
Intuitionistic Refinement Calculus

An extended version of [Bou07a] examplified on the game of Nim

Sylvain Boulmé

Laboratoire d’Informatique de Grenoble

Sylvain.Boulmeimag.fr

June 20, 2007

Abstract

Refinement calculi are program logics which formalize the “top-down” methodology of software
development promoted by Dijkstra and Wirth in the early days of structured programming. I present
here the shallow embedding of a refinement calculus into Coq constructive type theory. This em-
bedding involves monad transformers and the computational reflexion of weakest-preconditions, us-
ing a continuation passing style. It should allow to reason about many ML programs combining
non-functional features (state, exceptions, etc) with purely functional ones (higher-order functions,
structural recursion, etc). The interest of combining higher-order functions and imperative state
modifications is examplified here on the modelization of the game of Nim.

1 Introduction

The refinement calculus of [Mor90] is the kernel of the B method [Abr96] which has been successfully
applied in large industrial projects [Beh99]. This paper presents the marriage of this refinement calculus
with the Calculus of Inductive Constructions [Coq88, PM93], the constructive type theory of Coq

[Coq04, Ber04]. This marriage is interesting for both formalisms. On the Coq side, refinement calculus
provides a simple and efficient embedding of computational behaviors which are not natively available in
Coq: side-effects and partial functions. Here, partial functions may involve undefined behaviors or non-
termination, interpreted in partial or total correctness. On the other side, this marriage shows that all
kinds of Coq computation can be fully integrated into refinement calculus: pattern-matching, structural
recursion over inductive types, and higher-order functions. Moreover, because Coq is a typed lambda-
calculus with types and propositions as first-class citizens (see Figure 1), it is more than a higher-order
logic: it is also a programming language where propositions and proofs are first-class values. Hence,
programming computations of WP (Weakest-Preconditions) in Coq is very easy because substitutions
of variable are expressed at an abstract level. This allows to use Coq as the kernel of a refinement prover,
with two benefits. First, all libraries and tools developed for Coq can be reused in refinement proofs.
Second, refinement rules are formally proved. like most of the meta-theory of refinement calculus. In
particular, the reflexion of WP-computations ensures their soundness with respect to purely deductive
rules.

Section 2 motivates this work by the formalization of reasoning about higher-order imperative func-
tions in Coq. It illustrates that this reasoning may combine equational reasoning in monads with Hoare
logic. This leads me to introduce Dijkstra Specification Monads (abbreviated DSM). Section 3 defines
DSM as a very simple combination of monads and lattices in Coq, where the order relation is refinement.
Then, it presents a Tarski fixpoint theorem, which makes DSM adapted to reason about non-terminating
programs. Section 4 gives the modular construction of the state DSM. This construction uses a WP cal-
culus embedded in Coq as a CPS (Continuation-Passing Style) semantics of DSM. It is also based on the
state monad transformer. Hence, it could be easily adapted for other monad transformers like exception
monad transformer. With an example combining partial functions and structural recursion, Section 5
illustrates that refinement formulae may be simplified by computing WP. Then, it shows how interactive
refinement proofs mix deduction and WP-computation. Section 6 explains how the state DSM is used
to prove higher-order imperative programs, and in particular how Hoare logic is expressed in the state

1

“Type” is the type of types. In order to avoid logical paradoxes, each of its occurrence is implicitly
indexed with a natural, such that in Type:Type, the left index is strictly lower than the right one.

“Prop” is the type of logical propositions. In Curry-Howard style, propositions are represented as types,
and proofs as lambda-terms. Hence, if A:Prop then A:Type.

“forall x:A,B” is the type of functions “fun x:A => b” when if x:A then b:B. This type is also logically
interpreted as universal quantification or as implication.

“A -> B” is a synonym of forall (x:A),B when x does not occur free in B.

“A*B” is the type of pairs “(x,y)” where x:A and y:B.

“A /\ B” represents conjunction and is like A*B at Prop level.

“exists x:A,B” represents existential quantification (defined as a dependent-pair).

“x=y” means that every property satisfied by x is satisfied by y (Leibniz’s equality).

Figure 1: A very short description of Coq syntax

DSM. At last, Section 7 uses the state DSM to modelize the Nim game, its optimal strategy, and an
implementation of this strategy which stores informations in memory that avoid to recompute the whole
strategy at each turn of the game.

2 Motivations

This section details the main motivations of this paper, starting from an Ocaml example. It intro-
duces a definition of monads in Coq (Subsection 2.2), recalls briefly their connection with Hoare logic
(Subsection 2.3), and introduces the issue of representing non-terminating computations in Coq (Sub-
section 2.4).

2.1 Reasoning on higher-order imperative functions in Coq

Let me first introduce a higher-order imperative example in Ocaml syntax. Given nat the type of
natural numbers and bintree the type of binary trees:

type nat = O | S of nat;;

type bintree = Leaf | Node of bintree*bintree;;

Given n: nat, and f: bintree->unit (f is an action parametrized by a binary tree), I consider below a
function enumBT such that (enumBT n f) calls successively f over all and only binary trees of height n,
but only once for a given tree.

The main advantage of this CPS-like implementation is to call f as soon as a tree is computed, before
computing the next tree. Moreover, whereas the number of binary trees is exponential in function of
2n (e.g. the size of a balanced binary tree of height n), this function requires only a memory linear in
function of 2n.

let rec enumBT n f = match n with

| O -> f Leaf

| (S p) -> enumBT p (fun l ->

enumBT p (fun r -> f(Node(l,r))) ;

enumlt p (fun r -> f(Node(l,r)) ; f(Node(r,l))))

and enumlt n f = match n with

| O -> ()

| (S p) -> enumBT p f ; enumlt p f

Function enumBT is defined mutually recursively over n with enumlt which enumerates binary trees
with a height strictly lower than n. Then, it uses the fact that in a tree of height (S n), either its two

2

Constants of monads are:

K: Type -> Type.

equiv: forall (A:Type), (K A) -> (K A) -> Prop.

val: forall (A:Type), A -> (K A).

bind: forall (A B:Type), (K A) -> (A -> (K B)) -> (K B).

To have a lighter syntax, I require (with the commands below) that Coq infers type parameters (like A)
of equiv, val and bind like a ML compiler:

Implicit Arguments equiv [A].

Implicit Arguments val [A].

Implicit Arguments bind [A B].

Hence, axioms of monads are expressed as:

equiv refl: forall (A:Type) (x:(K A)), equiv x x.

equiv sym: forall (A:Type) (x y:(K A)), (equiv x y)->(equiv y x).

equiv trans: forall (A:Type) (x y z:(K A)), (equiv x y) -> (equiv y z) -> (equiv x z).

bind compat: forall (A B:Type) (k1 k2:(K A)) (f1 f2: A -> (K B)),

(equiv k1 k2) ->

(forall (x:A), equiv (f1 x) (f2 x)) -> (equiv (bind k1 f1) (bind k2 f2)).

bind val l: forall (A B:Type) (a:A) (f:A->(K B)), equiv (bind (val a) f) (f a).

bind val r: forall (A:Type) (k:(K A)), equiv (bind k (fun a => val a)) k.

bind assoc: forall (A B C:Type) (k:(K A)) (f: A->(K B)) (g: B -> (K C)),

equiv (bind (bind k f) g) (bind k (fun a => bind (f a) g)).

Figure 2: Coq interface for monads

children have a height equal to n, or one of them has a height equals to n and the other has a height
strictly lower than n.

In order to reason about this simple function in Coq, we may use a style inspired by Hoare logic.
Unfortunately, a simple Hoare logic does not allow us to reason on such a higher-order imperative
function. Indeed, it seems hard even to specify enumBT using pre and postconditions: these conditions
are predicates over the state. Here the state is unknown (it is the state of f closure): it is an implicit
parameter of the function. The effect of f on this state is also unknown: it is also an implicit parameter of
the function. Hence, predicates over the state do not seem well-adapted to specify the problem, whereas
it is naturally expressed as a predicate on the (finite) trace of f calls. Actually, we need here extensions
of Hoare logic as those recently proposed in [Hon05].

Alternatively, I simply propose here to specify this program using an equality on programs. Hence, I
have proved in Coq (see [Bou07b]) that for a given n, there exists l of type (list bintree) such that
l contains only all binary trees of height n without duplicates, and such that (enumBT n f)≡(iter l f)

where “iter l f” calls f on successive elements in l, and relation ≡ is an observational equivalence on
expressions. Here, the expression language is formalized as a monad.

2.2 Axioms of monads in Coq

A monad is a categorical structure expressing non-purely functional features like state or exception
handling, finite non-determinism and environment interactions [Mog91, Pey93, Wad95]. My Coq ax-
iomatization of monads is given Figure 2:
– K is a parametrized type such that (K A) represents the type of an expression returning a value of type
A. Hence, values of the monad are any Coq values.

– equiv is an “observational” equivalence on expressions.
– val is side-effect free operator to lift a value into an expression.
– bind corresponds to a “let-in” construct in ML: it generalizes sequence of imperative languages. The

power of this operator is to allow any Coq function as second argument.

3

Using the predefined type unit of single value tt, we say a monadic expression is an instruction if its
type is (K unit). The skip instruction is thus (val tt). Sequencing instructions is just applying bind:

Definition seq (A:Type) (i1:K unit) (i2:K A): K A := bind i1 (fun => i2).

Implicit Arguments seq [A].

In the following, “If cond Then i1 Else i2” is a notation for:
bind cond (fun b:bool => if b then i1 else i2).

This lifts the if-then-else construction of Coq into monad expressions. It is easy to prove that the
monadic if-then-else is compatible with equivalence of expressions.

More generally, all purely functional constructions are lifted to monad expressions, such that the
lifted construction is compatible with equivalence. Hence, monads support naturally pattern-matching,
structural recursion, and higher-order functions. For instance, I provide below a function forN such
that the execution of (forN n e) repeats successively n times execution of e. This Coq definition uses
structural recursion of naturals for parameter n as indicated by the keywords Fixpoint and struct:

Fixpoint forN (n:nat) (e:K unit) {struct n}: (K unit)

:= match n with

| O => skip

| (S n) => seq e (forN n e)

end.

Actually, there are two ways of lifting functions at monad expressions, implementing respectively call-
by-value or call-by-name evaluation (see [Ben02]). Here, I choose the call-by-value evaluation following
ML semantics. Thus, parameter f of enumBT corresponds to a value of type bintree->(K unit) and
the Coq type for enumBT is nat -> (bintree -> K unit) -> K unit (see [Bou07b]).

2.3 Marrying monads with Hoare logic

The previous example is rather simple because enumBT do not modify the state directly. On other
examples, we may need to specify a modification of the state as in Hoare logic. In particular, let me
consider an expression e of type K A in a state monad: e works on a global state of type St (hence,
the type of St is Type) and returns a result of type A. The state monad provides two specific operators
set: St->(K unit), to update the current value of the global state, and get: (K St), to read the current
value of the global state. These operators satisfy the following three axioms:

get set: equiv (bind get set) skip.

set get: forall (st:St), equiv (seq (set st) get) (seq (set st) (val st)).

set set: forall (st1 st2:St), equiv (seq (set st1) (set st2)) (set st2).

A Hoare specification of e can be seen as the pair of two predicates: a precondition P: St->Prop on
the initial state, and a postcondition Q: St->St->A->Prop on the initial state, the final state and the
result. In total-correctness semantics, such a specification is interpreted through the following formula:

forall (sti:St), (P sti) ->

exists stf:St, exists r:A,

(Q sti stf r) /\ (equiv (seq (set sti) e) (seq (set stf) (val r))).

Fortunately, Dijkstra has invented a weakest-precondition calculus to simplify this tedious formula.
Hence, there is a function wp of type:

wp: forall (A:Type),(K A) -> (St -> A -> Prop) -> St -> Prop.

Implicit Arguments wp [A].

such that the preceding tedious formula is equivalent to

forall (sti:St), (P sti) -> (wp e (Q sti) sti)

and such that wp is a CPS semantics of the state monad where continuations are predicates on the final
state and the result (postconditions). In other words, wp discharges the user to infer manually the two
existential connectors of the tedious formula.

This paper shows that refinement calculus is a marriage of monads and Hoare logic such that WP
are hidden in the refinement order. Hence, from the user point of view, reasoning with refinement is very
natural, because this order generalizes the equality of monads.

4

2.4 Non-termination in a logic a la Curry-Howard

Even in a logic for total correctness, representing programs that may not terminate is very convenient:
it allows us to separate the definition of a program from its proof of termination.

However, representing non-terminating programs is not so natural in Coq. This is because Coq is
based on the Curry-Howard paradigm: proofs are represented as lambda-terms. This paradigm is pow-
erful because it provides a simple and elegant logic which allows to marry deductions and computations.
But, Coq can not provide a general fixpoint operator, because such an operator would allow to build
a proof of false. Thus, Coq authorizes only structural recursion with syntactic restrictions that ensure
termination of all computations (however, structural recursion of Coq is powerful enough to express
well-founded recursion, see [Coq04]).

Fortunately, the refinement theory presented here provides general fixpoint operators (see Section 3)
and thus allows to represent non-terminating programs (see Section 6). And amazingly, in refinement
proofs, a flexible marriage between deductions and terminating computations is also available (see Sec-
tion 5). The trick here is that programs are not represented as elementary lambda-terms of the universe
hierarchy: they are not at the level of proofs. Here, programs are represented at the level of propositions
(see Section 4). More generally, refinement theory over an expression language allows us to reason very
naturally about partial expressions (see examples of Section 5.1).

Formally, my refinement calculus is based on Dijkstra Specification Monads: a combination of monads
and lattices in Coq which allows to recover fixpoints a la Tarski.

3 Lattice theory of Dijkstra Specification Monads

Given a particular monad M , let me explain informally how to define the Dijkstra Specification Monad
(or DSM in short) of M . It is an extension of M with two non-deterministic operators that transform
the “programming language” of M into a “specification language”. DSM are special cases of monads.
Thus, to distinguish expressions of M and expressions of its DSM, the former are called programs and
the latter are called specifications.

Very roughly, a specification describes a set of programs that implement it. This set is closed under
observational equivalence. A specification S1 refines a specification S2, if and only if every implementa-
tion of S1 also implements S2. A program is a special case of specification which is only implemented
by itself (modulo observational equivalence). More generally, composition operators of M are lifted in
its DSM as the closure (under observational equivalence) of their pointwise extension. The DSM of M

extends its expression language with two operators called sync and choice corresponding respectively
to the intersection and the union of a family of specifications.

Below, I define DSM axiomatically. Two formal models of DSM (DSM associated to the pure and the
state monad) using weakest-preconditions are built Section 4. The axiomatization presented here is not
complete with respect to these models (some properties that hold for both models can not be derived
from axioms). However, this axiomatization has the interest to present an unified view of these models
and is sufficiently expressive to develop fixpoint theory. Hence, fixpoint theory presented Subsection 3.2
is generic with respect to DSM models.

Hence, even if all computations of the original monad M terminate, its associated DSM is expressive
enough to represent non-terminating expressions. It can thus be used to reason about programs of an
extension of M with fixpoint operators. This idea is illustrated in Section 6.3.

3.1 Axioms of DSM

A DSM is a monad, that provides a preorder refines (reflexive and transitive) such that its associated
equivalence is equiv. In other words, (refines s1 s2) /\ (refines s2 s1) must be equivalent to
equiv s1 s2.

refines: forall (A:Type), (K A)->(K A)->Prop.

Implicit Arguments refines [A].

Furthermore, the operator bind must be monotonic (increasing) for this preorder. Hence, all func-
tional features (pattern-matching, structural recursion, ...) are lifted as monotonic constructions. The
expression language of monads is extended with two primitive operators:

5

– any: forall (A:Type), (K A) such that any A is implemented by any concrete value of the type A. If
A is empty, then any A has no implementation.

– sync: forall (A B:Type), (A -> (K B)) -> (K B) (with A and B as implicit arguments) such that for
any a:A, every implementation of sync s must be an implementation of s a. If A is empty, we say that
sync s aborts: it is refined by any specification and refines only aborting specifications.

More formally, these operators must satisfy the following five axioms:

any refined: forall (A:Type) (a:A), refines (val a) (any A).

any refines: forall (A B:Type) (s1:A -> K B) (s2:K B),

(forall (a:A), refines (s1 a) s2) -> refines (bind (any A) s1) s2.

sync refines: forall (A B:Type) (s:A -> K B) (a:A), refines (sync s) (s a).

sync refined: forall (A B:Type) (s1:(K B)) (s2:A -> (K B)),

(forall (a:A), refines s1 (s2 a)) -> (refines s1 (sync s2)).

bind sync indep: forall (A B C:Type) (s1:K C) (s2:K B) (s3:B -> K C),

(A -> refines s1 (bind s2 s3))

-> refines s1 (bind (sync (fun :A => s2)) s3).

Axioms sync refines and sync refined express that sync s is the greatest lower bound1 of s (where
s is a family of specifications indexed over A). Let me now explain the interest and the meaning of other
axioms. First, I need to define choice from bind and any:

Definition choice (A B:Type) (s:A -> K B): (K B) := bind (any A) s.

Implicit Arguments choice [A B].

Combining axioms of bind with respectively any refined and any refines, I derive the following two
lemmas:

Lemma choice refined: forall (A B:Type) (s:A -> K B) (a:A), refines (s a) (choice s).

Lemma choice refines: forall (A B:Type) (s1:A -> K B) (s2:K B),

(forall (a:A), refines (s1 a) s2) -> (refines (choice s1) s2).

These two properties express that choice s is the least upper bound of s. There is thus a relative symme-
try between choice and sync with respect to refines. However, as we will see now, choice distributes
over bind, whereas sync generally does not. Indeed, if any A is equivalent to choice (fun x:A => val x),
defining choice from bind and any makes distributivity of choice over bind a consequence of bind as-
sociativity:

Lemma choice bind distr: forall (A B C:Type) (s1:A -> K B) (s2:B -> K C),

equiv (bind (choice s1) s2) (choice (fun x:A => bind (s1 x) s2)).

This property is generally2 not satisfied by sync. Indeed, let me define s1 as fun b:bool => val b and
s2 as fun x:bool => skip. Applying our intuitive model, sync s1 is the intersection of (val true) and
(val false): it represents the empty set. Thus, the left side of the refinement goal, bind (sync s1) s2,
is empty. On the right side, fun x => bind (s1 x) s2 is equivalent to fun x:bool => skip. Hence, its
intersection is equivalent to skip and thus non-empty.

However, using sync refined, monotonicity of bind and then sync refines, I prove the weaker
property:

Lemma sync bind distr l: forall (A B C:Type) (s1: A -> (K B)) (s2: B -> K C),

refines (bind (sync s1) s2) (sync (fun x:A => bind (s1 x) s2)).

Axiom bind sync indep expresses thus that when the intersection ranges over a family which is empty
or reduced to a single element, then the reverse relation holds.

In particular, the following definition uses sync to derive a require operator that sets a precondition
(I use here the fact that Prop is a subtype of Type). The proof of bind require below uses axiom
bind sync indep.

Definition require (P:Prop):(K unit) := sync (fun :P => skip).

1If S1 refines S2, I consider that S1 is smaller than S2, according to their intuitive meaning as sets of implementations.
But, in the literature about refinement, the dual view is also often considered.

2The distributivity property can not be falsified in the axiomatization, because we can still construct a trivial model of
DSM in which this property holds.

6

Instruction require P expresses that P is assumed by implementations (any implementation is authorized
if P does not hold). Using sync and bind axioms, we show that such preconditions can only be weakened
in refinement.

Lemma bind require: forall (A:Type) (p1 p2:Prop) (s1 s2:K A),

(p2 -> (p1 /\ refines s1 s2)) ->

refines (seq (require p1) s1) (seq (require p2) s2).

Lemma require True: equiv (require True) skip.

Symmetrically, I introduce an operator ensure to set a postcondition. Instruction ensure P expresses
that P is guaranteed by implementations.

Definition ensure (P:Prop): (K unit) := choice (fun :P => skip).

Lemma bind ensure: forall (A:Type) (p1 p2:Prop) (s1 s2:K A),

(p1 -> (p2 /\ refines s1 s2)) ->

refines (seq (ensure p1) s1) (seq (ensure p2) s2).

Lemma ensure True: equiv (ensure True) skip.

3.2 Fixpoint theory of DSM

Using sync, I adapt here in Coq the Tarski’s proof of existence of a smallest fixpoint for any monotonic
function in a complete lattice. The main trick of this proof is the higher-order scheme (i.e. a specification
“computing” a specification) in the definition of the smallest fixpoint operator below. Indeed, sfix F is
defined as the intersection of all prefixpoints of F (i.e. sp such that (F sp) refines sp):

Definition sfix (A:Type) (F:(K A) -> (K A)) : (K A) :=

sync (fun sp:(K A) => seq (require (refines (F sp) sp)) sp).

Implicit Arguments sfix [A].

I first prove that sfix refines every prefixpoint of F.

Theorem sfix smallest: forall (A:Type) (F:(K A) -> (K A)) (sp:K A),

(refines (F sp) sp) -> (refines (sfix F) sp).

Indeed, assuming the hypothesis (refines (F sp) sp) and applying bind require with p2 being True

and then require True, we derive that seq (require (refines (F sp) sp)) sp refines sp. Then, ap-
plying sync refines with variable a being sp, we derive the expected goal.

Then, I prove that under the assumption that F is monotonic, then sfixF F is a fixpoint (and it is
the smallest by sfix smallest):

Theorem sfix fix: forall (A:Type) (F:(K A) -> (K A)),

(forall (x y:K A), refines x y -> refines (F x) (F y))

-> equiv (sfix F) (F (sfix F)).

Indeed, let us assume now that F is monotonic. Let x be a prefixpoint of F. We deduce from property
sfix smallest that F (sfix F) refines F x. Then, by transitivity, F (sfixF) refines x (x being a prefix-
point). In other words, for all specification x, F (sfixF) refines seq (require (refines (F x) x)) x.
Hence, applying axiom sync refined, we get that sfixF F is a prefixpoint of F. As F is monotonic,
F (sfix F) is also a prefixpoint of F. At last, applying sfix smallest, we get that sfix F also refines
F (sfixF F). Hence, we have proved the expected goal.

One of the main properties directly derived from the two previous theorems is given below: given
two monotonic functions F1 and F2, this property expresses how to relate sfix F2 and sfix F1 via a
monotonic function G. Typically, if G is identity, then this lemma expresses monotonicity of smallest
fixpoints. Other instanciations of this lemma are given in Section 7.

Lemma sfix refines G sfix:

forall (A1 A2:Type) (F1: K A1 -> K A1) (F2: K A2 -> K A2) (G: K A1 -> K A2),

(forall (x y:K A1), refines x y -> refines (F1 x) (F1 y))

-> (forall (x y:K A1), refines x y -> refines (G x) (G y))

-> (forall (x:K A1), (refines (F2 (G x)) (G (F1 x))))

-> (refines (sfix F2) (G (sfix F1))).

7

Indeed, let us assume that F1 is monotonic. Then, by sfix fix, we know that (F1 (sfix F1)) refines
(sfix F1). By monotonicity of G, we get that: (G (F1 (sfix F1))) refines (G (sfix F1)). By hypoth-
esis and transitivity, we deduce that (G (sfix F1)) is a prefixpoint of F2. Hence, by sfix smallest,
we conclude that sfix F2 refines (G (sfix F1)).
The biggest fixpoint operator follows a symmetric construction, and has symmetric properties:

Definition bfix (A:Type) (F: (K A) -> (K A)) : (K A) :=

choice (fun sp:(K A) => seq (ensure (refines sp (F sp))) sp).

I have also defined a notion of well-founded fixpoints for recursive functions returning a specifica-
tion. These well-founded fixpoints are unique and preserve such properties as determinism and weak-
termination (see [Bou06]).

4 Modular construction of the state DSM

In the previous section, DSM are defined axiomatically. On the contrary, this section gives particular
models of DSM. They are used in next sections to simplify reasoning about refinement formulae.

Let me start with an intuitive model of the pure DSM, the DSM of the pure monad (i.e. the monad
of purely functional expressions). In this model, a specification is defined as a pair of a precondition
(i.e. a proposition assumed by implementations) and a postcondition (i.e. a predicate on the result
computed by implementations). Formally, the definition below makes K A a product type with Build K

as constructor, and pre and post as projections (parameter A being implicit):

Record K (A:Type): Type := { pre: Prop ; post: A -> Prop }.

Definition refines (A:Type) (s1 s2:K A): Prop

:= pre s2 -> (pre s1 /\ (forall a:A, post s1 a -> post s2 a)).

Definition val (A:Type) (a:A): K A := Build K True (fun b => a=b).

Definition bind (A B:Type) (s1:K A) (s2:A -> K B): (K B) :=

Build K (pre s1 /\ (forall a:A, post s1 a -> pre (s2 a)))

(fun b => exists a:A, post s1 a /\ post (s2 a) b).

Definition any (A:Type): K A := Build K True (fun a:A => True).

Definition sync (A B:Type) (s:A -> K B) : K B :=

Build K (exists a:A, pre (s a))

(fun b => forall a:A, pre (s a) -> post (s a) b).

It is straightforward to show that the previous definitions satisfy DSM axioms. Moreover, they are fully
compatible with higher-order schemes like the one used in sfix definition. In particular, I have carefully
avoided to define K as an inductive type that encodes the abstract syntax of specifications. Indeed, such
an inductive definition would introduce universe constraints forbidding higher-order schemes.

In conclusion, this model is intuitive and simple, but not very interesting in practice: specifications
are interpreted as huge formulae, because of bind definition. Now, I first present a second model which
is logically equivalent to the previous one. It is based on WP and produces simpler formulae. Then, I
give a model for the state DSM, the DSM of the state monad.

4.1 Construction of the pure DSM from weakest-preconditions

The WP semantics improves the previous one by translating computational contents of specifications
into Coq computations. Due to the presence of non-determinism, there are two notions of weakest-
preconditions. They are expressed below using the pre/post semantics of specifications. Hence, let us
assume a type A, and a specification s of type (K A).

Given a postcondition R on the result of s, the strong demonic weakest-precondition of s for R, noted
(sdemon s R), is the necessary and sufficient condition which must hold for R to be satisfied however s

is implemented. Hence, (sdemon s) has type (A->Prop)->Prop and satisfies:

forall R:A->Prop, (sdemon s R) <-> ((pre s) /\ forall a:A, (post s a)->(R a))

8

On the contrary, assuming that (pre s) holds, the angelic weakest-precondition of s for R is the necessary
and sufficient condition which ensures that there exists an implementation of s satisfying R.

(pre s) -> forall R:A->Prop, (angel s R)<->(exists a:A, (post s a) /\ (R a))

In classical logic, these two notions can be defined dually using Excluded-Middle. For instance, we could
define (angel s R) as not (sdemon s (fun a => not (R a))). In Coq which is an intuitionistic logic,
these two notions are not dual. But, a big interest of Coq is that WP are computed inside the logic.

Actually, to simplify the definition of angel and have better properties, I impose angel to satisfy the
following property:

forall R:A->Prop, (angel s R) <-> (exists a:A, (post s a) /\ (R a))

In particular, this implies that angel is monotonic (like sdemon):

forall (R1 R2:A->Prop), (forall a, R1 a -> R2 a) -> (angel s R1)->(angel s R2)

Moreover, using the following two properties (which derive from previous definitions), pre and post can
now be defined from sdemon and angel:
(pre s) <-> (sdemon s (fun => True)).

forall (a:A), (post s a) <-> (angel s (fun b => a=b)).

Hence, instead of defining specifications using a pre/post pair, I now define them as the following triple:
Record K (A:Type) : Type := {

sdemon: (A -> Prop) -> Prop;

angel: (A -> Prop) -> Prop;

WPcorrect: forall R : A -> Prop,

(sdemon R <->

(sdemon (fun => True) /\ forall a:A, (angel (fun b => a=b)) -> R a))

/\ (angel R <-> (exists a:A, (angel (fun b => a=b)) /\ R a))

}.

Actually, with this definition, I proved all standard properties of the WP-calculus without introducing
abstract syntax for specifications.

In the following, I still continue to use pre and post, but these constructions are now derived from
sdemon and angel using the previous equivalences. Refinement is directly defined by translating the
pre/post semantics:
Definition refines (A:Type) (s1 s2:K A): Prop

:= (pre s2) -> (sdemon s1 (fun a => post s2 a)).

At last, I present below the definition of pure DSM operators through Coq formulae. Indeed, their
WPcorrect component is not very human-friendly (see the real Coq code in [Bou06]). Hence, val, bind
and any are defined such that
forall (A:Type) (a:A) (R:A->Prop),

(sdemon (val a) R = R a) /\ (angel (val a) R = R a)

forall (A B:Type) (s1:(K A)) (s2:A->(K B)) (R:B->Prop),

(sdemon (bind s1 s2) R = sdemon s1 (fun a => sdemon (s2 a) R))

/\ (angel (bind s1 s2) R = angel s1 (fun a => angel (s2 a) R))

forall (A:Type) (R:A->Prop),

(sdemon (any A) R = forall a:A,R a) /\ (angel (any A) R = exists a:A,R a)

Now, I must define sync. But, WP of sync are not very simple. Thus, I derive sync from require,
where require is satisfying:
forall (P:Prop) (R:unit->Prop),

(sdemon (require P) R = (P /\ R tt)) /\ (angel (require P) R = R tt)

Below, sync is defined from other operators, assuming that choice and ensure are defined according to
Section 3.1 (their definitions depend only on bind, val and any). This definition of sync is only valid
in the pure DSM.
Definition sync (A B:Type) (s:A -> K B) :=

seq (require (exists a:A, pre (s a)))

(choice (fun b => seq (ensure (forall a, pre (s a) -> post (s a) b))

(val b))).

These definitions satisfy the DSM axioms. Moreover, on the programming part of the language (here
val and bind), sdemon and angel perform CPS computations. Examples of WP computed by Coq are
given in Section 5.

9

4.2 Construction of the state DSM from the pure DSM

This section presents how the state DSM is derived from the pure DSM, by applying the state monad
transformer. Intuitively, a monad transformer is a function from monads to monads that extends the
input monad with specific constructions (see [Lia96, Ben02]). A monad transformer is simply given by
a transformation on the type constructor K, by an embedding of the expressions of the input monads,
and by a generic transformation on composition operators of the input monad. However, the properties
of the specific operators of the input monad are not necessarily fully preserved in the output monad.

Hence, in our case, we have to prove that applying the state monad transformer on the pure DSM,
we obtain a DSM (it is a state monad by construction). From now, constructions of the pure DSM are
prefixed by “F.”: the non-prefixed names are only used to denote constructions of the state DSM. It is
easy to prove that the following definitions satisfy axioms of DSM (and of state monads):

Definition K (A:Type) := St -> F.K (St*A).

Definition refines (A:Type) (s1 s2:St -> F.K (St*A))

:= forall st:St, F.refines (s1 st) (s2 st).

Definition val (A:Type) (a:A): K A := fun st => F.val (st,a).

Definition bind (A B:Type) (s:K A) (f:A -> K B): K B

:= fun st => F.bind (s st) (fun p => let (stf,a):=p in (f a stf)).

Definition set (st:St): K unit := fun => F.val (st,tt).

Definition get: K St := fun st => F.val (st,st).

Definition any (A:Type): K A

:= fun st => F.bind (F.any A) (fun a => F.val (st,a)).

Definition sync (A B:Type) (s:A->K B) := fun st => F.sync (fun x => s x st).

Weakest-preconditions on the state DSM are also derived from the pure DSM:

Definition sdemon (A:Type) (s:K A) (R:St->A->Prop) (st:St)

:= F.sdemon (s st) (fun p => let (stf,a):=p in (R stf a)).

Definition angel (A:Type) (s:K A) (R:St->A->Prop) (st:St)

:= F.angel (s st) (fun p => let (stf,a):=p in (R stf a)).

This method allows me also to extend the state DSM with exception-handling, using the exception monad
transformers. It could also probably be applied with many other monad transformers.

5 WP-computations in interactive refinement proofs

This section presents how to use Coq as an interactive refinement prover. Subsection 5.1 gives examples
of weakest-preconditions computed by Coq. Subsection 5.2 explains how refinement proofs in the pure
DSM can combine deductions and wp-computations. Then, subsection 5.3 sketches how this is extended
when reasoning involves a state.

5.1 Using wp-computations to simplify proofs

In a refinement prover like B, refinement formulae are automatically translated into first-order “proof
obligations” through WP-computations. This is expressed in the pure DSM by the following rule:

Lemma wp refines: forall (A:Type) (s1 s2:F.K A),

(F.pre s2 -> F.sdemon s1 (fun a => F.post s2 a)) -> F.refines s1 s2.

Indeed, application of this lemma replaces the current refinement goal by the formula in hypothesis, that
Coq can then simplify by computing effectively “F.pre s2”, “F.sdemon s1” and “F.post s2”.

Let me run this rule on an example. First, I introduce an operator abort that sets a false precon-
dition, and thus, behaves like an error-raising operator. Given a type A, abort A could be defined as
seq (require False) (any A). Here, in the pure DSM, I use an (observationally) equivalent definition,
but with optimized WP. Hence, F.abort is defined such that

forall (A:Type) (R:A->Prop),

(F.sdemon (F.abort A) R = False) /\ (F.angel (F.abort A) R = False).

Second, I introduce two function definitions:

10

– Function pred computes the predecessor of a natural n, or aborts if n is zero.

Definition pred (n:nat): F.K nat :=

match n with | 0 => F.abort nat

| (S p) => F.val p

end.

– Function minus computes n−m when n ≥ m. If n < m, it aborts. It is defined by structural recursion
over parameter m as indicated by struct keyword.

Fixpoint minus (n m:nat) {struct m}: F.K nat :=

match m with | 0 => F.val n

| (S p) => F.bind (pred n) (fun n’ => minus n’ p)

end.

At last, let me consider the following three goals (below literals are expanded in Peano numbers by the
Coq parser). The first goal does not hold, because the left side aborts, whereas the right side does not.
The second goal holds, because the right side aborts. The third goal is an expected property of minus.

forall (n:nat), F.refines (minus 100 (500+n)) (F.any nat).

forall (n:nat) (sp:F.K nat), F.refines sp (minus 100 (500+n)).

forall (n:nat), F.refines (minus (500+n) 500) (F.val n).

After introduction of variables and application of wp refines, the first goal is reduced to formula
(nat -> True) -> False, the second goal is reduced to False -> F.sdemon sp (fun :nat => False)

and the third goal is reduced to True -> n = n. Here, we benefit from the fact that 500+n is reduced by
Coq to S500 n. Of course, Coq can discharge automatically the two last formulae.

Moreover, combining induction over m, transitivity of refinement and lemma wp refines, I have
established the correctness of minus in Coq interactive prover:

Lemma minus correctness: forall (m n:nat), m <= n ->

F.refines (minus n m)

(F.choice (fun k => F.seq (F.ensure (n=m+k)) (F.val k))).

This small example illustrates that refinement is very convenient to handle partial functions in Coq and
that computations of WP can involve structural recursion and pattern-matching.

5.2 Mixing deductions and WP-computations in the pure DSM

In the presence of higher-order functions, wp refines rule does not suffice. For example, because
of higher-order parameters, sdemon and angel are not necessarily eliminated from the resulting for-
mula. Moreover, reasoning about higher-order functions often requires to find a good instantiation of a
higher-order lemma. Hence, the user needs to control WP-computations such that in refinement proofs,
deductions and WP-computations may be interlaced. The deduction rules in refinement proofs are: re-
flexivity, transitivity of refinement, associativity, monotonicity of bind, and other lemmas derived from
DSM axioms.

In the pure DSM, three simplifying rules involving bind operator are given below. The prop-
erty called bind simpl left indicates that “(F.refines (F.bind s1 s2) s3)” can be deduced from
“(F.sdemon s1 (fun a => F.refines (s2 a) s3))”. If s1 is simple enough, this last formula is simpli-
fied such that s1 and sdemon do not appear any more. Hence, this lemma allows to perform a kind of
partial evaluation of bind into the left side of the refinement goal. The two others lemmas correspond
respectively to a simplification of bind in the right part of the refinement goal, or in both part of the
refinement goal.

Lemma bind simpl left: forall (A B:Type) (s1:F.K A) (s2:A -> F.K B) (s3:F.K B),

F.sdemon s1 (fun a=>F.refines (s2 a) s3) -> F.refines (F.bind s1 s2) s3.

Lemma bind simpl right: forall (A B:Type) (s1:F.K A) (s2:A -> F.K B) (s3:F.K B),

F.angel s1 (fun a=>F.refines s3 (s2 a)) -> F.refines s3 (F.bind s1 s2).

Lemma bind simpl both: forall (A B:Type) (s1 s3:F.K A) (s2 s4:A -> F.K B),

F.sdemon s1 (fun a => F.refines (s2 a) (s4 a))

-> F.refines s1 s3 -> F.refines (F.bind s1 s2) (F.bind s3 s4).

11

Before to apply these simplification lemmas, it is sometimes needed to have in hypothesis the precon-
dition of the right side of the refinement goal. This may be achieved by using pre intro lemma below,
or the weaker pre intro bind lemma, if its hypothesis is sufficient:

Lemma pre intro: forall (A : Type) (s1 s2:K A),

(pre s2 -> refines s1 s2) -> refines s1 s2.

Lemma pre intro bind: forall (A B:Type) (s1:K A) (s2:A -> K B) (s3:K B),

(pre s1 -> refines s3 (bind s1 s2)) -> refines s3 (bind s1 s2).

5.3 Mixing deductions and WP-computations in the state DSM

I now briefly explain how the previous ideas are extended to reason in the state DSM. In the state DSM,
it is convenient to reason with a restricted form of refinement formulae that compares specifications for
a given initial state. Below, I define refInEnv relation from refines:

Definition refInEnv (st:St) (A:Type) (s1 s2: K A)

:= (refines (seq (set st) s1) (seq (set st) s2)).

Implicit Arguments refInEnv [A].

Actually, refinement proofs can use refInEnv instead of refines, because of the following property:

forall (A:Type)(s1 s2:K A), refines s1 s2 <-> forall st, refInEnv st s1 s2.

The interest of refInEnv is that conditions over the initial state are propagated from the hypotheses
without a loss of information, as exemplified below on the state DSM version of bind simpl both.

Lemma bind simpl both: forall (A B:Type) (s1 s3:K A) (s2 s4:A -> K B) (st:St),

sdemon s1 (fun stf a => refInEnv stf (s2 a) (s4 a)) st

-> refInEnv st s1 s3 -> refInEnv st (bind s1 s2) (bind s3 s4).

Actually, interactive refinement proofs look like symbolic debugging of two non-deterministic pro-
cesses running concurrently. Indeed, applying the simplification rules, the user can “run” step-by-step
specifications in the refinement goal. Of course, here, each execution step may generate proof obligations
that must be discharged.

More precisely, a proof of refInEnv st s1 s2 can be considered as a run of two concurrent processes
s1 and s2 sharing a common state with st as initial value. Processes may be executed in parallel if
both agree on the new value of the state: this is precisely expressed by bind simpl both lemma. But,
execution of processes may be also interleaved: one of the process modifies the state whereas the other
is asleep. In this case, when a process is put to sleep, the current value of the state is saved, such that
the first instruction of this process on waking is to restore this value. For example, if both processes
were running in parallel, application of start left puts s2 to sleep; application of bind simpl left

performs a step of execution on the left process while the right process is asleep; and, application of
switch to right wakes up s2 and puts s1 to sleep. 3

Lemma start left: forall (A:Type) (s1 s2:K A) (st:St),

refInEnv st s1 (seq (set st) s2) -> refInEnv st s1 s2.

Lemma bind simpl left: forall (A B:Type) (s1:K A) (s2:A -> K B) (s3:K B) (st1 st3:St),

sdemon s1 (fun st2 a => refInEnv st2 (s2 a) (seq (set st3) s3)) st1

-> refInEnv st1 (bind s1 s2) (seq (set st3) s3).

Lemma switch to right: forall (A:Type) (s1 s2:K A) (st1 st2:St),

refInEnv st2 (seq (set st1) s1) s2 -> refInEnv st1 s1 (seq (set st2) s2).

Here, the user plays the role of the scheduler. The size of these execution steps can be controlled using
associativity of bind. And monotonicity allows to choose the good level of abstraction. Hence, the user
has a great control on the size and the complexity of the proof obligations generated by wp-computations.
Furthermore, interactive refinement proofs are very natural using this interpretation.

3The symmetric lemmas also hold, see [Bou06].

12

6 Proof of programs with the state DSM

This section presents how the theory of Dijkstra Specification Monads can be used to reason about
higher-order imperative functions. It is clear from DSM axioms that equational reasoning in monads
presented Section 2.1 is also available in DSM (see the description of the formalization given in [Bou07b]).
Thus, here, I first explain how reasonings à la Hoare on first order imperative programs are encoded
into the state DSM (subsection 6.1). Then, I show how the state DSM can express both partial and
total correctness of programs which may not terminate (Subsections 6.2, 6.3 and 6.4). I also show
some imperfections of DSM: higher-order functions in DSM may be non-monotonic (subsection 6.5) and,
programs handling references to functions are not fully supported by the state DSM (subsection 6.6).

6.1 Hoare specifications

Given a predicate q: A -> Prop, I define absPurePost q as the specification of expressions returning a
value satisfying q:

Definition absPurePost (A : Type) (q : A -> Prop) : K A :=

choice (fun a => seq (ensure (q a)) (val a)).

Implicit Arguments absPurePost [A].

On a state DSM, given a predicate q: St -> A -> Prop, I define absPost q as the specification of im-
perative expressions that admits q as postcondition:

Definition absPost (A : Type) (q : St -> A -> Prop) : K A :=

choice (fun stf => seq (set stf) (absPurePost (q stf))).

Implicit Arguments absPost [A].

Given e of type (K A) in state DSM, the Hoare specification of e (see Section 2.3) can now be expressed
by the following refinement formula:

refines e (bind get (fun sti => seq (require (P sti)) (absPost (Q sti))))

There is however an important difference between specifications in Hoare logic and in DSM with respect
to the well-known frame problem. In Hoare logic, a “true” post-condition allows the implementation to
perform any side-effect: if we want to impose e to be “pure” (that means e does not change observa-
tionally the initial state), then we are obliged to specify in Q the condition stf=sti. On the contrary,
in DSM, specifications indicate explicitly all side-effects that are (observationally) authorized in imple-
mentations. Thus, in order to impose e to be “pure”, we can simply use instead a postcondition Q’ of
type St -> A -> Prop relating the initial state to the final result, and replace in the above refinement
formula absPost (Q sti) by absPurePost (Q’ sti).

Actually, in interactive refinement proofs, it is more convenient to work with the following formula
which is equivalent to the previous refinement formula:

forall sti:St, (P sti) -> refInEnv sti e (absPost (Q sti))

This last formula can then be simplified using the following rule:

Lemma absPost2wp: forall (A:Type) (s:K A) (q:St->A->Prop) (st:St),

(sdemon s q st) -> (refInEnv st s (absPost q)).

Applying this rule generates proof obligations corresponding approximatively to those of Hoare logic (see
the discussion in Section 8.1).

When (refInEnv st s (absPost q)) holds, the following lemma allows to introduce an assertion on
the result and the final state of s execution. This lemma is typically needed when s is the parameter of
a higher-order function, which is required to refines (absPost q).

Lemma abspost bind ensure:

forall (A:Type) (s: K A) (q:St->A->Prop) (st:St),

(refInEnv st s (absPost q))

-> refInEnv st s (bind s (fun a =>

(bind (get) (fun new st =>

seq (ensure (q new st a)) (val a))))).

13

6.2 Feasible and non-aborting specifications

A feasible specification is a specification that can be implemented. In the state DSM, we can express this
idea using the following pre/post formula. Given sp: K A, the specification sp is feasible in the initial
state sti iff

(F.pre (sp sti)) -> exists (a:A), exists (stf:St), (F.post (sp sti) (stf,a))

Alternatively, we can express this using weakest-preconditions:

(sdemon sp (fun => True) sti) -> (angel sp (fun => True) sti)

But, we can also write this using a very simple refinement formula. Intuitively, this last formula expresses
that in the state sti, the specification sp does not ensure false.

refInEnv sti skip (bind sp (fun => set sti))

These three formulas are logically equivalent: the first gives the intuitive semantics of feasibility, the
second is useful to simplify feasibility formula by computation of weakest-preconditions, and the last
allows to reuse deduction rules of refinement to reason about feasibility.

Formally, I thus choose to define feasibility using this refinement formula. Then, I prove the equiva-
lence with the wp-based formula.

Definition feasible (A:Type) (sp:K A) (st:St)

:= refInEnv st skip (bind sp (fun => set st)).

Lemma feasible wp: forall (A: Type) (sp: K A) st,

((sdemon sp (fun => True) sti) -> (angel sp (fun => True) sti))

-> feasible sp st.

Lemma feasible unfold: forall (A: Type) (sp: K A) st,

(feasible sp st) ->

(sdemon sp (fun => True) sti) -> (angel sp (fun => True) sti).

This second lemma allows to prove that the specification magic A defined below is never feasible: it is
the bottom of the refinement preorder.

Definition magic (A:Type): K A := seq (ensure False) (any A).

Lemma magic unfeasible: forall (A: Type) (st:St), ~(feasible (magic A) st).

A specification sp: K A is said to be non-aborting in the initial state st if F.pre (sp st) holds. Non-
abortion can be expressed as two equivalent refinement formulas. First, as the symmetric of feasibility:

refInEnv st (bind sp (fun => set st)) skip.

Or, second, using absPost:

refInEnv st sp (absPost (fun => True)).

6.3 Non-terminating expressions

Section 3 presents smallest and greatest fixpoint operators. I claim here that non-terminating expressions
can be represented by smallest fixpoints in partial correctness semantics, or by greatest fixpoints in total
correctness semantics. This is briefly illustrated below on a loop operator. First, I define the “unfolding”
of a while-loop computation w where cond and body represents respectively the condition and the body
of this computation:

Definition unfoldW (cond:K bool) (body w:K unit) : K unit :=

If cond Then (seq body w) Else skip

Then, while cond body is defined as the smallest fixpoint of unfoldW cond body.

Definition while (cond:K bool) (body:K unit) : K unit

:= sfix (unfoldW cond body).

14

Operator while corresponds to a while-loop in a partial correctness semantics: termination is not guar-
anteed. In the state DSM, a whileWF operator corresponding to a total correctness semantics can also
be defined from while. Hence, whileWF cond body calls while cond body under a higher-order precon-
dition, which expresses that, in the state transformation induced by the sequence of cond and body,
the state strictly decreases with respect to a well-founded relation. In other words, whileWF requires a
property ensuring its termination. When it appears in the left side of a refinement goal, the user has
to prove this property. Moreover, whileWF cond body is refined by any fixpoint of unfoldW cond body,
because under its assumption of termination, there is a unique fixpoint (see [Bou06]). Hence, whileWF
is a particular case of greatest fixpoint. In particular, while preserves non-abortion whereas whileWF

preserves feasibility.
These two ways of representing non-terminating programs are inherited from Hoare logics. In Hoare

logics for partial correctness non-terminating programs satisfy a false postcondition, whereas in Hoare
logics for total correctness non-terminating programs have a false weakest-precondition.

6.4 Partial and total correctness in the state DSM

The previous subsection claims that the semantics of DSM with respect to termination only rely on the
use of “higher-order” operators like while or whileWF. Hence, even if all computations of the original
monad M terminate, its associated DSM is expressive enough to represent non-terminating expressions:
this DSM can be used to reason about programs of an extension of M with fixpoint operators. According
to the desired semantics, partial or total correctness, these operators have to be interpreted as smallest
or particular greatest fixpoints. This idea is now made more precise.

Let me assume a programming language P such that its basic constructions can be interpreted as
primitive or derived constructions of the state DSM. For instance, P is a simply typed lambda-calculus
extended with val, bind, set, get, and while. Hence, while allows to write non-terminating expressions.

In the construction of the state DSM given Section 4, specifications of the state DSM can be inter-
preted as a pair of predicate representing a precondition and a postcondition. Thus, we now translate
the usual notion of partial correctness for Hoare logic, to define the partial correctness of refinement
proofs in the state DSM with respect to P : for every P -expression e and every specification s such that
(refines e s), then for every P -expression e’, and for every state sti and stf, if e with the ini-
tial state sti reduces to e’ with the state stf, then refines (seq (set stf) e’) (seq (set sti) s).
Using the transitivity of refinement, this partial correctness property is reduced to the verification
that for every P -expression e’, and for every state sti and stf, if (e,sti) reduces to (e’,stf) then
refines (seq (set stf) e’) (seq (set sti) e).

In the total correctness semantics, we interpret while of P into whileWF of the state DSM. And,
we now want to verify additionally that for any P -expression e and for any state sti, if e does not
abort in the initial state sti a (i.e. if refines (seq (set sti) e) (absPost (fun => True))), then
computation of e in the initial state sti is terminating.

If P is deterministic, then the usual notion of termination matches exactly feasibility (see Subsec-
tion 6.2) : we say that e terminates in the initial state sti if e is feasible in the state sti. Thus, we have
simply to check that basic constructions of P preserve feasibility. In particular, this property is proved
for whileWF (see [Bou06]).

However, semantics of real programming languages are never deterministic, even for purely sequential
languages. In particular, implementation-defined behaviors (uninitialized variables, evaluation order of
some subexpressions) may be expressed as non-deterministic. Thus, I now assume that P has a any

operator, which is syntactically restricted to non-empty types (hence, there is no magic behavior in P).
And, we now want to verify that for any P -expression e and for any state sti, if e has a true precondition
in the initial state sti, then all computations of e in the initial state sti are terminating whatever are
the demonic choices of the execution. This property is called strong-termination (whereas feasibility is
weak-termination).

Defining strong-termination requires here to reason about the reduction relation. I have formalized
and proved this property in Coq for a particular first-order expression language containing whileWF,
any restricted on non-empty types and require (to represent aborting expressions). The reduction
relation being expressed as a small-steps semantics, strong-termination is formalized as well-foundation
of the reduction relation (see [Bou06]). However, the proof is quite tedious. It may be much simplified
by Leroy’s technique (see [Ler06]): by using instead a big-step semantics and by formalizing strong-

15

termination as non-divergence, where divergence is coinductively defined. Indeed, in the intuitionistic
logic of Coq, non-divergence is weaker than well-foundation.

6.5 Higher-order refinement and non-monotonicity

Refinement formulas are propositions that may appear in require or ensure instructions: this is higher-
order refinement. This feature has been used in the fixpoint theory of DSM (see Section 3.2). But this
feature may also be useful to express properties of functional parameters: we will see the example of
nimgamewf function in Subsection 7.3. However, this feature has a drawback: higher-order functions in
DSM are not necessarily monotonic. As a counter-example, the function below is not monotonic over f.
But, when monotonicity holds, it is usually trivially provable.

fun (f:nat -> K unit) => require (equiv (f 0) skip)

6.6 Representing references to functions in the state DSM

At this point, a natural question arises: can we represent in the state DSM any ML program mixing
references and functions? Aliases do not seem a problem at this level: we may encode explicitly the
global state of type St as a heap, even if reasoning with such an encoding is difficult. Here, a problem
comes from the fact that references to functions can only be incompletely represented in the state monad.
Moreover, this incompleteness problem is not specific to the state monad, it also happens in the exception
monad with exceptions of functions parametrized by an exception.

Hence, given a reference f to a function of type unit->unit, we can not represent the following ML

program in the state monad.

(f := fun () -> (!f)()) ;

(!f)()

Indeed, this program is non-terminating, whereas in the state monad, all computations are terminating.
And, this program does not use a fixpoint operator, but only functions and references. Thus, it does not
seem to have a natural representation in the state DSM.

However, the state monad can cope with some programs handling references to functions. Basically,
in these programs, there is a partial order on references such that a reference can only point to functions
that work with strictly lower references. For instance, considering a reference x to an integer, we can
represent the following program in the state monad, because f references only functions working on x.

(f := fun() -> x := 1 + !x) ;

(!f)() ;

(f := fun() -> x := 2 + !x) ;

(!f)()

First, we define K x as the type of computations in the state monad where St is an integer representing
reference x. Then, we define K x f as the type of computations in the state monad where St is a pair
of an integer (representing x) and functions of type unit -> (K x unit) (representing f). There is an
embed function to embed computations of (K x A) into computations of (K x f A): embed is a particular
case of the lift function of the state monad transformer. Using these definitions, the transcription of
the code above is straightforward. Such an encoding can be mechanized using a good type system with
effects [Fil99, Wad99, Ben02]. This remains to be adapted to the state DSM.

7 A concrete example in the state DSM : the game of Nim

In this section, I illustrate the expressive power of the state DSM on the modelization of the game of
Nim. This is a two-player games where players take turns to remove between one or three matches from
a stack. The game ends when the stack is empty. The winner is the last who has played. Here, we first
want to describe the game in the state DSM, then to study an optimal strategy, and at last to prove
the correctness of an implementation of this optimal strategy. The interest of this implementation is to
store information in the memory that avoids to recompute the whole strategy at each turn.

This example illustrates the top-down methodology allowed by refinement: in particular, the proof
of optimality of the strategy is completely independent of the proof that the implementation refines the

16

strategy, but the combination of this two proof allows to derive that the implementation is an optimal
player. This example also combines higher-order reasoning with Hoare specifications. It shows that
higher-order refinement is convenient to reason about games. It also performs a kind of data refinement.
The interesting part of this data refinement is not the change of representation (here, it only instantiates
some polymorphic part of the state), but the fact that this data refinement requires the other player
to respect the rules of the game. Hence, this is a case of “data-refinement with rely-guarantee” (see a
formalization of this approach for B in [Büc99]).

In the following, the type K A of computations in the state DSM is now explicitly parametrized by
the global state with the form K St A. To improve the readability, I introduce a few definitions:

Definition eval (St A:Type) (f: St -> A) : K St A :=

bind (get St) (fun st => val (f st)).

Implicit Arguments eval [St A].

Definition require (St:Type) (p: St -> Prop): K St unit

:= bind (get St) (fun st => require (p st)).

Implicit Arguments require [St].

Definition ensure (St:Type) (p: St -> Prop): K St unit

:= bind (get St) (fun st => ensure (p st)).

Implicit Arguments ensure [St].

At last, I introduce two notations: binary operator seq is now denoted by the infix operator “-;” and
the ternary relation refInEnv st sp1 sp2 is now written “[< st >] sp1 >==> sp2”.

7.1 Modelization of two-players games

In a first step, we only describe the execution of two-player games. Here, we name the position of each
player with a boolean : “player true” or “player false”. Assuming a type GameData: Type, the state of
a two-player game is of the following type:

Record GameSt : Type := mkGameSt {
player: bool ; (* position of the next player *)

gdata: GameData (* data of the game *)

}.

The action to change the player position is given by change player below, where negb is the boolean
negation:

Definition dualSt (st:GameSt) : GameSt := (mkGameSt (negb (player st)) (gdata st)).

Definition change player: K GameSt unit := bind (get) (fun st => set (dualSt st)).

The execution of a two-player game is described by game not gameover pt pf where not gameover

returns true while the game is not over, and pt and pf compute respectively the action player player
true and player false.

Definition game (not gameover: GameSt -> bool) (pt pf: K GameSt unit): K GameSt unit :=

while (eval not gameover)

((If eval player Then pt Else pf) -;

change player).

Let us remark here, that players may read and write into field player of the state. Moreover, the player
true is not necessarily the first player: the first player corresponds to the value of the field player at the
initial state of the execution. We now study some fundamental properties of game.

7.1.1 Refinement of players

Here, we describe a necessary condition to refine pt and pf in the execution of a game. The lemma below
expresses that game is itself a monotonic function. It is a trivial consequence of fixpoint monotonicity.

Lemma game monotonic:

forall (cond1 cond2: GameSt -> bool) (pt1 pt2 pf1 pf2: K GameSt unit),

(forall st, (cond1 st)=(cond2 st))

-> (forall st, (player st)=true -> (cond1 st)=true -> [< st >] pt1 >==> pt2)

-> (forall st, (player st)=false -> (cond1 st)=true -> [< st >] pf1 >==> pf2)

-> forall st, [< st >] (game cond1 pt1 pf1) >==> (game cond2 pt2 pf2).

17

Actually, this lemma is a bit stronger than a pure monotonicity lemma, since pt1 (resp. pf1) is allowed
to refine pt2 (resp. pf2) assuming conditions on the initial state. However, as we will see in the following,
this lemma may not be sufficient to refine players. Indeed, we may need to also assume an invariant on
the state : a property satisfied during all the execution of the game. We prove thus the stronger theorem
(game monotonic is a consequence when inv is fun => True):

Theorem game monotonic with invariant:

forall cond1 cond2 pt1 pf1 pt2 pf2 (inv: GameSt -> Prop),

(forall st, (inv st) -> (cond1 st)=(cond2 st))

-> (forall st, (player st)=true -> (cond1 st)=true -> (inv st) ->

[< st >] pt1 >==> (pt2 -; ensure (fun st => inv (dualSt st))))

-> (forall st, (player st)=false -> (cond1 st)=true -> (inv st) ->

[< st >] pf1 >==> (pf2 -; ensure (fun st => inv (dualSt st))))

-> forall st, [< st >] (game cond1 pt1 pf1)

>==> (require (fun st => inv st) -; game cond2 pt2 pf2).

This theorem is directly derived from sfix refines G sfix, instantiating the function G with the func-
tion fun (k: K GameSt unit) => (require (fun st => inv st) -; k).

7.1.2 Symmetry of the game

Now, we express the symmetry between player true and player false. This symmetry is expressed using
dualPlayer defined below. Hence, if p is a player then dualPlayer p acts like p in the dual position.

Definition dualPlayer (p: K GameSt unit) :=

(change player -; p -; change player).

Trivially, dualPlayer is a monotonic and involutive function. Hence, it satisfies also the property:

Lemma dualPlayer left right: forall p1 p2 st,

([< dualSt st >] p1 >==> (dualPlayer p2)) <-> ([< st >] (dualPlayer p1) >==> p2).

The symmetry of the game is expressed as:

Lemma game symmetry: forall cond pt pf st,

[< st >] (game cond pt pf)

>==> (dualPlayer (game (fun st => cond (dualSt st))

(dualPlayer pf)

(dualPlayer pt))).

This lemma is directly derived from sfix refines G sfix instantiating G with dualPlayer.
In the following, we are interested in a game where cond is symmetric (e.g. such that (cond st)

equals (cond (dualSt st))). Thus, the symmetry lemma allows to reduce the study of a strategy to the
study of its dual in the dual position. This is particularly interesting when this strategy is its own dual.

7.1.3 A rely-guarantee methodology to refine players

In the following, we describe the rule of the game as a postcondition expressing actions authorized by
players when they take their turn. This postcondition of type GameSt -> GameSt -> Prop is a property
relating the initial state of the player (before its turn) to its final state (after its turn). Player are not
allowed to modify observationally field player of the state. This last idea is expressed by absPlayer

below: given a rule gameRule, (absPlayer gameRule) is a non-deterministic player respecting gameRule

without modifying observationally field player. Such a player is called an abstract player.

Definition absPlayer (gameRule: GameSt -> GameSt -> Prop): K GameSt unit :=

bind (get) (fun st =>

absPost (fun st’ => gameRule st st’ /\ (player st’)=(player st))).

The function absPlayer is monotonic: implication on postconditions implies refinement of corre-
sponding abstract players.

Lemma absPlayer monotonic: forall (rule1 rule2: GameSt -> GameSt -> Prop) st,

(forall st st’, (rule1 st st’) -> (rule2 st st’))

-> [< st >] (absPlayer rule1) >==> (absPlayer rule2).

18

Moreover, the dual player of an abstract player is of course itself an abstract player. When the rule
is symmetric, the corresponding abstract player is its own dual.

Lemma absPlayer autodual: forall gameRule st,

[< st >] (dualPlayer (absPlayer (fun st st’ => gameRule (dualSt st) (dualSt st’))))

>==> (absPlayer gameRule).

Now, we propose to define a methodology to study players of a given game, using an approach with
two refinement level. At the first level, we refine the rule of the game by a strategy. This strategy is
typically itself an abstract player. By studying the game where one player is the strategy and the other
is the rule of the game, we can prove when this strategy allows to win. At the second level, we refine
this strategy into an implementation. Of course, here, we would like to assume in this refinement, that
the other player respects the rule of the game.

We now give a decomposition theorem to achieve this two-level approach. First, given an implemen-
tation p, we define now the monitor invPlayer p inv gameRule which requires that invariant inv is
satisfied when p takes its turn and ensures that after the execution of p, inv will be established after the
other player has played. Here, the other player is assumed to respect the rule gameRule.

Definition invPlayer p (inv:GameSt -> Prop) (gameRule:GameSt -> GameSt -> Prop) :=

require (fun st => inv st) -;

p -;

ensure (fun st => forall st’,

(gameRule (dualSt st) (dualSt st’))

-> (player st’)=(player st) -> inv st’).

We say that p satisfies inv if p refines (invPlayer p inv gameRule). Of course, invPlayer is monotonic
and the true invariant is always satisfied.

Lemma invPlayer monotonic: forall p1 p2 (inv: GameSt -> Prop) rule st,

((inv st) -> [< st >] p1 >==> p2)

-> [< st >] (invPlayer p1 inv rule) >==> (invPlayer p2 inv rule).

Lemma invPlayer trivial trivok: forall p rule st,

[< st >] p >==> (invPlayer p (fun => True) rule).

Now, we want to instantiate game monotonic with invariant such that each player may have its
own invariant: indeed, the global invariant of this theorem is not very adapted to modular reasoning
about players. Hence, given invpt and invpf the respective invariants of player true and player false,
given rule the rule of the game, then the global invariant of the game is:

Definition gameInv (invpt invpf: GameSt -> Prop) (rule: GameSt -> GameSt -> Prop) st

:= if (player st)

then (invpt st)

/\ forall st’, (rule st (dualSt st’)) -> (player st’)=false -> (invpf st’)

else (invpf st)

/\ forall st’, (rule st (dualSt st’)) -> (player st’)=true -> (invpt st’).

This invariant expresses that for the two next turns, the invariant of each player will be satisfied at its
turn to play, assuming that the other player respects the rule of the game. We can now express our de-
composition theorem. Below, we denote rule the rule of the game, pt1 (resp. pf1) is an implementation
of player true (resp. false), and pt2 (resp. pf2) is the strategy of player true (resp. false). We assume
that pt1 (resp. pt2) satisfies invariant invpt (resp. invpf). We assume that under the precondition of
its invariant, each implementation refines the corresponding strategy. Similarly, we assume that under
the precondition of its invariant, each strategy refines the rule of the game. The theorem states that
under the precondition that each invariant are initially satisfied, then the game between implementations

19

refines the game between strategies.

Theorem game PlayerRefinement: forall cond pt1 pf1 pt2 pf2 invpt invpf rule,

(forall st, (player st)=true -> (cond st)=true ->

[< st >] pt1 >==> invPlayer pt1 invpt rule)

-> (forall st, (player st)=false -> (cond st)=true ->

[< st >] pf1 >==> invPlayer pf1 invpf rule)

-> (forall st, (player st)=true -> (cond st)=true -> (invpt st) ->

[< st >] pt1 >==> pt2)

-> (forall st, (player st)=false -> (cond st)=true -> (invpf st) ->

[< st >] pf1 >==> pf2)

-> (forall st, (player st)=true -> (cond st)=true -> (invpt st) ->

[< st >] pt2 >==> absPlayer rule)

-> (forall st, (player st)=false -> (cond st)=true -> (invpf st) ->

[< st >] pf2 >==> absPlayer rule)

-> forall st, (gameInv invpt invpf rule st)

-> [< st >] (game cond pt1 pf1) >==> (game cond pt2 pf2).

This theorem is directly derived from game monotonic with invariant instantiating the global invari-
ant inv with (gameInv invpt invpf rule). Its main interest is that each player can be independently
refined. Moreover the hypothesis about each player in game monotonic with invariant is now split into
three separate properties: first, the implementation satisfies its invariant; second, the implementation
refines the strategy; and third, the strategy refines the rule.

7.2 The game of Nim

Now, we describe an abstract notion of Nim game. In this abstract view of the game, we do not precise
how players deal with the memory. The interest of this abstraction will be justified in Subsection 7.3.
In the following, Z is the type of infinite binary integers, defined in Coq library. Whereas the number
of matches is always non-negative, I represent it in Z because, the number theory of Z is well-developed
in Coq. Hence, here we assume that there is a function nb matches: GameData -> Z that extracts the
number of matches from values of type GameData.

To simplify a bit the notations, we write “nbm st” to express “(nb matches (gdata st))”. The
execution of the Nim game is defined by nimgame below, where Zlt bool is a predefined function of type
Z -> Z -> bool such that (Zlt bool x y)=true <-> x<y.

Definition nimgame (pt pf: K GameSt unit)

:= game (fun st => Zlt bool 0 (nbm st)) pt pf.

Each player of the Nim game are assumed to follow nimRule below. This rule expresses that players
must decrease nb matches of a value between 1 and 3, but keep this number non-negative. Implicitely,
other parts of GameSt can change non-deterministically.

Definition nimRule (st st’: GameSt): Prop :=

let nm:=(nbm st) in

let nm’:=(nbm st’) in

0 <= nm’

/\ nm-3 <= nm’ < nm.

By convention, the player p wins the game in the state st, if the game ends in a state st’ such that
is winner p st’ (where is winner is defined below) :

Definition is winner (p: bool) (st’: GameSt): Prop

:= (player st’)=negb p.

First, we prove that when the game is over, then the number of matches is zero. However, we do not
prove here that the game will end. We leave this for Subsection 7.3. game will end.

Lemma nimgame end: forall st, (nbm st) >=0 ->

[< st >] (nimgame (absPlayer nimRule) (absPlayer nimRule))

>==> (absPost (fun st => nbm st=0)).

20

This lemma is easily proved using the standard rule of Hoare logic for while-loops in partial correctness:
the invariant of the loop is here “nbm st >= 0”.

Let us now introduce the optimal strategy of this game. The theorem expressing that this strategy
is optimal will be proved in Subsection 7.3. First, let us remark that all components of this game (e.g.
nimgame, nimRule and is winner) are fully symmetric between player true and player false. Hence, the
optimal strategy is the same for these two players. Now, the reasoning to find the optimal strategy is
the following: if the initial number of matches is zero, then the first player immediately loses. Hence,
if the initial number of matches is between 1 and 3, then the first player can remove all the matches,
which makes the second player lose. More generally, if the initial number of matches is not multiple of
4 then the first player will win by removing at each turn the remainder of the division of the number
of matches by 4. Indeed, in this case, the second player finds at each turn a number of matches that
is multiple of 4, and necessarily leaves to the first player a number of matches that is not multiple of
4. Symmetrically, if the initial number of matches is multiple of 4 then, the first player will lose if the
second player applies this optimal strategy.

In summary, the optimal strategy is the following: if the number of matches is multiple of 4, then
apply non-deterministically the rule of the game, else remove the remainder of the division by 4. Below
infix operator mod computes this remainder and Zeq bool is a predefined function of type Z -> Z -> bool

such that (Zeq bool x y)=true <-> x=y.

Definition nimStrategy (st st’: GameSt): Prop :=

let nm:=(nbm st) in

let r:=(nm mod 4) in

if (Zeq bool r 0) then

nimRule st st’

else

(nbm st’)=nm - r.

The abstract player following this strategy is called expertPlayer:

Definition expertPlayer: K GameSt unit := absPlayer nimStrategy.

First, we prove that expertPlayer respects the rule of the game:

Lemma expertPlayer isNimPlayer: forall st,

0<(nbm st) -> [< st >] expertPlayer >==> (absPlayer nimRule).

Then, we prove that the dual player of expertPlayer is expertPlayer. This lemma will be used to
apply game symmetry.

Lemma expertPlayer autodual: forall st,

[< st >] (dualPlayer expertPlayer) >==> expertPlayer.

Now, we prove that if expertPlayer is player false, then it wins when the initial state st satisfies
(Zeq bool ((nbm st) mod 4) 0)=(player st).

Definition false can win : K GameSt unit

:= bind (get) (fun st =>

require ((nbm st) >= 0) -;

absPost (fun st’ => (Zeq bool ((nbm st) mod 4) 0)=(player st)

-> is winner false st’)).

Theorem expertPlayer nimgame: forall st,

[< st >] (nimgame (absPlayer nimRule) expertPlayer) >==> false can win.

To prove this theorem, I directly apply sfix smallest with sp being false can win. Hence, I avoid
here to guess the invariant, which seems a bit tedious to formulate (hence, interactive theorem proving
may help users to build invariants). Then, the proof is closed to the informal proof sketched above.

At this point, we can also prove, by invoking game symmetry, that if expertPlayer is player true,
then it wins on dual initial states: when the initial state st satisfies “(Zeq bool ((nbm st) mod 4) 0)

equals (negb (player st))”. This implies optimality of expertPlayer since for all initial state st (such
that nbm st>=0), expertPlayer wins either in position false or in position true. However, as explained
later, I prefer prove optimality on a refinement of the Nim game.

21

7.3 Refinement using players with memory

We now refine the rule of the Nim game to allow each player to own a private memory zone, where it
can store some information. By “private” here, we mean that only the owner of the zone can write into
the zone (but, both players can read into each zone). Hence, assuming two types WDatat and WDataf,
we now define GameData as

Record GameData: Type := mkGameData {
nb matches: Z;

writet: WDatat ; (* write-private data of player true *)

writef: WDataf (* write-private data of player false *)

}.

This type definition introduces also mkGameData as a constructor of the record type plus three projections
nb matches: GameData -> Z and writet: GameData -> WDatat and writef: GameData -> WDataf. In
the following, we write “wrt st” as a notation for “(writet (gdata st))”, and “wrf st” as a notation
for “(writef (gdata st))”.

Thus, if rule is a rule, WRule rule is a rule that enforces rule such that each player can only modify
its own zone.

Definition WRule (gameRule: GameSt-> GameSt -> Prop) (st st’: GameSt): Prop :=

gameRule st st’

/\ if (player st) then (wrf st’)=(wrf st) else (wrt st’)=(wrt st).

Now, we define absWPlayer as an abstract player which satisfies a WRule.
Definition absWPlayer (gameRule: GameSt -> GameSt -> Prop) :=

absPlayer (WRule gameRule).

By monotonicity of absPlayer, we prove immediately the following property:

Lemma absWPlayer absPlayer:

forall gameRule st, [< st >] absWPlayer gameRule >==> absPlayer gameRule.

Here, we introduce a way to decompose proofs of the form “p refines absWPlayer gameRule”:

Lemma absWPlayer decompose:

forall p gameRule st,

([< st >] p >==> absPlayer gameRule)

-> ([< st >] p >==> absPost (fun st’ => if (player st) then (wrf st’)=(wrf st)

else (wrt st’)=(wrt st)))

-> ([< st >] p >==> absWPlayer gameRule).

Now, we refine expertPlayer as a player that respects the new rule.

Definition expertWPlayer: K GameSt unit := absWPlayer nimStrategy.

The two previous lemmas allows respectively to derive:

Lemma expertWPlayer expertPlayer:

forall st, [< st >] expertWPlayer >==> expertPlayer.

Lemma expertWPlayer isNimWPlayer:

forall st, 0 < (nbm st) -> [< st >] expertWPlayer >==> (absWPlayer nimRule).

Trivially, we can directly derive from the properties of expertPlayer the sufficient conditions which
ensure that expertWPlayer wins against (absWPlayer nimRule).

Lemma expertWPlayer as player false:

forall st, (nbm st) >= 0

-> (Zeq bool ((nbm st) mod 4) 0) = (player st)

-> [< st >] (nimgame (absWPlayer nimRule) expertWPlayer)

>==> (absPost (fun st’ => is winner false st’)).

Lemma expertWPlayer as player true:

forall st, (nbm st) >= 0

-> (Zeq bool ((nbm st) mod 4) 0) = negb (player st)

-> [< st >] (nimgame expertWPlayer (absWPlayer nimRule))

>==> (absPost (fun st’ => is winner true st’)).

22

Let me remark here that in this game, WRule breaks the symmetry (as defined previously) between the
two players: in particular, (dualPlayer expertWPlayer) is not equivalent to expertWPlayer since they
do not write into the same zone of the memory. This justifies here the interest of having defined an
abstract view of the game where the symmetry between players can be expressed.

As we do not want to refine again the rule of the game, we are now at the good level to express the
termination of the game. First, we define the well-founded relation Rgame between two successive state
of the game. The code below expresses that Rgame is the natural ordering over the number of matches.

Definition Rgame (st1 st2: GameSt): Prop := Zwf 0 (nbm st1) (nbm st2).

Given pt and pf two Nim players with respective invariants invpt and invpf, we define below the
computation nimgamewf pt pf invpt invpf as the well-founded execution of the Nim game. Here, we
need to introduce explicitly invariants to express that pt and pf satisfies the rule of the game under the
precondition of their invariant.

Definition nimgamewf (pt pf: K GameSt unit) (invpt invpf: GameSt -> Prop) : K unit :=

require (

(forall st, (player st)=true -> 0 < (nbm st) ->

[< st >] pt >==> invPlayer pt invpt (WRule nimRule))

/\ (forall st, (player st)=false -> 0 < (nbm st) ->

[< st >] pf >==> invPlayer pf invpf (WRule nimRule))

/\ (forall st, (player st)=true -> 0 < (nbm st) -> (invpt st) ->

[< st >] pt >==> absWPlayer nimRule)

/\ (forall st, (player st)=false -> 0 < (nbm st) -> (invpf st) ->

[< st >] pf >==> absWPlayer nimRule)

) -;

(whileWF (* cond *) (eval (fun st => Zlt bool 0 (nbm st)))

(* body *) ((If eval player Then pt Else pf) -; change player)

(* inv. *) (gameInv invpt invpf (WRule nimRule))

(* var. *) Rgame).

The key property of nimgamewf is the preservation of the feasibility of players.

Lemma nimgamewf feasible: forall pt pf (invpt invpf: GameSt -> Prop),

(forall st, (player st)=true -> 0 < (nbm st) -> invpt st -> feasible pt st)

-> (forall st, (player st)=false -> 0 < (nbm st) -> invpf st -> feasible pf st)

-> forall st, feasible (nimgamewf pt pf invpt invpf) st.

Of course, another important property is the equivalence between nimgamewf and nimgame (under the
preconditions of nimgamewf):

Lemma nimgame refines nimgamewf: forall pt pf invpt invpf st,

[< st >] (nimgame pt pf) >==> (nimgamewf pt pf invpt invpf).

Lemma nimgamewf refines nimgame: forall pt pf invpt invpf,

(forall st, (player st)=true -> 0 < (nbm st) ->

[< st >] pt >==> invPlayer pt invpt (WRule nimRule))

-> (forall st, (player st)=false -> 0 < (nbm st) ->

[< st >] pf >==> invPlayer pf invpf (WRule nimRule))

-> (forall st, (player st)=true -> 0 < (nbm st) -> (invpt st) ->

[< st >] pt >==> absWPlayer nimRule)

-> (forall st, (player st)=false -> 0 < (nbm st) -> (invpf st) ->

[< st >] pf >==> absWPlayer nimRule)

-> forall st, (gameInv invpt invpf (WRule nimRule) st)

-> [< st >] (nimgamewf pt pf invpt invpf) >==> (nimgame pt pf).

We are now in position to prove that expertWPlayer is the optimal player in position false (of course,
a symmetric theorem is also provable) as stated by expertWPlayer optimal as player false. The
statement of this theorem being a bit complex, it may be not obvious that it expresses what we informally
mean by “optimal strategy”.

Let me detail this statement. Here, we assume pf a player false which satisfies an invariant invpf

(first hypothesis). Of course, we assume that pf respects the rule of the game (second hypothe-
sis). We also assume that pf is feasible (third hypothesis): I will explain later why this hypothesis

23

is needed. At last, we assume an initial state st in which pf wins against (absWPlayer nimRule).
Under all these hypotheses, the theorem states that (player st)=(Zeq bool ((nbm st) mod 4) 0). In
other words, by expertWPlayer as player false, we know that in this initial state st, expertWPlayer
also wins against (absWPlayer nimRule). Hence, the theorem expresses exactly that expertWPlayer

is a player at least as good as any feasible player against (absWPlayer nimRule). Here, we choose
(absWPlayer nimRule) as player true, because we want to express that pf does not know the strategy
of its opponent.

Indeed, players that know the strategies of their opponent can be better than expertPlayer. For
instance, let us assume that when the number of matches is 2, player false knows that player true removes
only one match (the player true plays stupidly in this particular configuration). Then, when the number
of matches is 4, player false can be a better player than expertPlayer: it removes two matches, then
the stupid player true removes only one match, and player false wins. On the contrary, when the number
of matches is 4, expertPlayer may remove only one match and the stupid player true may win.

At last, let me remark that if pf is magic, then all hypotheses are valid except feasibility: magic wins
(and loses) in any initial state. Hence, feasibility of pf is needed here.

Theorem expertWPlayer optimal as player false: forall pf invpf,

(forall st, (player st)=false -> 0 < (nbm st) ->

[< st >] pf >==> invPlayer pf invpf (WRule nimRule))

-> (forall st, (player st)=false -> 0 < (nbm st) -> (invpf st) ->

[< st >] pf >==> absWPlayer nimRule)

-> (forall st, (player st)=false -> 0 < (nbm st) -> (invpf st) -> feasible pf st)

-> forall st, (nbm st) >= 0

-> (if (player st)

then forall st’, (WRule nimRule st (dualSt st’))

-> (player st’)=false -> (invpf st’)

else (invpf st))

-> ([< st >] (nimgame (absWPlayer nimRule) pf)

>==> absPost (fun st’ => is winner false st’))

-> (player st)=(Zeq bool ((nbm st) mod 4) 0).

The proof follows the reasoning presented now. Under the hypotheses of the theorem, the boolean value
of (Zeq bool ((nbm st) mod 4) 0) is either (player st) or negb (player st). In the former case,
the result is trivially proved. In the latter case, we prove below that the hypotheses lead to a contra-
diction. Indeed, we study the execution of (nimgame expertWPlayer pf). By hypothesis, this game
refines absPost (fun st’ => is winner false st’). But, by expertWPlayer as player true and
game PlayerRefinement, it refines absPost (fun st’ => is winner true st’). Hence, this game is
magic. This is false, because (nimgame expertWPlayer pf) is feasible. Indeed, we know that the game
(nimgame expertWPlayer pf) is refined by (nimgamewf expertWPlayer pf (fun => True) invpf),
which is itself feasible since pf and expertWPlayer are.

Of course, a similar theorem could also be proved in the abstract view of the Nim game. But,
we can not derive the theorem at the current level from a formulation at the abstract level, since
(absPlayer nimRule) is a less specialized player than (absWPlayer nimRule).

7.4 Refinement of the optimal strategy

In this section, we refine expertWPlayer into a player called lazyPlayer. The main interest of this
refinement is that lazyPlayer computes only one modulo at its first call, then it knows directly the
number of matches to remove, from its previous play and the last play of its opponent. More precisely,
we define lazyPlayer as a false player. In particular, we instantiate WDataf with:

Definition WDataf : Set := option (bool*Z).

Here option is a predefined inductive type:

Inductive option (A:Type) : Type := Some:A -> option A | None:option A

In our context, the meaning of WDataf is the following:
– the value None represents the initial value of the state, i.e. when lazyPlayer has not yet played.

24

Some(true,old)

None

Some(false,old)

nm mod 4 6= 0 =⇒
old:=nm-(nm mod 4); nm:=old

nm mod 4 = 0 =⇒
old:=nm-1; nm:=old

old - nm 6= 3 =⇒
old:=old-3; nm:=old

old:=old-4; nm:=old

old - nm = 3 =⇒
old:=old-4; nm:=old

Description of the figure

– “nm” represents the current number of matches in the stack.
– “old” represents the last number of matches left by lazyPlayer. Hence, after modifying old,
lazyPlayer runs “nm:=old”.

Actually, under the assumption that the opponent follows the rule of the game (e.g. after the turn of
the opponent, the number of matches nm satisfies “old-3 <= nm < old”), lazyPlayer implements the
deterministic strategy “nm:=nm-max(1,nm mod 4)”.

Figure 3: Deterministic automaton implemented by lazyPlayer

– a value Some(b,old) means that lazyPlayer has already played and that, at its last turn, it left old
matches in the stack. Moreover, if b then lazyPlayer will necessarly win, otherwise it may lose.

The behavior of lazyPlayer is described by the automaton of figure 3.
The transition function of the automaton given figure 3 is defined in Coq by:

Definition runLazyPlayer (nm:Z) (ist:WDataf) : bool*Z :=

match ist with

| None => let x := nm mod 4 in if (Zeq bool x 0) then (false,nm-1) else (true,nm-x)

| Some (true,old) => (true,old-4)

| Some (false,old) => if (Zeq bool (old-nm) 3) then (false,old-4) else (true,old-3)

end.

Then, lazyPlayer is defined by:

Definition lazyPlayer: K GameSt unit

:= bind (get) (fun st =>

let r := (runLazyPlayer (nbm st) (wrf st)) in

set (mkGameSt (player st) (mkGameData (snd r) (wrt st) (Some r)))).

25

To prove that lazyPlayer refines expertWPlayer, we must introduce the invariant below. In particular,
we express in this invariant that old is the previous number of matches left by lazyPlayer, and that
in the state Some(true,old), lazyPlayer wins (e.g. old mod 4 = 0), and conversely that in the state
Some(false,old), lazyPlayer has previously chosen to remove one matches.

Definition invLazyPlayer (st:GameSt): Prop :=

match (wrf st) with

| None => True

| Some (b,old) => old - 3 <= (nbm st) < old

/\ if b then old mod 4=0 else old mod 4 = 3

end.

We prove that lazyPlayer preserves the invariant under the assumption that player true respects the
rule of the game.

Lemma lazyPlayer preserves invLazyPlayer: forall st,

(player st)=false -> 0<(nbm st) ->

[< st >] lazyPlayer >==> (invPlayer lazyPlayer invLazyPlayer (WRule nimRule)).

We also prove that under the assumption of the invariant, lazyPlayer refines expertWPlayer (in the
false position).

Lemma lazyPlayer refines expertWPlayer aux: forall st,

(player st)=false -> 0 < (nbm st) -> (invLazyPlayer st) ->

[< st >] lazyPlayer >==> expertWPlayer.

At last, we can glue together the previous results, and derive from game PlayerRefinement that a game
against lazyPlayer refines a game against expertWPlayer:

Theorem lazyPlayer refines expertWPlayer: forall pt invpt,

(forall st, (player st)=true -> 0<(nbm st) ->

[< st >] pt >==> invPlayer pt invpt (WRule nimRule))

-> (forall st, (player st)=true -> 0<(nbm st) -> (invpt st) ->

[< st >] pt >==> (absWPlayer nimRule))

-> forall st, (wrf st)=None

-> (if (player st)

then (invpt st)

else forall st’, (WRule nimRule st (dualSt st’))

-> (player st’)=true -> (invpt st’))

-> [< st >] (nimgame pt lazyPlayer) >==> (nimgame pt expertWPlayer).

7.5 Conclusion of this example: interest of higher-order refinement

In the previous example, I represent players as higher-order parameters. I discuss now the advantage of
this representation with respect to other representations in standard refinement calculi.

The idea to use refinement calculus in modelization of two-players game (including the Nim game)
can be found in [Bac98]. However, on the contrary of the approach presented here, the calculus of [Bac98]
does not support higher-order parameters. The modelization of [Bac98] uses instead the fact that the two
non-determistic operators (which would correspond here to choice and sync) are perfectly symmetric.
Hence, the duality between players is expressed by the duality of non-determinism.

This modelization can not be reused here, since our operator sync is too weak. Actually, embedding
the refinement calculus of [Bac98] in Coq seems to require Excluded-Middle. Moreover, the modelization
of [Bac98] is elegant, but we do not see how to adapt it to three-players games without changing the
calculus. On the contrary, the approach presented above can be adapted to n-players games, using an
enumerated types with n elements instead of booleans to represent positions of players.

Actually, representing players as higher-order parameters seems a very expressive approach. For
instance, in event-B (which does not support higher-order parameters), players can be represented as
events. Like here, it seems possible to represent a very abstract notion of game, with a generic notion
of players. However, it is not clear whether a property like the game symmetry can be simply expressed
and applied in proofs.

More generally, higher-order refinement allows to define specific operators (game can be considered
as an operator like while) and to prove some generic laws to reason about these operators. Actually,
operator while itself is derived from the primitive operators of the state DSM.

26

8 Experiments with a local notion of state in Coq

I have developed a prototype of library, called ISL, that generalizes the state DSM in order to cope with
a local notion of state instead of a global one. I report here briefly two small experiments with this
library.

8.1 Proof of a first-order imperative function

I have compared the total-correctness proofs of a first-order imperative program using Why (see [Fil03b])
and using the ISL library. Why is a Hoare logic for a subset of Ocaml (without aliases and without
higher-order imperative functions) that generates proofs obligations for several theorem provers, including
Coq. The program under experiment was a naive sorting function on arrays. This program involves two
while-loops and uses some intermediate functions. I have first proved its total-correctness using Why

and then, I have proved it using my ISL library (see [Bou06]). The fact that Coq is the core logic of the
two proofs allows a simple comparison between them.

As expected, proof obligations in both developments are quite similar. However, Why performs more
automation than the ISL library. Indeed, Why generates directly 15 proofs obligations. On the contrary,
with the ISL library, the user has to drive the prover in order to reduce the refinement goal to these proofs
obligations. Indeed, for function calls, my wp-computations unfold the definition of functions (functions
are used as white-boxes) whereas in Why, wp-computations use their specification (functions are used
as black-boxes). Hence, here, before to apply wp-simplifications, the user has to replace functions by
their specification using monotonicity rules. In future works, we may imagine a mechanism to perform
this task automatically.

8.2 Higher-order reasoning with a local state

This section illustrates that some ML programs can not be naturally represented in the state DSM
because the state is global.

I have proved in Coq that, for the eratosthene function written in ML below, if n is greater than 2,
the expression (eratosthene f n) calls f on successive prime numbers until n (see [Bou06]). A notion of
local state is needed here, because eratosthene is parametrized by the state of its functional parameter
f and this state is locally extended in the recursive call.

let rec eratosthene (f:int->unit) (n:int) =

if n=2

then

(f 2)

else

let prime=ref true in

eratosthene (fun p -> (if n mod p = 0 then prime:=false); f p)

(n-1) ;

if !prime then (f n)

8.3 Conclusion of these experiments

The syntax introduced by ISL remains heavy. In order to improve it, I am trying to embed an effect
inference mechanism into Coq. This is a key issue for the practicability of refinement calculus in Coq.

9 Conclusion

The concept of stepwise refinement (or top-down program development) has been invented by Dijkstra
[Dij69], and promoted by Wirth [Wir71]. Weakest-preconditions have also been invented by Dijkstra. He
uses them to give a semantics to its language of guarded commands [Dij75]. This language has inspired
the specification language of the refinement calculus formalized in [Bac78]. Then, the calculus has been
developed by many other authors. In particular, [Abr96] extends the approach by providing a notion of
module, called machine, and thus allowing to use this approach in real developments of software. And

27

Type theory Refinement calculus

Suitable as foundations of mathematics Assumes a pre-existing logic
A logic for general theorem proving A logic for program proving only
Handles only purely functional programs May support many programming features

Specifications are abstract algorithms
Programs are special cases of specifications
Proofs mix deductions and computations

Evaluation of specifications is made of lambda
calculus and rewriting rules

Evaluation of specifications is made of weakest
precondition calculus

Deduction rules form a sequent calculus Deduction rules form a refinement calculus

Figure 4: Type theory versus refinement calculus

[Bun97] presents a refinement for a higher-order expressions language which shares many aspects with
DSM theory.

In parallel, [Gor88] promoted the use of higher-order logics to formalize particular programming log-
ics like Hoare logic. This idea has been used in many works. Among them, [Bod99] formalizes B in
Coq using a pre/post semantics. Actually, [vW94] inspired my first attempts to formalize refinement
calculus in Coq. I was also interested in combining monads with Hoare logic [Fil03a, Sch03, Nan06] and
encoding WP as CPS [Aud99].

With respect to all these works, the main contributions of my formalization seem to be:
– extend refinement calculus with higher-order functions and structural recursion.
– sketch a modular construction of refinement calculus using monad transformers.
– embed its fixpoint theory into constructive type theory
– interpret weakest-preconditions as continuations in an intuitionistic logic.
– propose simplification rules of refinement formulas in interactive proofs.
As a result, Coq now embeds the refinement calculus of [Mor90]. The refinement calculus of [Bac98] has
stronger properties, but its perfect symmetry seems to deeply rely on the axiom of Excluded-Middle.

In conclusion, the marriage of type theory and refinement calculus presented here reveals their beau-
tiful complementarity (see Figure 4). Hence, refinement calculus could be for Coq what monads have
been to Haskell: a pure way to interact with the impure side of the world. But there is a long road
ahead as mentioned in sections 6.6, 8.1 and 8.2. A good challenge for a higher-order refinement calculus
is to formalize the informal refinement steps described in [Fil03c].

A long-term goal is to adapt important features of B [Abr96]: abstract machines, invariants and
data-refinement. Combining abstract machines and higher-order functions would give an object-oriented
flavor to the specification language.

References

[Abr96] J.-R. Abrial. The B-Book . Cambridge University Press, 1996.

[Aud99] P. Audebaud and E. Zucca. Deriving Proof Rules from Continuation Semantics. Formal
Aspects of Computing , 11(4):426–447, 1999.

[Bac78] R.-J. Back. On the correctness of refinement steps in program development . Ph.D. thesis,
University of Helsinki, 1978.

[Bac98] R.-J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction. Springer-
Verlag, 1998.

[Beh99] P. Behm, P. Benoit et al.. Météor: A Successful Application of B in a Large Project. In FM’99 ,
no. 1708 in LNCS, 369–387. Springer-Verlag, 1999.

28

[Ben02] N. Benton, J. Hughes et al.. Monads and Effects. In APPSEM 2000 , 42–122. Springer-Verlag,
2002.

[Ber04] Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development. Coq’Art:
The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer,
2004.

[Bod99] J.-P. Bodeveix, M. Filali et al.. A Formalization of the B-Method in Coq and PVS. In Elec.
Proc. of the B-User Group Meeting at FM’99 . 1999.

[Bou06] S. Boulmé. Higher-Order Refinement In Coq (reports and Coq files). Web
page: http://www-lsr.imag.fr/users/Sylvain.Boulme/horefinement/, 2006.

[Bou07a] S. Boulmé. Intuitionistic Refinement Calculus. In TLCA 2007 , vol. 4583 of LNCS . Springer-
Verlag, 2007.

[Bou07b] S. Boulmé. Higher-Order imperative enumeration of binary trees in Coq. Online pa-
per: http://.../Sylvain.Boulme/horefinement/enumBTdesc.pdf, 2007.

[Bun97] A. Bunkenburg. Expression Refinement . Ph.D. thesis, Computing Science Department, Uni-
versity of Glasgow, 1997.

[Büc99] M. Büchi and R. Back. Compositional Symmetric Sharing in B. In J. D. J.M. Wing, J. Wood-
coock, ed., FM’99 - Formal Methods, vol. 1708 of LNCS . Springer-Verlag, 1999.

[Coq88] T. Coquand and G. Huet. The Calculus of Constructions. Information and Computation,
76:95–120, 1988.

[Coq04] Coq Development Team. The Coq Proof Assistant Reference Manual, version 8.0 . Logical
Project, INRIA-Rocquencourt, 2004.

[Dij69] E. W. Dijkstra. Notes on Structured Programming. Tech. Rep. EWD249, Technical U. Eind-
hoven, The Netherlands, 1969.

[Dij75] E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM , 18(8):453–457, 1975.

[Fil99] J.-C. Filliâtre. A theory of monads parameterized by effects. Research Report 1367, LRI,
Université Paris Sud, 1999.

[Fil03a] J.-C. Filliâtre. Verification of Non-Functional Programs using Interpretations in Type Theory.
Journal of Functional Programming , 13(4):709–745, 2003.

[Fil03b] J.-C. Filliâtre. The WHY verification tool . LRI, 2003.

[Fil03c] J.-C. Filliâtre and F. Pottier. Producing All Ideals of a Forest, Functionally. Journal of
Functional Programming , 13(5):945–956, 2003.

[Gor88] M. J. C. Gordon. Mechanizing Programming Logics in Higher-Order Logic. In Current Trends
in Hardware Verification and Automatic Theorem Proving . Springer-Verlag, 1988.

[Hon05] K. Honda, M. Berger et al.. An Observationally Complete Program Logic for Imperative
Higher-Order Functions. In IEEE Symp. on LICS’05 . 2005.

[Ler06] X. Leroy. Coinductive big-step operational semantics. In European Symposium on Programming
(ESOP 2006), vol. 3924 of Lecture Notes in Computer Science. Springer-Verlag, 2006.

[Lia96] S. Liang and P. Hudak. Modular Denotational Semantics for Compiler Construction. In Proc.
of ESOP’96 , vol. 1058, 219–234. Springer-Verlag, 1996.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computation, 93(1):55–92,
1991.

29

[Mor87] J. M. Morris. A theoretical basis for stepwise refinement and the programming calculus. Science
of Computer Programming , 9(3):287–306, 1987.

[Mor90] C. Morgan. Programming from Specifications. Prentice Hall, 1990.

[Nan06] A. Nanevski, G. Morrisett et al.. Polymorphism and separation in Hoare Type Theory. In
Proc. of ICFP’06 . ACM Press, 2006.

[Pey93] S. L. Peyton Jones and P. Wadler. Imperative functional programming. In Proc. of the 20th
symposium on POPL. ACM Press, 1993.

[PM93] C. Paulin-Mohring. Inductive Definitions in the System Coq - Rules and Properties. In Proc.
of TLCA, no. 664 in LNCS. 1993.

[Sch03] L. Schröder and T. Mossakowski. Monad-independent Hoare logic in HasCasl. In FASE , vol.
2621 of LNCS . Springer-Verlag, 2003.

[Utt92] M. Utting. An Object-Oriented Refinement Calculus with Modular Reasoning . Ph.D. thesis,
University of New South Wales, Kensington, Australia, 1992.

[vW94] J. von Wright. Program refinement by theorem prover. In 6th Refinement Workshop. Springer-
Verlag, 1994.

[Wad95] P. Wadler. Monads for Functional Programming. In Advanced Functional Programming , vol.
925 of LNCS , 24–52. Springer-Verlag, 1995.

[Wad99] P. Wadler. The marriage of effects and monads. In Proc. of the ACM SIGPLAN ICFP’98 ,
vol. 34(1), 63–74. 1999.

[Wir71] N. Wirth. Program development by stepwise refinement. Commun. ACM , 14(4):221–227,
1971.

30

