degree
of asynchrony in this synchronous approach and we try to comment the resulting
programming style.

1 Introduction

The history of computer implementations of control systems is really an
interesting one marked by several unexpected accomplishments, among
which we can cite:

– The invention, by control engineers, of their own programming lan-
guages in place of those designed for them by computer scientists.

– The extraction by computer scientists of those inventions, for long
buried into in-house products, and their promotion to the status of a
new programming paradigm called “Synchronous programming”.

– The use of simulation tools like Matlab/Simulink as programming
languages.

– etc.

Having been involved in this history [20], we were aware of this com-
plicated landscape but we did not still know how far it could go. In the
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course of an Esprit project (Crisys (97–01)), we had the occasion of ob-
serving several achievements in the domain of distributed control sys-
tems:

– The Airbus “fly-by-wire” system.
– Schneider’s safety control and monitoring systems for nuclear plants.
– Siemens’ letter sorting machine control,

and several other distributed safety-critical control systems we had previ-
ously studied. We had then the surprise of noticing that in most systems,
synchronous programming tools are used in an asynchronous program-
ming style for quite obvious reasons of robustness, thus returning in some
sense to the initial computer science programming styles that had been
initially rejected.

This paper intends to trace back the history of this “surprise”. It is
organised as follows:

– At section 2 we briefly describe the basic needs of the domain and
show how the computer science answers to these needs were at least
partially unsatisfactory. Then we show on which grounds practition-
ers developed their own concepts that were later organised within the
“synchronous programming” school of thought.

– Then we show at section 3 how this later programming paradigm is
also inadequate when dealing with real-time and distribution.

– Finally, we describe at section 4 the “asynchronous-synchronous”
programming style that is used in practice.

2 From Asynchrony to Synchrony

2.1 Basic Needs of the Domain

It has been recognised for long that programming control systems needs
to address among others, the following problems:

Account for parallelism. There are two basic reasons for this need: on
the one hand (we shall see an example of this question at section 4.1), the
control program runs in parallel with the environment it aims at control-
ling, and studying, synthesising, debugging, testing and formally verify-
ing the control program requires running, in one form or another, some



kind of a model of this environment. Thus the programming language
must provide some notion of parallelism. On the other hand, in most
cases, the environment has several degrees of freedom that must be con-
trolled in parallel. For instance, in an aircraft, the pitch and the roll must
be controlled at the same time. This is another reason why the program-
ming language must provide means of naturally describing these activi-
ties in parallel.

Provide guaranteed bounds on memory and execution time. Most control
systems exhibit hard real-time requirements and are at the same time
safety critical ones. It is thus very important that these requirements be
met in some sense by construction or, at least that their checking be made
as easy as possible.

Allow for distribution. Finally most of these systems are distributed ones,
for evident reasons of load, location of sensors and actuators and fault-
tolerance (redundancy). The programming environment should then also
provide facilities for that purpose.

2.2 The Computer Science Answer: Real-Time Kernels and
Languages

At the end of the seventies, computer scientist became aware of these
requirements and began looking at ways of fulfilling them. Quite uni-
formly, their proposals were based on the experience they had of pro-
gramming parallel and distributed activities and most of this experience
came from time sharing operating systems. In these systems the main
problem was to regulate the concurrent access of several users to com-
puting resources. From this need came the structuring concepts of:

– Synchronisation: semaphores, monitors, sequential processes. . .
– Communication: shared memory, messages, mail-boxes. . .
– Synchronisation + communication: queues, rendez-vous

and these structuring concepts were also the ones which structured the
proposals in the field of real-time programming, for instance, the pro-
gramming languages CSP [13], OCCAM, the tasking part of ADA and
the many proposals of real-time operating systems.



2.3 The Evolution of Practices

By the same time, practitioners were thinking of moving from their ana-
log controllers to computerised ones. Figure 1 shows a quite general
scheme they used for it: it consists of providing a single real-time pe-
riodic clock which triggers both analog to digital converters at the input,
digital to analog ones at the output and the computing activity of the
computer. This activity can result from various programming styles, at
the source level, but it appears, at the object level, quite uniformly, as a
single program looking like the one displayed at table 1, and corresponds
to what we would call now a periodic synchronous program.

Board
Analog

Clock

A/D D/AComputer

Fig. 1. From analog boards to computers

initialize state;

loop each clock tick

read other inputs;
compute outputs and state;
emit outputs

end loop

Table 1. A periodic synchronous program



This kind of implementation has a lot of practical interests:

– First, it perfectly matches the needs for solving, in real-time, the dif-
ferential equations corresponding to the previous analog boards. It is
known that there are many ways of solving differential equations but,
if we want to do it in real time, the most practical solution consists of
using forward fixed step methods which correspond to the program
of table 1.
It also matches quite closely the mathematical theory of sampled con-
trol systems [14], a very popular method of control.

– It is also a very simple, safe ant efficient implementation method:
There is a single interrupt (the real-time clock ticks) and this interrupt
should occur when the computer has finished the loop iteration and
is idle. Thus there is no need for context saving. This means that
there is very little need for an operating system and that this kind of
program can run on a bare machine. This is quite safe if we think
that validating an OS is a difficult task and that most standards for
safety critical programming like DO178B recommend a limited use
of interrupts.
Furthermore, this programming structure eases the checks for guar-
anteed bounds on memory and execution time. Bounded memory is
obtained by construction if the programming language does not allow
for dynamic memory nor recursion. Bounded execution time amounts
to checking the worst execution time of an acyclic program.

It is thus an appealing method the more so as safety critical systems
are concerned and certification authorities have to be convinced. This is
why it has been quite widely applied [6,16,3].

2.4 Generalisation: Synchronous Languages

This kind of practice gave birth to the so-called synchronous program-
ming school. The activities of this school consisted essentially of:

– Generalising the concept of clock to any kind of event, (the multiple
time scale paradigm) yielding the object code structure of table 2.

– Finding several styles of source code: data-flow [10,2], impera-
tive [4], graphic [12,17,1]. The main shared feature of these different
styles is the presence of a parallel construct which allows to address



one of the requirements stated at section 2.1. It must be noticed here
that, in order to yield an object code like the one depicted at table 2,
this parallel construct has to be compiled instead of being interpreted
like in the concurrent approaches of section 2.2.

– Equipping the approach with efficient compilers, debugging, simula-
tion and formal verification tools [11,5].

initialize state;

loop each input event

read other inputs;
compute outputs and state;
emit outputs

end loop

Table 2. Synchronous programming

Yet, it should also be noticed that, in practice, most applications of
synchronous programming in the control domain are actually periodic
ones.

2.5 Milner’s SCCS Theory

As for the theoretical foundations of the synchronous approach, we think
that it had been a priori provided by Robin Milner’s SCCS [19]. It
was based on the synchronous product of automata and figure 2 shows
how this product contrasts with the asynchronous one of CCS. As a the
nice feature of this theory, Milner shows that SCCS can simulate CCS
and thus that CCS is a sub-theory of SCCS. This, in our opinion pro-
vides some theoretical support to control practices: this means that syn-
chronous primitives are stronger than and encompass asynchronous ones.
If it is so, why should those practitioners have adopted the computer
science asynchronous proposals and have limited themselves to weaker
primitives?
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Fig. 2. Asynchronous and synchronous products of automata

2.6 Further Justifications

To this landscape Gérard Berry and the Esterel team added several inter-
esting remarks [4]:

– First they remarked that the synchronous product is deterministic and
yields less states than the asynchronous one. This has, in their opin-
ion two valuable consequences: programs are more deterministic and
thus yield easier debugging and test and have less state explosion and
thus yield easier formal verification.

– They also remarked that a step in the synchronous product corre-
sponds exactly to one step of each of the component automata. This
provides a “natural” notion of logical time shared by all components
which allows an easier and clearer reasoning about time.

We thus see that synchronous programming is endowed with both a rich
theory and many pragmatic interests and this seems to justify its being
largely used in practice, even by people who don’t know about it. But . . .

3 Some Drawbacks of Synchronous Programming

But the synchronous model is not without problems when applied to con-
trol. We discuss here two of them, the first one which is due to hybridity,
i.e., the fact that the environment of a control program which provides it



with inputs and receives its outputs does not evolve according to logical
time but to real time, and the second one which is due to distribution and
amounts to the fact that, in many implementations, control programs do
not only sample their environment but also the other control programs
which it cooperates with. In this sense, the latter is just a generalisation
of the former.

3.1 Real-Time is not Logical Time

The phenomenon can be seen at the two boundaries of the control system,
i.e., inputs and outputs:

Sampling inputs. Figure 3 shows two possible periodic samplings of the
same couple of inputs. In the first one, a and b are seen to raise at the
same logical instant while, in the second one, this is not the case. Clearly,
a control program should be in some sense insensitive to this sampling
phenomenon and, clearly also, synchronous programming does not pro-
vide specific means to ensure it.

b

a
X X

b

a
X X X

Fig. 3. Sampling is non deterministic

Outputs. Let us consider the following requirement for a control system:

y and z should never be true at the same time



and assume a designer provides you with a solution yielding the
chronogram of figure 4(a). Would you be satisfied with this solution,
even if he formally proves that it is correct? It is likely that you wouldn’t,
because, even if the solution is perfectly correct in logical time, it doesn’t
exclude the possibility of z and y being simultaneously true for some
small real-time intervals.

This is why a smart designer is likely to provide you with a solution
yielding, for instance, the chronogram of figure 4(b) which ensures you
that your desired property holds both in logical and real time.

z

a
y

z

b
y

Fig. 4. Non robust (a) and robust (b) mutual exclusion

3.2 Distribution

We have seen at section 2.3 how control engineers moved from analog
controllers to computers. But, in general, large control systems like a
commercial aircraft flight control or a chemical plant control are made
of more than one board and figure 5 shows how, in most cases, they did
when dealing with networks of analog boards.

The idea here was to reuse repeatedly the replacement scheme of
figure 1, but for the case when two adjacent boards were replaced by



computers. Then the previous analog communication was replaced by
serial lines and in further evolutions, by so-called field busses [9].

Board
Analog

Board
Analog

Clock

A/D Computer Serial

Clock

D/AComputerSerial

Clock

A/D Computer

Clock

D/AComputer

Bus

Fig. 5. From networks of analog boards to local area computing networks

This method has many advantages:

– It is modular, i.e., it allows to progressively replace elements, ac-
cording to the needs, and even to let several technologies cooperate
smoothly.

– It can be seen as robust:
Each computer is a complete and autonomous one, including its own
real-time clock and even, possibly, its own power supply.



Communications between computers are based on periodic readings
and writings. In some sense, they are similar to the communications
between computers and environments, that is, based on periodic sam-
pling and, as it, are non blocking. Thus liveness, at least at low level,
is not a problem.

– Finally, it is cost effective, in that it does not need too much spe-
cialised hardware. This allows to follow the technological advances
at lower cost.

However, it also has its drawbacks. These are summarised at figure 6
which shows a possible behaviour of the real-time clocks of two com-
puters: even if these clocks have been initially set to the same period
and phase, this exact situation cannot be maintained in time because no
resynchronisation is provided here, in contrast with the so-called Time
Triggered Architecture [15]. Even if the the periods are assumed to show
very limited variations, 1 some problems cannot be avoided:

– Communication errors occur: it may be that two write clocks take
place strictly between two read clocks. Then the first write is over-
written and lost. Conversely, data duplication can take place. More-
over, there are non deterministic communication delays. However
these delays are bounded: the worst delay occurs when a read clock
occurs just before a write clock. Then the written value has to wait
another read period before being read.

– Absolute time is lost.
– Finally, this situation amounts to some kind of bounded fairness:

It is not the case that a component process executes more than twice
between two successive executions of another process.

We thus see here that some care has to be taken when using the syn-
chronous paradigm in programming control systems, because some de-
gree of asynchrony has to be incorporated in it for real-time and distri-
bution reasons. In the following section, we shall see how people use to
handle it in practice.

1 In most of the systems considered here, clock periods should be strictly monitored because
otherwise even relative time would be lost yielding unrecoverable consequences on system
safety [16].



Fig. 6. Two periodic clocks with nearly the same period

4 Asynchronous–Synchronous Programming

Control systems and programs are usually concerned with two types of
computations, continuous ones and discrete ones and also with the inter-
action of both. These will be examined in sequence:

4.1 Continuous Signals and Systems

Figure 7 shows the basic uniform continuity signal property used in this
framework. This property says that given an arbitrary maximum error, we
can choose a maximum delay such that, staying within this delay ensures
staying within this error.

x x’

0 0 t t t t x x t x t

Fig. 7. An uniformly continuous signal

Now, this property can be used in conjunction with the corresponding
property of systems, depicted at figure 8, which says that a system is
uniformly continuous if, given an arbitrary maximum output error, there



exists a maximum input error such that, if the input stays within the latter,
the output will stay within the former.

System

0 0 x x x x f x f x

Fig. 8. An uniformly continuous system

Both properties then combine nicely thanks to the following theorem:

Theorem 1. An uniformly continuous and time-invariant system, fed
with uniformly continuous signals, outputs uniformly continuous signals.

Thus the property also propagates through acyclic networks of such sys-
tems connected by bounded delays in such a way that one can find bounds
on delays and on input errors such that output errors remain within given
bounds.

This seems to give us a satisfactory theory of robust computations
over continuous signals. However, let us note here that the landscape is a
bit more complex because even very simple controllers like for instance
very popular PIDs do not enjoy the uniform continuity property.2 This
situation is recovered within the framework of closed-loop system: un-
stable controllers are used in order to stabilise the environment in such
a way that the closed-loop behaviour of the system appears stable and
hence uniformly continuous (Figure 9).

4.2 Uniform Bounded Variability Signals and Combinational
Systems

When we move from continuous to discrete signals, we face the problem
that errors cannot be given arbitrary small values. The idea is then to only
reason about delays.
2 This is due to the integral part which accumulate errors without ever forgetting them.
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Fig. 9. The closed-loop system computes uniformly continuous signals

Figure 10 illustrates the concept of uniform bounded variability
which appears the analogue of uniform continuity for discrete signals.
A signal has this property if there exists a least stable time between two
successive discontinuity points.

x
Tx

Tx

Fig. 10. Uniform bounded variability

In this context, one could expect that combinational functions play
the part of uniformly continuous systems in the continuous framework.
Unfortunately, this is not the case because delays do not combine nicely
as errors do. In particular, as soon as we deal with functions of several
variables, we face the problem that independent delays on tuples do not
yield delayed tuples. This situation is illustrated at figure 11 where we
can see that the value x 0 y 1 does not correspond to any value in
the original tuple.

A solution to this problem can be found in the confirmation func-
tions [8] shown at table 3 which are used in order to transform incoherent
delays into coherent ones. The idea of this function is that, if we know



bounds on the delays for each component of a tuple and if these compo-
nents do not vary too fast (thanks to uniform bounded variability), then,
each time a component of the tuple changes, we wait at least for some de-
lay before outputting the change: if the other component of the tuple has
not changed meanwhile, we can output the tuple value and be sure that
this tuple is a delayed value of the original tuple. This can be summarised
as:

y

x
x’

y’

Fig. 11. Delays on tuples do not yield delayed tuples

Theorem 2 (Confirmation). Given x y two bounded delay images of
two uniform bounded variability signals x and y, one can find bounds on
the delays, on the clock period and on nmax such that Confirmnmax x y
is a bounded delay image of the tuple x y .

Here also, we can prove that the uniform bounded variability property
propagates through acyclic networks of combinational functions con-
nected by bounded delays and conveniently guarded by confirmation
functions in such a way that one can find bounds on the delays, confir-
mation function parameters, and stable times of the inputs such that the
outputs have given stable times and delays (with respect to the ideal un-
delayed computations). In some sense, theorem 2 appears as an analogue
of theorem 1

4.3 Robust Sequential Systems

Unfortunately, this approach does not work as soon as we consider se-
quential systems. Figure 12 illustrates the critical race phenomenon [7]



xp := x0; xpp := x0; n := 0;

loop each clock tick

read x ;
if x = xp
then if n >= nmax

then xpp := x; n := 0
else n := n+1
end if

else xp := x; n := 0
end if ;
emit xpp

end loop

Table 3. Confirmation function

which forbids it: here we see two state variables computed in distinct lo-
cations. In a synchronous framework, both variables are computed at the
same step. On the contrary, when each location has its own clock, if there
is a dependency between these variables, the resulting state may depend
on the order into which these variables are computed.

x computed at location i
y computed at location j

x y

i j

x y

i

x y

j

x y

Fig. 12. A critical race



In this sense, sequential systems look very much like continuous un-
stable systems and cannot be directly implemented in a robust way. There
are several ways for checking and enhancing the robustness of sequential
systems:

– First, if state variables computed on distinct locations are indepen-
dent, the critical race phenomenon does not take place and we are left
to the combinational situation.

– Another interesting situation appears when dependent state variables
cannot vary at the same step. Here also, there is no critical race. Now,
there can be two reasons why state variables cannot vary at the same
time:

Timing reasons. If it is not the case, designers can add delays in order
to robustify their programs.

Causality reasons. For instance, in the mutual exclusion example of
figure 4, we can transform the non robust program into the robust
one by deciding that:

y cannot raise but when z has gone down and conversely

When this is used in conjunction with the mutex requirement stating
that y and z cannot raise at the same time, we clearly forbid y and z to
change at the same time, thus forbidding any race.
Inserting causality chains disallowing races is thus a way of robus-
tifying programs. This kind of programming is reminiscent of typi-
cal asynchronous programming methods like so-called Message Se-
quence Charts [18].

4.4 Mixed Systems

Now, more and more systems are mixed ones, and there is not clear way
of dealing with them. Figure 13 illustrates the situation where a boolean
signal is generated which changes when some continuous signal crosses
a threshold. In our framework, where errors are associated with continu-
ous signals, we can see that some error on the continuous signal induces
some delay on the corresponding boolean. This fits quite nicely in our
error/delay framework but for the fact that the relation between errors



and delays is non-linear: if the derivative at the crossing point vanishes,
the delay can get unbounded!

S

C

t

2
dC
dt t

Fig. 13. Threshold crossing

5 Conclusion

In this paper we attempted to illustrate the evolution of ideas in control
system programming. Starting from the early real-time languages and
operating system propositions, we showed that control engineers elabo-
rated their own practices which where generalised by computer scientists
and gave birth to the synchronous paradigm.

But we also showed that for the sake of robustness and in particular
distribution, some asynchrony had to be incorporated in the synchronous
approach and we briefly reviewed the methods and theories used in prac-
tice for that purpose. What we can see here is that these methods and
theories do not constitute, at present, a very mature and well established
framework, and many efforts are still required in order to strengthen it
and equip it with CAD tools.

Among the pending questions, we can cite:

– How could we merge together synchronous and asynchronous
paradigms in order to obtain robust by construction distributed sys-
tems, while keeping the advantages of synchronous programming ?



– How can we encompass timing and causality within a coherent theory
of robust discrete systems.

– How can we unify the continuous and discrete theories in order to
obtain a satisfactory theory of mixed (hybrid) systems ?
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1. C. André. Representation and analysis of reactive behaviors: a synchronous approach. In

Proc. CESA’96, Lille, July 1996. 5
2. A. Benveniste, P. LeGuernic, and Ch. Jacquemot. Synchronous programming with events

and relations: the SIGNAL language and its semantics. Science of Computer Programming,
16:103–149, 1991. 5

3. J.L. Bergerand and E. Pilaud. SAGA; a software development environment for dependability
in automatic control. In SAFECOMP’88. Pergamon Press, 1988. 5

4. G. Berry and G. Gonthier. The ESTEREL synchronous programming language, design, se-
mantics, implementation. Science of Computer Programming, 19(2):87–152, 1992. 5, 7

5. G. Boudol, V. Roy, R. de Simone, and D. Vergamini. Process algebras and systems of
communicating processes. In Automatic Verification For Finite States Systems, volume 407
of Lecture Notes in Computer Science. Springer Verlag, 1990. 6

6. D. Brière, D. Ribot, D. Pilaud, and J.L. Camus. Methods and specification tools for Airbus
on-board systems. In Avionics Conference and Exhibition, London, December 1994. ERA
Technology. 5

7. J. A. Brzozowski and C-J. H. Seger. Asynchronous Circuits. Springer-Verlag, 1995. 15
8. P. Caspi and R. Salem. Threshold and bounded-delay voting in critical control systems. In

Mathai Joseph, editor, Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
1926 of Lecture Notes in Computer Science, pages 68–81, September 2000. 14

9. A. Chatha. Fieldbus: The foundation for field control systems. Control Engineering, pages
47–50, May 1994. 10

10. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow program-
ming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320, September 1991. 5

11. N. Halbwachs, F. Lagnier, and C. Ratel. Programming and verifying real-time systems by
means of the synchronous data-flow language LUSTRE. IEEE Transactions on Software
Engineering, 18(9):785–793, september 1992. 6



12. D. Harel. Statecharts: a visual approach to complex systems. Science of Computer Program-
ming, 8(3), 1987. 5

13. C.A.R. Hoare. Communicating sequential processes. Communication of the ACM,
21(8):666–676, 1978. 3
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