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Scientific proposal

Challenge
Formal verification of software

that produces/verifies safety-critical systems :
compilers, analyzers & verifiers.

Example : prevent compilers from introducing critical bugs
with a formal (mechanized) proof of the compiler correctness.

How ? I propose to
bind OCaml (the programming language)

to Coq (the interactive theorem prover)

�=

and to apply Formally Verified Defensive Programming
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CompCert, the 1st formally proved C compiler

Major success of software verification
“safest C optimizing compiler” from [Regher,etc@PLDI’11]
Commercial support since 2015 by AbsInt (German Company)
Compile critical software for Avionics & Nuclear Plants
See [Käster,etc@ERTS’18].

Developed since 2005 by Leroy & collaborators (Blazy, etc)
More than 100Kloc of Coq & OCaml

Lesson
“If the formal-verification problem is too complex,

then change it for a simpler one !”
I Drop noncritical requirements, e.g. termination :

only consider partial correctness.
I Introduce untrusted oracles...
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Formally Verified Defensive Programming (FVDP)
Idea : complex computations by efficient functions, called oracles,

with an untrusted & hidden implem. for the formal proof
⇒ only a defensive test of their result is formally verified

Example of CompCert register allocator [Rideau,Leroy’10]
• finding an efficient allocation is difficult
• checking the correctness of a given allocation is easier
⇒ Register allocation provided by an OCaml imperative oracle
Only a checker is programmed and proved in Coq.

Typical applications NP-hard problems,
complex fixpoints (e.g. memoization or dynamic programming)...

Benefits of FVDP
simplicity + efficiency + modularity

OCaml oracles need to appear in Coq as “foreign functions”...

High-level overview of my HDR-thesis contributions 5/33

www-verimag.imag.fr/~boulme/hdr.html


FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

The issue of foreign OCaml functions in Coq
Standard method to declare a foreign function in Coq
“Use an axiom declaring its type ; replace this axiom at extraction”
Example of Coq proof
Axiom oracle : nat → bool. Extract Constant oracle ⇒ "foo".
Lemma oracle_pure : ∀ n, oracle n = oracle n.

congruence .
Qed.

Example of OCaml implementation

let foo =
let b = ref false in
fun (_:nat) -> (b:= not !b; !b)

INCORRECT oracle_pure is wrong for two “successive” calls
OCaml “functions” are not functions in the math sense.
Rather view them as “relations”, ie “nondeterministic functions”

P(A× B) ' A→ P(B) where “P(X )” is “X → Prop”
High-level overview of my HDR-thesis contributions 6/33
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Oracles in CompCert : a soundness issue ?

CompCert oracles are declared as “pure” functions
Example of register allocation :
Axiom regalloc : RTL.func → option LTL.func.

implemented by imperative OCaml code using hash-tables.

Not a real issue because
their purity is not used in the formal proof !

I propose to formally ensure such a claim [VSTTE’14],
by modeling OCaml foreign functions in Coq as

“nondeterministic functions”
Successfully applied in the VPL (Verified Polyhedra Library)

[Boulmé, Fouilhé, Maréchal, Monniaux, Périn, etc, 2013-2018]
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A Coq model of OCaml pointer equality (==)

OCaml “==” cannot be modeled as a “pure” Coq function.
However, a trusted “==” seems useful for FVDP.

Example of Instruction scheduling in CompCert
Very elegant FVDP design of [Tristan,Leroy@POPL’08]
based on symbolic execution (of [King’76]).
But, still not in CompCert because of checkers inefficiency !

I have shown how to fix this efficiency issue
with the help of another FVDP design where

a “nondeterministic” model of == in Coq
suffices to verify the answers of hash-consing oracles.

See [Six,Boulmé,Monniaux@OOSPLA’20] & [Six-Phd’21].
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A “good” FVDP design is the key !

The FVDP-design trade-off (for a given application) :
Simplicity of formal verification

versus
Reduced overhead of “defensive tests”

FVDP designs in my HDR thesis for
I instruction scheduling in CompCert (optimizing compiler)
I abstract domain of polyhedra (VPL) for the Verasco static

analyzer (on the top of CompCert)
I Boolean SAT-solving (SatAnsCert)

Central Issue
How “oracles” may help “defensive tests”

without being too hindered ?
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Polymorphic LCF Style (= Shallow Embeddings of Certificates)

Design patterns for a solver that bounds the set of solutions

Inspired by old LCF prover, I propose “Polymorphic LCF Style”
as a “lightweight certificate handling”.

See [Boulmé,Maréchal,Monniaux,Périn,Yu@SYNASC’2018]
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Feedback from the Verified Polyhedra Library

Benefits of switching from “Certificates” to “LCF style”.
I Code size at the interface Coq/OCaml divided by 2 :

shallow versus deep embedding (of certificates).
I Oracles debugging much easier :

interleaved executions of untrusted and certified computations.
See [Maréchal-Phd’17].

Generating certificates still possible from LCF style oracles.
See our Coq tactic for learning equalities in linear rational
arithmetic [Boulmé,Maréchal@ITP’18].
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FVDP by Data-Refinement

Two sources of “bureaucratic reasoning” in large FVDP proofs
1. optimized data-representations (wrt more naive ones)
2. impure computations (wrt pure ones)

Data-refinement helps in reducing both of them, simultaneously !

Examples
I Data-refinement for FVDP of Symbolic Execution

[Six,Boulmé,Monniaux@OOSPLA’20]
I Data-refinement for FVDP of Abstract Interpretation

[Boulmé,Maréchal@JAR’19].
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Features of my approach

• Almost any OCaml function embeddable into Coq.
(e.g. mutable data-structures with aliasing in Coq)

• No formal reasoning on effects, only on results :
foreign functions could have bugs, only their type is ensured.
⇒ Considered as nondeterministic.
e.g. for I/O reasoning, use FreeSpec or InteractionTrees instead.

• OCaml polymorphism provides “theorems-for-free” about
I (some) invariant preservations by mutable data-structures
I arbitrary recursion operators (needs a small defensive test)
I exception-handling

• Exceptionally : additional axioms on results (e.g. pointer equality)
In this case, the foreign function must be trusted !

My interface for foreign OCaml functions in Coq 14/33

www-verimag.imag.fr/~boulme/hdr.html


FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Introduction to my Impure library
Impure computation := Coq code embedding OCaml code.

Based on may-return monads of [Fouilhé,Boulmé@VSTTE’14]
I Axiomatize (in Coq) “A→ Prop” as type “ ??A”

to represent “impure computations of type A”
with “(k a)” as proposition “k { a”

with formal type {A: ??A→ A→ Prop
read “computation k may return value a”

and composition operators (on next slide)
I “ ??A” extracted like “A”.

For any “Axiom oracle : nat→?? bool”, determinism is unprovable
∀ n b1 b2 , ( oracle n){b1 →( oracle n){b2 →b1=b2.

because, it reduces to contradiction “∀ ( b1 b2 : bool ) , b1=b2”
when interpreting proposition “( oracle n ){b” as “True”.
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May-return monads operators (and axioms)
Currently, only 3 operators with 2 additional axioms :
I RETA : A→ ??A

with axiom (RET a1){a2 → a1 =a2

formally interpretable as the identity relation
extracted as the identity function

I �=A,B: ??A→ (A→ ??B)→ ??B
with axiom (k1 �= k2){ b → ∃a, k1{a ∧ (k2 a){b
formally interpretable as the image of a predicate by a relation

“k1 �= k2” actually written in Coq “DO a f k1 ; ; k2 a ”
extracted to OCaml as “let a=. . . in . . . ”

I mk annotA : ∀(k : ??A), ??{ a | k { a}
without axiom
formally interpretable as the trivially “True” relation
extracted as the identity function
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Declaration of oracles : a Coq user wish
I would wish some “Import Constant” like
Import Constant ident: permissive_type
B " safe_ocaml_value ".

that acts like
Axiom ident: permissive_type .
Extract Constant ident ⇒ " safe_ocaml_value ".

but with additional typechecking ensuring that

any “safe ocaml value” compatible with
the OCaml extraction of “permissive_type”
satisfies Coq theorems proved from the axiom.

 soundness of
permissive type

Should reject “Import Constant ident : nat → bool B . . .”
because “nat → bool” is not permissive,
but accept “nat → ?? bool” as permissive.

My interface for foreign OCaml functions in Coq 17/33
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Permissivity

Currently, only an informal notion (i.e. “human expertise”).
Hence, the Coq type of OCaml oracles is part of the TCB.

Counter-Examples Coq types which are not permissive
nat → ??{ n:nat | n ≤ 10} (* extracted as nat → nat *)
nat → ??( nat → nat) (* nat → ( nat → nat) *)

Examples Coq types which are permissive
(i.e. they are conjectured to be sound Coq types for oracles)
{ n:nat | n ≤ 10} → ?? nat (* nat → nat *)
∀ A, A*(A → A) → ??( list A) (* ’a*(’a → ’a) → (’a list ) *)

More detailed explanation in my HDR thesis.
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Embedding ML references into Coq
Record cref{A}B{set: A→?? unit; get: unit→??A}.
Axiom make_cref : ∀ {A}, A → ?? cref A.

where “∀ { A } , A → ?? cref A” (permissive) is considered
sound with OCaml constants of “’a -> ’a cref”, like

let make_cref x =
let r = ref x in {

set = (fun y -> r := y);
get = (fun () -> !r) }

but also like

let make_cref x =
let hist = ref [x] in {

set = (fun y -> hist := y::! hist );
get = (fun () -> nth !hist ( Random .int ( length !hist ))) }

⇒ No formal guarantee on reference contents
except invariant preservations encoded in instances of type A.
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Soundness of permissivity⇒ unary parametricity of OCaml
MetaThm Assuming that permissivity of (∀ A , A→??A ) is sound,
any safe OCaml “pid:’a -> ’a” satisfies

when (pid x) returns normally some y then y = x.

Proof
1) a Coq “wrapper” of pid, called cpid is a pseudo-identity
Axiom pid: ∀ {A}, A→??A.

(* We define below cpid : ∀ {B}, B → ?? B *)
Program Definition cpid {B} (x:B): ?? B B

DO z f pid (AB{ y | y = x }) x ;;
RET ‘z.

Lemma cpid_correct A (x y:A): (cpid x) { y → y=x.

2) at extraction : let cpid x = (let z = pid x in z)

This meta-theorem is a “theorem for free” for [Wadler’89]
ie a proof by “(unary) parametricity of polymorphism”

for [Reynolds’83]
Coq “Theorems for free” about polymorphic oracles 21/33
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Unary parametricity for imperative higher-order languages

I Parametricity comes from the type-erasure semantics :
polymorphic values must be handled uniformly.

I Has been proved for a variant of system F with references by
[Ahmed, Dreyer, Birkedal, Rossberg@POPL+LICS’09]
(from seminal works of Appel & co started around 2000).

I Open Conjecture for “Coq + ??. + OCaml”
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Unary parametricity : ML type → 2nd-order invariant

Example
Deriving a while-loop for Coq (in partial correctness)
from a ML oracle such that
ML type of the oracle ⇒ usual rule of Hoare Logic

Given definition of wli (while-loop-invariant)
Definition wli{S}( cond:S→bool )( body:S→??S)(I:S→Prop)
B ∀ s, I s → cond s = true →

∀ s’, (body s) { s’ →I s’.

I aim to define
while {S} cond body (I: S→Prop | wli cond body I):

∀ s0 , ??{s | (I s0 → I s) ∧ cond s = false }.

Coq “Theorems for free” about polymorphic oracles 23/33
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Polymorphic oracle DIRECTLY computing “while” results

Declaration of the oracle in Coq
Axiom loop: ∀ {A B}, A * (A → ?? (A+B)) → ?? B.{

A 7→ loop invariant i.e. type of “reachable states”
B 7→ post-condition i.e. type of “final states”

Implem. in OCaml

let rec loop (a, step) =
match step a with
| Coq_inl a’ -> loop (a’, step)
| Coq_inr b -> b

Coq “Theorems for free” about polymorphic oracles 24/33
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Definition of the while-loop in Coq
Axiom loop: ∀ {A B}, A*(A → ?? (A+B)) → ?? B.

Definition wli{S}( cond:S→bool )( body:S→??S)(I:S→Prop )
B ∀ s, I s → cond s = true →

∀ s’, (body s) { s’ →I s ’.

Program Definition
while {S} cond body (I:S→Prop | wli cond body I) s0
: ??{s | (I s0 → I s) ∧ cond s = false }

B
loop (AB{s | I s0 → I s})

(s0 ,
fun s ⇒
match (cond s) with
| true ⇒

DO s’ f mk_annot (body s) ;;
RET (inl (AB{s | I s0 → I s })

s ’)
| false ⇒

RET (inr (BB{s | (I s0 → I s) ∧ cond s = false })
s)

end ).
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Generalization to impure recursion (e.g. with memoization)

Wrap into a certified recursion operator, any oracle declared as
Axiom fixp: ∀ {A B}, ((A → ?? B) → A → ?? B) → ?? (A → ?? B).

But, formal correctness of recursive functions requires
a relation R between inputs and outputs.

How to encode a binary relation into the “unary postcondition” B ?

Solution use in Coq “( BBansw R )” where
Record answ {A O} (R: A → O → Prop) B {

input: A ;
output : O ;
correct : R input output

}.

+ a defensive check on each recursive result r that
( input r ) “equals to” the actual input of the call

Coq “Theorems for free” about polymorphic oracles 26/33
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Such a defensive check is needed...

Because of well-typed oracles such as

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = ref None in
let rec f x =

match !memo with
| Some y -> y
| None ->

let r = step f x in
memo := Some r;
r

in f

⇒ a memoized fixpoint with “a bug”
crashing all recursive results into a single memory cell.

Defensive check detects this bug...
...and aborts the recursive computation...
...by exception raising (as shown after next slide)

Coq “Theorems for free” about polymorphic oracles 27/33

www-verimag.imag.fr/~boulme/hdr.html


FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Any fixp implementation is supported !
Standard fixpoint (pointer equality is sufficient in defensive check)

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let rec f x = step f x in f

Memoized fixpoint (defensive check of Hashtbl.find equality)

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = Hashtbl . create 10 in
let rec f x =

try
Hashtbl .find memo x (∗ i f buggy : a wrong ’ b r e s u l t ∗)

with
Not_found ->

let r = step f x in
Hashtbl . replace memo x r;
r

in f

See my HDR thesis for details.
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Verification “for free” of higher-order impure operators

I (more adhoc) operators for loops and fixpoints

I Raising and catching exceptions like in
Axiom fail: ∀ {A}, string → ?? A.

Definition FAILWITH {A} msg: ?? A B
DO r f fail (ABFalse ) msg ;; RET ( match r with end ).

Lemma FAILWITH_correct A msg (P:A → Prop ):
∀ r, FAILWITH msg { r →P r.

I Polymorphic LCF Style
Design pattern for oracles (example next slide)
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Certifying UNSAT proofs of Boolean SAT-solvers

Record resolLCF C B { binary_resolution : C → C → ?? C;
get_id : C → clause_id }.

Axiom refute : ∀ {C}, ( resolLCF C)*( list C) → ?? C.

where ( resolLCF C ) is the type of a “Logical Consequences Factory”
by binary resolution on clauses of type C

Application (with T. Vandendorpe)
Redesign of the Coq-verified checker

of [Cruz-Filipe+@CADE’17] into SatAnsCert

Certificate (Abstract Syntax) Polymorphic LCF style

Coq “Theorems for free” about polymorphic oracles 30/33
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Projects with results covered by my HDR thesis

I VPL [2012-2018]
D. Monniaux and M. Périn (Verimag)
with their Phd students A. Fouilhé and A. Maréchal (Verimag)
+ French ANR Verasco [2012-2016]
Gallium & Abstraction & Toccata (Inria Paris) ;
Celtique (Irisa Rennes).

I SatAnsCert [June-July 2018]
T. Vandendorpe (UGA Bachelor internship)

I CompCert for Kalray VLIW [2018-2021]
D. Monniaux (Verimag) and B. Dupont de Dinechin (Kalray)
with our Phd student C. Six (grant CIFRE Kalray-Verimag)
+ Xavier Leroy (Inria - Collège de France).
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Projects uncovered by my HDR thesis
I CompCert for a secure RiscV with CFI protections [2018-2020]

M-L. Potet and D. Monniaux (Verimag)
with our post-doc P. Torrini (grant of IRT Nanoelec - Pulse)
+ O. Savry, T. Hiscock (CEA LETI)

I CompCert Verimag-Kalray student internships [06/19-08/21]
(co-supervized with D. Monniaux and C. Six)
T. Vandendorpe, L. Chelles, J. Fasse, L. Chaloyard, P. Goutagny
and N. Nardino.

I CompCert for in-order embedded RiscV cores [10/20-09/23]
F. Pétrot (UGA-TIMA) and D. Monniaux (Verimag)
with our Phd student L. Gourdin (grant of labex Persyval UGA)
+ D. Demange (Irisa Rennes)

I CompCert front-end for a subset of Rust/MIR [10/21-09/24]
D. Monniaux (Verimag) and F. Wagner (UGA-LIG)
with our Phd student D. Carvalho (grant of IRT Nanoelec - Pulse)
+ TODO ?
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