
Higher-order imperative

enumeration of binary trees in COQ

Sylvain Boulmé

June 1, 2007

This document describes some proofs about enumBT, a higher-order impera-
tive function such that enumBT n f calls successively f over all and only binary
trees of height n. Moreover, each tree is enumerated only once. I use the fol-
lowing Coq definition for binary trees:

Inductive bintree : Set :=

| Leaf: bintree | Node: bintree -> bintree -> bintree.

In the following, I also use some definitions of the Coq library. Type nat is
type of Peano numbers generated from O and S. Type Z is type of infinite binary
integers (more efficient than nat to perform large concrete computations). At
last, list is the polymorphic type of lists.

The Coq definition of enumBT is given below. Here, K is the “specification
type” of the state DSM (see [Bou06]). It is parametrized both by St the type of
the global state and by unit the type of the result. It uses an infix operator -;

to denote sequences: “p1 -; p2” is a notation for “bind p1 (fun :unit => p2)”.
The main advantage of this CPS-like implementation is to call f as soon as a tree
is computed, before to compute the next tree. Moreover, whereas the number
of binary trees is exponential in function of 2n (e.g. the number of nodes of a
balanced binary tree of height n), this function requires only a memory linear
in function of 2n.

Fixpoint enumBT (St:Type) (n:nat) (f:bintree -> K St unit) {struct n}
: K St unit := match n with

| O => f Leaf

| (S p) =>

enumBT p (fun l => enumBT p (fun r => f (Node l r)) -;

enumlt p (fun r => f (Node l r) -;

f (Node r l)))

end

with enumlt (St:Type) (n:nat) (f:bintree -> K St unit) {struct n}
: K St unit := match n with

| O => skip

| (S p) => (enumBT p f) -; (enumlt p f)

end.

Function enumBT is defined mutually recursively over n with enumlt which enu-
merates binary trees with a height strictly lower than n. Then, it uses the fact

1

that in a tree of height (S n), either its two children have a height equal to n, or
one of them has a height equals to n and the other has a height strictly lower
than n.

Induction method for enumBT and enumlt The following lines explain how
my proof deals with the mutually recursive definition of enumBT and enumlt.
Assuming St:Type, and given two predicate P and Q of type

nat -> ((bintree -> K St unit) -> (K St unit)) -> Prop

such that I want to prove enumBT P and enumlt Q formulae given below. I first
prove enumlt Q aux below by structural induction over n. Then, I prove enumBT P

using induction lemma nat le ind given below. At last, enum lt Q is trivially
derived from the two previous lemma.

enumlt Q aux: forall (n:nat),

(forall (m:nat), m < n -> P m (enumBT m)) -> Q n (enumlt n).

enumBT P: forall (n:nat), P n (enumBT n).

enumlt Q: forall (n:nat), Q n (enumlt n).

Property nat le ind is a variant of well-founded induction over natural numbers.

Lemma nat le ind: forall (P:nat -> Prop),

(P O)

-> (forall (n:nat), (forall (m:nat), m <= n -> P m) -> P (S n))

-> forall (n:nat), P n.

Typically, the monotonicity of enumBT is proved by this way.

Lemma enumBT monotonic:

forall (St: Type) (n:nat) (p1 p2: bintree -> K St unit) ,

(forall (t:bintree) (st:St), refInEnv st (p1 t) (p2 t))

-> forall (st:St), (refInEnv st (enumBT n p1) (enumBT n p2)).

Number of binary trees generated by enumBT In this paragraph, I prove
that for a given n, enumBT generates (numBT n) binary trees where numBT is defined
from num2 below. The first component computed by (num2 h) is the number of
binary trees of height h, and the second component computed by (num2 h) is the
number of binary trees with a height lower than h.

Fixpoint num2 (h: nat) {struct h}: Z*Z :=

match h with

| O => (1,0)

| (S h1) =>

let (nh1,nlh1) := (num2 h1) in

let nlh := nh1 + nlh1 in

(nh1*(nlh+nlh1),nlh)

end.

Definition numBT (h:nat) : Z := fst (num2 h).

2

Of course, this function explodes. For (numBT 4), Coq computes 651. For
(numBT 8), it computes 1947270476915296449559659317606103024276803403.

Now, I define incr such that incr n adds n to a global integer variable :

Definition incr (n:Z) : K Z unit := bind (get Z) (fun x:Z => set (x+n)).

The announced result is expressed by the following theorem:

Theorem enum incr: forall (h:nat) (init:Z),

refInEnv init (enumBT h (fun t => incr 1)) (incr (numBT h)).

Before to prove this theorem, we can automatically check it for some con-
crete values of h and init. Hence, the goal with h being 5 and init being
0 (e.g. refInEnv 0 (enumBT 5 (fun t => incr 1)) (incr (numBT 5))) is reduced by
wp-computation in less than one second into True->(457653, tt)=(457653, tt).
This illustrate the efficiency of the new Coq virtual machine (see [Gré02]), be-
cause computing (enumBT 5 (fun t => incr 1)) reduces to compute a sequence of
457653 “inc 1”.

Actually, the proof of theorem enum incr is a trivial application of enum incr gen

below.

Lemma enum incr gen: forall (h:nat) (acc init:Z),

refInEnv init (enumBT h (fun t => incr acc)) (incr ((numBT h)*acc)).

The proof of enum incr gen uses the induction method described above. It is
easy (generated by a script of about 30 Coq commands) and mainly combines
transitivity and monotonicity of refinement, with the ring structure of Z and the
following property of incr:

Lemma incr seq: forall (n m init:Z),

refInEnv init ((incr n) -; (incr m)) (incr (n+m)).

General specification of enumBT The general specification uses a predicate
enumlist: forall (A:Set), (A -> Prop) -> (list A) -> Prop such that enumlist P l

expresses that l contains only all elements of A satisfying P without duplicates.
It also uses height: bintree -> nat computing the height of a binary tree. At
last, it uses genBT: nat -> (list bintree) such that

Theorem genBT enumlist: forall (n:nat),

(enumlist (fun t => (height t)=n) (genBT n)).

Then, defining

Fixpoint revIter (St:Type) (A:Set) (l:list A) (p:A->K St unit) {struct l}
: (K St unit) := match l with

| nil => skip

| x::m => revIter m p -; p x

end.

and, using the previous induction method, I have easily proved that:

Theorem enumBT spec:

forall (St:Type) (h:nat) (f: bintree -> K St unit) (st:St),

refInEnv st (enumBT h f) (listRevIter (genBT h) f).

3

Hence, the difficult part here is to establish theorem genBT enumlist. At last,
let me remark that enum incr could be probably derived from enumBT spec, but
it supposes to prove the corresponding property about genBT which seems not
easier than proving enum incr directly.

Conclusion All the results proved here could be actually proved for a state
monad using observational equivalence instead of refinement. Indeed, this whole
example uses only the state monad fragment of the state DSM. Here, I used
refinement relation through refInEnv, because in the current state of my imple-
mentation, I have not defined an eqInEnv relation, nor have I defined simplifi-
cation rules to reason about observational equivalence.

References

[Bou06] S. Boulmé. Higher-Order Refinement In Coq (reports and Coq files).
Web page: http://www-lsr.imag.fr/users/Sylvain.Boulme/horefinement/, 2006.

[Gré02] B. Grégoire and X. Leroy. A compiled implementation of strong reduc-
tion. In Proc. of the ACM SIGPLAN ICFP’02 , 235–246. ACM Press,
New York, NY, USA, 2002.

4

