Formally Verified Defensive Programming (FVDP) efficient CoQ-verified computations from untrusted ML oracles

Habilitation (HDR) of Sylvain Boulmé — Sep 27, 2021

Reviewers
Andrew W. Appel Professor at Princeton University
Sandrine Blazy Professeur à l’Université de Rennes 1
Greg Morrisett Professor, Dean of Cornell Tech

Examiners
Hugo Herbelin Directeur de Recherche à l’Inria
Xavier Leroy Professeur au Collège de France
Jean-François Monin Professeur à l’UGA

thesis & slides on http://www-verimag.imag.fr/~boulme/hdr.html
High-level overview of my HDR-thesis contributions

My interface for foreign OCAML functions in COQ

COQ “Theorems for free” about polymorphic oracles

List of my research projects (from 2012)
Scientific proposal

Challenge

Formal verification of software that produces/verifies safety-critical systems: compilers, analyzers & verifiers.

Example: prevent compilers from introducing critical bugs with a formal (mechanized) proof of the compiler correctness.

How? I propose to

bind **OCaml** (the programming language)

to **Coq** (the interactive theorem prover)

and to apply **Formally Verified Defensive Programming**
CompCert, the 1st formally proved C compiler

Major success of software verification
“safest C optimizing compiler” from [Regher, etc@PLDI’11]
Commercial support since 2015 by AbsInt (German Company)
Compile critical software for Avionics & Nuclear Plants
See [Käster, etc@ERTS’18].

Developed since 2005 by Leroy & collaborators (Blazy, etc)
More than 100Kloc of Coq & OCaml

Lesson
“If the formal-verification problem is too complex, then change it for a simpler one!”
- Drop noncritical requirements, e.g. termination: only consider partial correctness.
- Introduce untrusted oracles...
Formally Verified **Defensive Programming** (FVDP)

Idea: complex computations by *efficient* functions, called *oracles*, with an *untrusted* & *hidden* implem. for the formal proof
⇒ only a *defensive test* of their result is formally verified

Example of **CompCert** register allocator [Rideau,Leroy’10]

• *finding* an *efficient* allocation is difficult
• *checking* the *correctness* of a given allocation is easier
⇒ Register allocation provided by an **OCaml** imperative oracle
Only a checker is programmed and proved in **Coq**.

Typical applications NP-hard problems, complex fixpoints (e.g. memoization or dynamic programming)...

Benefits of FVDP

simplicity + efficiency + **modularity**

OCaml oracles need to appear in **Coq** as “*foreign functions*”...
The issue of foreign OCAML functions in Coq

Standard method to declare a foreign function in Coq

"Use an axiom declaring its type; replace this axiom at extraction"

Example of Coq proof

Axiom oracle: nat → bool.
Extract Constant oracle ⇒ "foo".
Lemma oracle_pure: ∀ n, oracle n = oracle n.
congruence.
Qed.

Example of OCaml implementation

let foo =
 let b = ref false in
 fun (_,:nat) -> (b:=not !b; !b)

INCORRECT oracle_pure is wrong for two "successive" calls

OCAML "functions" are not functions in the math sense.
Rather view them as "relations", ie "nondeterministic functions"
\[\mathcal{P}(A \times B) \simeq A \to \mathcal{P}(B) \] where "\(\mathcal{P}(X)\)" is "\(X \to \text{Prop}\)"
Oracles in CompCert: a soundness issue?

CompCert oracles are declared as “pure” functions
Example of register allocation:

\[
\text{Axiom } \text{regalloc: RTL.func } \rightarrow \text{ option LTL.func.}
\]

implemented by imperative OCaml code using hash-tables.

Not a real issue because
their purity is not used in the formal proof!

I propose to formally ensure such a claim [VSTTE’14],
by modeling OCaml foreign functions in Coq as
“nondeterministic functions”
Successfully applied in the VPL (Verified Polyhedra Library)
[Boulmé, Fouillé, Maréchal, Monniaux, Périn, etc, 2013-2018]
A **Coq** model of **OCaml** pointer equality (==)

OCaml “==” cannot be modeled as a “pure” Coq function. However, a trusted “==” seems useful for FVDP.

Example of **Instruction scheduling** in **CompCert**
Very elegant **FVDP design** of [Tristan,Leroy@POPL’08]
based on **symbolic execution** (of [King’76]).
But, still not in **CompCert** because of **checkers inefficiency**!

I have shown how to **fix this efficiency issue**
with the help of another **FVDP design** where

 a “nondeterministic” model of == in Coq
 suffices to verify the answers of **hash-consing oracles**.

See [Six,Boulmé,Monniaux@OOSPLA’20] & [Six-Phd’21].
A “good” FVDP design is the key!

The FVDP-design trade-off (for a given application):

Simplicity of formal verification
versus

Reduced overhead of “defensive tests”

FVDP designs in my HDR thesis for

- instruction scheduling in CompCert (optimizing compiler)
- abstract domain of polyhedra (VPL) for the Verasco static analyzer (on the top of CompCert)
- Boolean SAT-solving (SatAnsCert)

Central Issue

How “oracles” may help “defensive tests”
without being too hindered?
Polymorphic LCF Style (= Shallow Embeddings of Certificates)

Design patterns for a solver that bounds the set of solutions

Inspired by old LCF prover, I propose “Polymorphic LCF Style” as a “lightweight certificate handling”.

See [Boulmé, Maréchal, Monniaux, Périn, Yu@SYNASC’2018]
Benefits of switching from “Certificates” to “LCF style”.

▶ Code size at the interface Coq/OCaml divided by 2: shallow versus deep embedding (of certificates).

▶ Oracles debugging much easier: interleaved executions of untrusted and certified computations.

See [Maréchal-Phd’17].

Generating certificates still possible from LCF style oracles. See our Coq tactic for learning equalities in linear rational arithmetic [Boulmé, Maréchal@ITP’18].
FVDP by Data-Refinement

Two sources of “bureaucratic reasoning” in large FVDP proofs
1. optimized data-representations (wrt more naive ones)
2. impure computations (wrt pure ones)

Data-refinement helps in reducing both of them, simultaneously!

Examples
- Data-refinement for FVDP of Symbolic Execution
 [Six, Boulmé, Monniaux@OOSPLA’20]
- Data-refinement for FVDP of Abstract Interpretation
 [Boulmé, Maréchal@JAR’19].
Contents

High-level overview of my HDR-thesis contributions

My interface for foreign OCAML functions in COQ

COQ “Theorems for free” about polymorphic oracles

List of my research projects (from 2012)
Features of my approach

- **Almost any OCaml function embeddable into Coq.**
 (e.g. mutable data-structures with aliasing in Coq)

- **No formal reasoning on effects, only on results:**
 foreign functions could have bugs, only their type is ensured.
 \(\Rightarrow\) Considered as nondeterministic.
 e.g. for I/O reasoning, use FreeSpec or InteractionTrees instead.

- **OCaml polymorphism provides “theorems-for-free” about**
 - (some) invariant preservations by mutable data-structures
 - arbitrary recursion operators (needs a small defensive test)
 - exception-handling

- **Exceptionally: additional axioms on results** (e.g. pointer equality)
 In this case, the foreign function must be trusted!
Introduction to my **IMPURE** library

Impure computation := **COQ** code embedding **OCML** code.

Based on *may-return monads* of [Fouilhé,Boulmé@VSTTE’14]

- **Axiomatize** (in **COQ**) “\(A \rightarrow \text{Prop}\)” as type “??\(A\)”
 to represent “impure computations of type \(A\)”
 with “\((k \ a)\)” as proposition “\(k \sim a\)”
 with formal type \(\sim_{A} : ??A \rightarrow A \rightarrow \text{Prop}\)
 read “computation \(k\) may return value \(a\)”
 and composition operators (on next slide)

- “??\(A\)” extracted like “\(A\)”.

For any “**Axiom** oracle: nat\(\rightarrow??\text{bool}\)”, **determinism is unprovable**

\[
\forall \ n \ b1 \ b2, \ (\text{oracle} \ n) \sim b1 \rightarrow (\text{oracle} \ n) \sim b2 \rightarrow b1 = b2.
\]

because, it reduces to contradiction “\(\forall \ (b1 \ b2: \text{bool}), \ b1=b2\)”
when interpreting proposition “\((\text{oracle} \ n) \sim b\)” as “True”.

My interface for foreign **OCAML** functions in **COQ**
May-return monads operators (and axioms)

Currently, only 3 operators with 2 additional axioms:

- \(\text{RET}_A : A \rightarrow ??A \)

 with **axiom**
 \[
 (\text{RET} \ a_1) \sim a_2 \rightarrow a_1 = a_2
 \]

 formally interpretable as the identity relation

 extracted as the identity function

- \(\gg=A,B : ??A \rightarrow (A \rightarrow ??B) \rightarrow ??B \)

 with **axiom**
 \[
 (k_1 \gg=k_2) \sim b \rightarrow \exists a, k_1 \sim a \land (k_2 \ a) \sim b
 \]

 formally interpretable as the image of a predicate by a relation

 “\(k_1 \gg=k_2 \)” actually written in \(\text{CoQ} \)
 “\(\text{DO} \ a \leftarrow k_1 ;; \ k_2 \ a \)”
 extracted to \(\text{OCaml} \) as
 “\(\text{let} \ a=\ldots \text{in} \ \ldots \)”

- \(\text{mk}_\text{annot}_A : \forall (k : ??A), ??\{ a \mid k \sim a \} \)

 without axiom

 formally interpretable as the trivially “True” relation

 extracted as the identity function
Declaration of oracles: a Coq user wish

I would wish some "Import Constant" like

```
Import Constant ident: permissive_type
  := "safe_ocaml_value".
```

that acts like

```
Axiom ident: permissive_type.
Extract Constant ident ⇒ "safe_ocaml_value".
```

but with additional typechecking ensuring that

```
any "safe_ocaml_value" compatible with
the OCAML extraction of "permissive_type"
satisfies Coq theorems proved from the axiom.
```

Should reject "Import Constant ident: nat → bool :=..." because "nat → bool" is not permissive,
but accept "nat → ??bool" as permissive.
Permissivity

Currently, only an informal notion (i.e. “human expertise”). Hence, the Coq type of OCaml oracles is part of the TCB.

Counter-Examples Coq types which are not permissive

\[
\begin{align*}
\text{nat} & \rightarrow \text{??}\{ \text{n:nat} \mid \text{n} \leq 10 \} \quad (* \text{extracted as } \text{nat} \rightarrow \text{nat} \quad *) \\
\text{nat} & \rightarrow \text{??}(\text{nat} \rightarrow \text{nat}) \quad (* \text{nat} \rightarrow (\text{nat} \rightarrow \text{nat}) \quad *)
\end{align*}
\]

Examples Coq types which are permissive
(i.e. they are conjectured to be sound Coq types for oracles)

\[
\begin{align*}
\{ \text{n:nat} \mid \text{n} \leq 10 \} & \rightarrow \text{??} \text{nat} \quad (* \text{nat} \rightarrow \text{nat} \quad *) \\
\forall \text{A}, \text{A}*(\text{A} \rightarrow \text{A}) & \rightarrow \text{??}(\text{list A}) \quad (* \text{'}a*(\text{'}a \rightarrow \text{'}a) \rightarrow (\text{'}a \text{ list}) \quad *)
\end{align*}
\]

More detailed explanation in my HDR thesis.
Embedding ML references into CoQ

Record cref {A} := { set : A → unit; get : unit → A }.
Axiom make_cref : ∀ {A}, A → cref A.

where "∀ {A}, A → cref A" (permissive) is considered sound with OCAML constants of "'a -> 'a cref", like

let make_cref x =
 let r = ref x in {
 set = (fun y -> r := y);
 get = (fun () -> !r) }

but also like

let make_cref x =
 let hist = ref [x] in {
 set = (fun y -> hist := y::!hist);
 get = (fun () -> nth !hist (Random.int (length !hist))) }

⇒ No formal guarantee on reference contents except invariant preservations encoded in instances of type A.
Contents

High-level overview of my HDR-thesis contributions

My interface for foreign OCAML functions in Coq

Coq “Theorems for free” about polymorphic oracles

List of my research projects (from 2012)
Soundness of permissivity ⇒ unary parametricity of OCAML

MetaThm Assuming that permissivity of \((\forall A, A \rightarrow ??A) \) is sound, any safe OCAML “pid:’a -> ’a” satisfies

when \((\text{pid } x) \) returns normally some \(y \) then \(y = x \).

Proof

1) a CoQ “wrapper” of pid, called cpid is a pseudo-identity

Axiom \(\text{pid: } \forall \{A\}, A \rightarrow ??A. \)

\((\ast \text{ We define below } \text{cpid:} \forall\{B\}, B \rightarrow ??B \ast) \)

Program Definition

\[
\text{cpid \{B\} (x:B): ?? B := DO \ z \leftarrow \text{pid} (A:=\{ y | y = x \}) \ x ;; RET \ 'z.}
\]

Lemma \(\text{cpid_correct } A \ (x \ y:A): (\text{cpid } x) \sim y \rightarrow y=x. \)

2) at extraction: \(\text{let } \text{cpid } x = (\text{let } z = \text{pid } x \text{ in } z) \)

This meta-theorem is a “theorem for free” for [Wadler’89]

ie a proof by “(unary) parametricity of polymorphism”

for [Reynolds’83]
Unary parametricity for imperative higher-order languages

- **Parametricity comes from the type-erasure semantics**: polymorphic values must be handled uniformly.

- Has been proved for a variant of system F with references by [Ahmed, Dreyer, Birkedal, Rossberg@POPL+LICS’09] (from seminal works of Appel & co started around 2000).

- **Open Conjecture** for “Coq + ?? + OCaml”
 Unary parametricity : ML type → 2^{nd}-order invariant

Example

Deriving a while-loop for Coq (in partial correctness)
from a ML oracle such that
ML type of the oracle ⇒ usual rule of Hoare Logic

Given definition of wli (while-loop-invariant)

\[
\text{Definition \ wli\{S\}(cond:S \rightarrow \text{bool})(body:S \rightarrow ??S)(I:S \rightarrow \text{Prop})} := \forall \ s, \ I \ s \rightarrow \text{cond \ s} = \text{true} \rightarrow \\
\quad \forall \ s', \ (\text{body \ s}) \rightsquigarrow s' \rightarrow I \ s'.
\]

I aim to define

\[
\text{while \ \{S\} \ cond \ body \ (I: S \rightarrow \text{Prop} | wli \ cond \ body \ I)}: \\
\quad \forall \ s0, \ ??\{s \mid (I \ s0 \rightarrow I \ s) \land \text{cond \ s} = \text{false}\}.
\]
Polymorphic oracle DIRECTLY computing “while” results

Declaration of the oracle in CoQ

Axiom loop : \(\forall \{A \ B\}, A \star (A \to ?\ (A+B)) \rightarrow ?\ B. \)

\[
\begin{align*}
A & \mapsto \text{loop invariant} \quad \text{i.e. type of “reachable states”} \\
B & \mapsto \text{post-condition} \quad \text{i.e. type of “final states”}
\end{align*}
\]

Implem. in OCAML

```
let rec loop (a, step) =
  match step a with
  | Coq_inl a’ -> loop (a’, step)
  | Coq_inr b -> b
```

Coq “Theorems for free” about polymorphic oracles
Definition of the while-loop in CoQ

Axiom \(\text{loop}: \forall \{A \ B\}, \ A*(A \to ?? (A+B)) \to ?? B. \)

Definition \(\text{wli}\{S\}(\text{cond}:S \to \text{bool})(\text{body}:S \to ??S)(I:S \to \text{Prop}) := \forall s, I\ s \to \text{cond} \ s = \text{true} \to \\
\quad \forall s', (\text{body} \ s) \leadsto s' \to I\ s'. \)

Program Definition

\[
\text{while } \{S\} \ \text{cond body} (I:S \to \text{Prop} \mid \text{wli cond body} I) \ s0 := ??\{s \mid (I\ s0 \to I\ s) \land \text{cond} \ s = \text{false}\}
\]

\[
:= \text{loop} (A:=\{s \mid I\ s0 \to I\ s\}) (s0, \ \\
\quad \text{fun} \ s \Rightarrow \ \\
\quad \text{match} \ (\text{cond} \ s) \ \text{with} \ \\
\quad \mid \text{true} \Rightarrow \ \\
\quad \quad \text{DO} \ s' \leftarrow \text{mk_annot} \ (\text{body} \ s); \ \\
\quad \quad \text{RET} \ (\text{inl} \ (A:=\{s \mid I\ s0 \to I\ s\})) \ s') \ \\
\quad \mid \text{false} \Rightarrow \ \\
\quad \quad \text{RET} \ (\text{inr} \ (B:=\{s \mid (I\ s0 \to I\ s) \land \text{cond} \ s = \text{false}\})) \ s) \ \\
\quad \text{end}).
\]
Generalization to impure recursion (e.g. with memoization)

Wrap into a **certified** recursion operator, any oracle declared as

\[\text{Axiom fixp: } \forall \{A B\}, ((A \rightarrow ?? B) \rightarrow A \rightarrow ?? B) \rightarrow ?? (A \rightarrow ?? B). \]

But, formal correctness of **recursive functions** requires a **relation** \(R \) between inputs and outputs.

How to encode a *binary* relation into the "*unary postcondition*" \(B \)?

Solution use in **Coq** "\((B:=\text{answ } R)\)" where

\[\text{Record answ} \{A O\} (R: A \rightarrow O \rightarrow \text{Prop}) := \{ \]
\[\text{input: } A ; \]
\[\text{output: } O ; \]
\[\text{correct: } R \text{ input output} \]
\[\}. \]

+ a **defensive check** on each recursive result \(r \) that
 \((\text{input } r) \) "equals to" the actual input of the call

\[\text{Coq "Theorems for free" about polymorphic oracles} \]
Such a defensive check is needed...

Because of well-typed oracles such as

```ocaml
let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
  let memo = ref None in
  let rec f x =
    match !memo with
    | Some y -> y
    | None ->
      let r = step f x in
      memo := Some r;
      r
  in f
```

⇒ a memoized fixpoint with “a bug”
 crashing all recursive results into a single memory cell.

Defensive check detects this bug...
...and aborts the recursive computation...
...by exception raising (as shown after next slide)
Any fixp implementation is supported!

Standard fixpoint (pointer equality is sufficient in defensive check)

```ocaml
let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
    let rec f x = step f x in f
```

Memoized fixpoint (defensive check of Hashtbl.find equality)

```ocaml
let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
    let memo = Hashtbl.create 10 in
    let rec f x =
        try
            Hashtbl.find memo x (* if buggy: a wrong 'b result *)
        with
            Not_found ->
                let r = step f x in
                Hashtbl.replace memo x r;
                r
        in f
```

See my HDR thesis for details.
Verification “for free” of higher-order impure operators

- (more adhoc) operators for loops and fixpoints

- Raising and catching exceptions like in

```coq
Axiom fail: \forall \{A\}, \text{string} \rightarrow ?? A.

Definition FAILWITH \{A\} msg: ?? A :=
  DO r \mapsto \text{fail (A:=False)} msg;; RET (match r with end).

Lemma FAILWITH_correct A msg (P:A \rightarrow \text{Prop}):
  \forall r, \text{FAILWITH msg \sim r \rightarrow P r}.
```

- **Polymorphic LCF Style**
 Design pattern for oracles (example next slide)
Certifying UNSAT proofs of Boolean SAT-solvers

\begin{verbatim}
Record resolLCF C := { binary_resolution: C \to C \to ?? C;
 get_id: C \to clause_id }.
Axiom refute: \forall \{C\}, (resolLCF C)*(list C) \to ?? C.
\end{verbatim}

where (resolLCF C) is the type of a “Logical Consequences Factory”
by binary resolution on clauses of type C

\textbf{Application} (with T. Vandendorpe)
Redesign of the \texttt{CoQ}-verified checker
of [Cruz-Filipe+@CADE’17] into \texttt{SatAnsCert}

Certificate (Abstract Syntax) Polymorphic LCF style

\texttt{Theorems for free} about polymorphic oracles
Contents

High-level overview of my HDR-thesis contributions

My interface for foreign OCAML functions in COQ

COQ “Theorems for free” about polymorphic oracles

List of my research projects (from 2012)
Projects with results covered by my HDR thesis

- **VPL** [2012-2018]
 D. Monniaux and M. Périn (Verimag)
 with their Phd students A. Fouilhé and A. Maréchal (Verimag)
 + French ANR *VERASCO* [2012-2016]
 Gallium & Abstraction & Toccata (Inria Paris);
 Celtique (Irisa Rennes).

- **SatAnsCert** [June-July 2018]
 T. Vandendorpe (UGA Bachelor internship)

- **CompCert** for Kalray VLIW [2018-2021]
 D. Monniaux (Verimag) and B. Dupont de Dinechin (Kalray)
 with our Phd student C. Six (grant CIFRE Kalray-Verimag)
 + Xavier Leroy (Inria - Collège de France).
Projects uncovered by my HDR thesis

- **CompCert** for a secure RiscV with CFI protections [2018-2020]
 M-L. Potet and D. Monniaux (Verimag)
 with our post-doc P. Torrini (grant of IRT Nanoelec - Pulse)
 + O. Savry, T. Hiscock (CEA LETI)

- **CompCert** Verimag-Kalray student internships [06/19-08/21]
 (co-supervised with D. Monniaux and C. Six)
 T. Vandendorpe, L. Chelles, J. Fasse, L. Chaloyard, P. Goutagny
 and N. Nardino.

- **CompCert** for in-order embedded RiscV cores [10/20-09/23]
 F. Pétrot (UGA-TIMA) and D. Monniaux (Verimag)
 with our Phd student L. Gourdin (grant of labex Persyval UGA)
 + D. Demange (Irisa Rennes)

- **CompCert** front-end for a subset of Rust/MIR [10/21-09/24]
 D. Monniaux (Verimag) and F. Wagner (UGA-LIG)
 with our Phd student D. Carvalho (grant of IRT Nanoelec - Pulse)
 + TODO?