
Formally Verified Defensive Programming (FVDP)
efficient Coq-verified computations from untrusted ML oracles

Habilitation (HDR) of Sylvain Boulmé — Sep 27, 2021
Reviewers
Andrew W. Appel Professor at Princeton University
Sandrine Blazy Professeur à l’Université de Rennes 1
Greg Morrisett Professor, Dean of Cornell Tech

Examiners
Hugo Herbelin Directeur de Recherche à l’Inria
Xavier Leroy Professeur au Collège de France
Jean-François Monin Professeur à l’UGA

thesis & slides on http://www-verimag.imag.fr/˜boulme/hdr.html

1/33

http://www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Contents

High-level overview of my HDR-thesis contributions

My interface for foreign OCaml functions in Coq

Coq “Theorems for free” about polymorphic oracles

List of my research projects (from 2012)

High-level overview of my HDR-thesis contributions 2/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Scientific proposal

Challenge
Formal verification of software

that produces/verifies safety-critical systems :
compilers, analyzers & verifiers.

Example : prevent compilers from introducing critical bugs
with a formal (mechanized) proof of the compiler correctness.

How ? I propose to
bind OCaml (the programming language)

to Coq (the interactive theorem prover)

�=

and to apply Formally Verified Defensive Programming

High-level overview of my HDR-thesis contributions 3/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

CompCert, the 1st formally proved C compiler

Major success of software verification
“safest C optimizing compiler” from [Regher,etc@PLDI’11]
Commercial support since 2015 by AbsInt (German Company)
Compile critical software for Avionics & Nuclear Plants
See [Käster,etc@ERTS’18].

Developed since 2005 by Leroy & collaborators (Blazy, etc)
More than 100Kloc of Coq & OCaml

Lesson
“If the formal-verification problem is too complex,

then change it for a simpler one !”
I Drop noncritical requirements, e.g. termination :

only consider partial correctness.
I Introduce untrusted oracles...

High-level overview of my HDR-thesis contributions 4/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Formally Verified Defensive Programming (FVDP)
Idea : complex computations by efficient functions, called oracles,

with an untrusted & hidden implem. for the formal proof
⇒ only a defensive test of their result is formally verified

Example of CompCert register allocator [Rideau,Leroy’10]
• finding an efficient allocation is difficult
• checking the correctness of a given allocation is easier
⇒ Register allocation provided by an OCaml imperative oracle
Only a checker is programmed and proved in Coq.

Typical applications NP-hard problems,
complex fixpoints (e.g. memoization or dynamic programming)...

Benefits of FVDP
simplicity + efficiency + modularity

OCaml oracles need to appear in Coq as “foreign functions”...

High-level overview of my HDR-thesis contributions 5/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

The issue of foreign OCaml functions in Coq
Standard method to declare a foreign function in Coq
“Use an axiom declaring its type ; replace this axiom at extraction”
Example of Coq proof
Axiom oracle : nat → bool. Extract Constant oracle ⇒ "foo".
Lemma oracle_pure : ∀ n, oracle n = oracle n.

congruence .
Qed.

Example of OCaml implementation

let foo =
let b = ref false in
fun (_:nat) -> (b:= not !b; !b)

INCORRECT oracle_pure is wrong for two “successive” calls
OCaml “functions” are not functions in the math sense.
Rather view them as “relations”, ie “nondeterministic functions”

P(A× B) ' A→ P(B) where “P(X)” is “X → Prop”
High-level overview of my HDR-thesis contributions 6/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Oracles in CompCert : a soundness issue ?

CompCert oracles are declared as “pure” functions
Example of register allocation :
Axiom regalloc : RTL.func → option LTL.func.

implemented by imperative OCaml code using hash-tables.

Not a real issue because
their purity is not used in the formal proof !

I propose to formally ensure such a claim [VSTTE’14],
by modeling OCaml foreign functions in Coq as

“nondeterministic functions”
Successfully applied in the VPL (Verified Polyhedra Library)

[Boulmé, Fouilhé, Maréchal, Monniaux, Périn, etc, 2013-2018]

High-level overview of my HDR-thesis contributions 7/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

A Coq model of OCaml pointer equality (==)

OCaml “==” cannot be modeled as a “pure” Coq function.
However, a trusted “==” seems useful for FVDP.

Example of Instruction scheduling in CompCert
Very elegant FVDP design of [Tristan,Leroy@POPL’08]
based on symbolic execution (of [King’76]).
But, still not in CompCert because of checkers inefficiency !

I have shown how to fix this efficiency issue
with the help of another FVDP design where

a “nondeterministic” model of == in Coq
suffices to verify the answers of hash-consing oracles.

See [Six,Boulmé,Monniaux@OOSPLA’20] & [Six-Phd’21].

High-level overview of my HDR-thesis contributions 8/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

A “good” FVDP design is the key !

The FVDP-design trade-off (for a given application) :
Simplicity of formal verification

versus
Reduced overhead of “defensive tests”

FVDP designs in my HDR thesis for
I instruction scheduling in CompCert (optimizing compiler)
I abstract domain of polyhedra (VPL) for the Verasco static

analyzer (on the top of CompCert)
I Boolean SAT-solving (SatAnsCert)

Central Issue
How “oracles” may help “defensive tests”

without being too hindered ?

High-level overview of my HDR-thesis contributions 9/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Polymorphic LCF Style (= Shallow Embeddings of Certificates)

Design patterns for a solver that bounds the set of solutions

Inspired by old LCF prover, I propose “Polymorphic LCF Style”
as a “lightweight certificate handling”.

See [Boulmé,Maréchal,Monniaux,Périn,Yu@SYNASC’2018]

High-level overview of my HDR-thesis contributions 10/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Feedback from the Verified Polyhedra Library

Benefits of switching from “Certificates” to “LCF style”.
I Code size at the interface Coq/OCaml divided by 2 :

shallow versus deep embedding (of certificates).
I Oracles debugging much easier :

interleaved executions of untrusted and certified computations.
See [Maréchal-Phd’17].

Generating certificates still possible from LCF style oracles.
See our Coq tactic for learning equalities in linear rational
arithmetic [Boulmé,Maréchal@ITP’18].

High-level overview of my HDR-thesis contributions 11/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

FVDP by Data-Refinement

Two sources of “bureaucratic reasoning” in large FVDP proofs
1. optimized data-representations (wrt more naive ones)
2. impure computations (wrt pure ones)

Data-refinement helps in reducing both of them, simultaneously !

Examples
I Data-refinement for FVDP of Symbolic Execution

[Six,Boulmé,Monniaux@OOSPLA’20]
I Data-refinement for FVDP of Abstract Interpretation

[Boulmé,Maréchal@JAR’19].

High-level overview of my HDR-thesis contributions 12/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Contents

High-level overview of my HDR-thesis contributions

My interface for foreign OCaml functions in Coq

Coq “Theorems for free” about polymorphic oracles

List of my research projects (from 2012)

My interface for foreign OCaml functions in Coq 13/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Features of my approach

• Almost any OCaml function embeddable into Coq.
(e.g. mutable data-structures with aliasing in Coq)

• No formal reasoning on effects, only on results :
foreign functions could have bugs, only their type is ensured.
⇒ Considered as nondeterministic.
e.g. for I/O reasoning, use FreeSpec or InteractionTrees instead.

• OCaml polymorphism provides “theorems-for-free” about
I (some) invariant preservations by mutable data-structures
I arbitrary recursion operators (needs a small defensive test)
I exception-handling

• Exceptionally : additional axioms on results (e.g. pointer equality)
In this case, the foreign function must be trusted !

My interface for foreign OCaml functions in Coq 14/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Introduction to my Impure library
Impure computation := Coq code embedding OCaml code.

Based on may-return monads of [Fouilhé,Boulmé@VSTTE’14]
I Axiomatize (in Coq) “A→ Prop” as type “ ??A”

to represent “impure computations of type A”
with “(k a)” as proposition “k { a”

with formal type {A: ??A→ A→ Prop
read “computation k may return value a”

and composition operators (on next slide)
I “ ??A” extracted like “A”.

For any “Axiom oracle : nat→?? bool”, determinism is unprovable
∀ n b1 b2 , (oracle n){b1 →(oracle n){b2 →b1=b2.

because, it reduces to contradiction “∀ (b1 b2 : bool) , b1=b2”
when interpreting proposition “(oracle n){b” as “True”.

My interface for foreign OCaml functions in Coq 15/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

May-return monads operators (and axioms)
Currently, only 3 operators with 2 additional axioms :
I RETA : A→ ??A

with axiom (RET a1){a2 → a1 =a2

formally interpretable as the identity relation
extracted as the identity function

I �=A,B: ??A→ (A→ ??B)→ ??B
with axiom (k1 �= k2){ b → ∃a, k1{a ∧ (k2 a){b
formally interpretable as the image of a predicate by a relation

“k1 �= k2” actually written in Coq “DO a f k1 ; ; k2 a ”
extracted to OCaml as “let a=. . . in . . . ”

I mk annotA : ∀(k : ??A), ??{ a | k { a}
without axiom
formally interpretable as the trivially “True” relation
extracted as the identity function

My interface for foreign OCaml functions in Coq 16/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Declaration of oracles : a Coq user wish
I would wish some “Import Constant” like
Import Constant ident: permissive_type
B " safe_ocaml_value ".

that acts like
Axiom ident: permissive_type .
Extract Constant ident ⇒ " safe_ocaml_value ".

but with additional typechecking ensuring that

any “safe ocaml value” compatible with
the OCaml extraction of “permissive_type”
satisfies Coq theorems proved from the axiom.

 soundness of
permissive type

Should reject “Import Constant ident : nat → bool B . . .”
because “nat → bool” is not permissive,
but accept “nat → ?? bool” as permissive.

My interface for foreign OCaml functions in Coq 17/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Permissivity

Currently, only an informal notion (i.e. “human expertise”).
Hence, the Coq type of OCaml oracles is part of the TCB.

Counter-Examples Coq types which are not permissive
nat → ??{ n:nat | n ≤ 10} (* extracted as nat → nat *)
nat → ??(nat → nat) (* nat → (nat → nat) *)

Examples Coq types which are permissive
(i.e. they are conjectured to be sound Coq types for oracles)
{ n:nat | n ≤ 10} → ?? nat (* nat → nat *)
∀ A, A*(A → A) → ??(list A) (* ’a*(’a → ’a) → (’a list) *)

More detailed explanation in my HDR thesis.

My interface for foreign OCaml functions in Coq 18/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Embedding ML references into Coq
Record cref{A}B{set: A→?? unit; get: unit→??A}.
Axiom make_cref : ∀ {A}, A → ?? cref A.

where “∀ { A } , A → ?? cref A” (permissive) is considered
sound with OCaml constants of “’a -> ’a cref”, like

let make_cref x =
let r = ref x in {

set = (fun y -> r := y);
get = (fun () -> !r) }

but also like

let make_cref x =
let hist = ref [x] in {

set = (fun y -> hist := y::! hist);
get = (fun () -> nth !hist (Random .int (length !hist))) }

⇒ No formal guarantee on reference contents
except invariant preservations encoded in instances of type A.

My interface for foreign OCaml functions in Coq 19/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Contents

High-level overview of my HDR-thesis contributions

My interface for foreign OCaml functions in Coq

Coq “Theorems for free” about polymorphic oracles

List of my research projects (from 2012)

Coq “Theorems for free” about polymorphic oracles 20/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Soundness of permissivity⇒ unary parametricity of OCaml
MetaThm Assuming that permissivity of (∀ A , A→??A) is sound,
any safe OCaml “pid:’a -> ’a” satisfies

when (pid x) returns normally some y then y = x.

Proof
1) a Coq “wrapper” of pid, called cpid is a pseudo-identity
Axiom pid: ∀ {A}, A→??A.

(* We define below cpid : ∀ {B}, B → ?? B *)
Program Definition cpid {B} (x:B): ?? B B

DO z f pid (AB{ y | y = x }) x ;;
RET ‘z.

Lemma cpid_correct A (x y:A): (cpid x) { y → y=x.

2) at extraction : let cpid x = (let z = pid x in z)

This meta-theorem is a “theorem for free” for [Wadler’89]
ie a proof by “(unary) parametricity of polymorphism”

for [Reynolds’83]
Coq “Theorems for free” about polymorphic oracles 21/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Unary parametricity for imperative higher-order languages

I Parametricity comes from the type-erasure semantics :
polymorphic values must be handled uniformly.

I Has been proved for a variant of system F with references by
[Ahmed, Dreyer, Birkedal, Rossberg@POPL+LICS’09]
(from seminal works of Appel & co started around 2000).

I Open Conjecture for “Coq + ??. + OCaml”

Coq “Theorems for free” about polymorphic oracles 22/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Unary parametricity : ML type → 2nd-order invariant

Example
Deriving a while-loop for Coq (in partial correctness)
from a ML oracle such that
ML type of the oracle ⇒ usual rule of Hoare Logic

Given definition of wli (while-loop-invariant)
Definition wli{S}(cond:S→bool)(body:S→??S)(I:S→Prop)
B ∀ s, I s → cond s = true →

∀ s’, (body s) { s’ →I s’.

I aim to define
while {S} cond body (I: S→Prop | wli cond body I):

∀ s0 , ??{s | (I s0 → I s) ∧ cond s = false }.

Coq “Theorems for free” about polymorphic oracles 23/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Polymorphic oracle DIRECTLY computing “while” results

Declaration of the oracle in Coq
Axiom loop: ∀ {A B}, A * (A → ?? (A+B)) → ?? B.{

A 7→ loop invariant i.e. type of “reachable states”
B 7→ post-condition i.e. type of “final states”

Implem. in OCaml

let rec loop (a, step) =
match step a with
| Coq_inl a’ -> loop (a’, step)
| Coq_inr b -> b

Coq “Theorems for free” about polymorphic oracles 24/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Definition of the while-loop in Coq
Axiom loop: ∀ {A B}, A*(A → ?? (A+B)) → ?? B.

Definition wli{S}(cond:S→bool)(body:S→??S)(I:S→Prop)
B ∀ s, I s → cond s = true →

∀ s’, (body s) { s’ →I s ’.

Program Definition
while {S} cond body (I:S→Prop | wli cond body I) s0
: ??{s | (I s0 → I s) ∧ cond s = false }

B
loop (AB{s | I s0 → I s})

(s0 ,
fun s ⇒
match (cond s) with
| true ⇒

DO s’ f mk_annot (body s) ;;
RET (inl (AB{s | I s0 → I s })

s ’)
| false ⇒

RET (inr (BB{s | (I s0 → I s) ∧ cond s = false })
s)

end).

Coq “Theorems for free” about polymorphic oracles 25/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Generalization to impure recursion (e.g. with memoization)

Wrap into a certified recursion operator, any oracle declared as
Axiom fixp: ∀ {A B}, ((A → ?? B) → A → ?? B) → ?? (A → ?? B).

But, formal correctness of recursive functions requires
a relation R between inputs and outputs.

How to encode a binary relation into the “unary postcondition” B ?

Solution use in Coq “(BBansw R)” where
Record answ {A O} (R: A → O → Prop) B {

input: A ;
output : O ;
correct : R input output

}.

+ a defensive check on each recursive result r that
(input r) “equals to” the actual input of the call

Coq “Theorems for free” about polymorphic oracles 26/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Such a defensive check is needed...

Because of well-typed oracles such as

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = ref None in
let rec f x =

match !memo with
| Some y -> y
| None ->

let r = step f x in
memo := Some r;
r

in f

⇒ a memoized fixpoint with “a bug”
crashing all recursive results into a single memory cell.

Defensive check detects this bug...
...and aborts the recursive computation...
...by exception raising (as shown after next slide)

Coq “Theorems for free” about polymorphic oracles 27/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Any fixp implementation is supported !
Standard fixpoint (pointer equality is sufficient in defensive check)

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let rec f x = step f x in f

Memoized fixpoint (defensive check of Hashtbl.find equality)

let fixp (step: (’a -> ’b) -> ’a -> ’b): ’a -> ’b =
let memo = Hashtbl . create 10 in
let rec f x =

try
Hashtbl .find memo x (∗ i f buggy : a wrong ’ b r e s u l t ∗)

with
Not_found ->

let r = step f x in
Hashtbl . replace memo x r;
r

in f

See my HDR thesis for details.

Coq “Theorems for free” about polymorphic oracles 28/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Verification “for free” of higher-order impure operators

I (more adhoc) operators for loops and fixpoints

I Raising and catching exceptions like in
Axiom fail: ∀ {A}, string → ?? A.

Definition FAILWITH {A} msg: ?? A B
DO r f fail (ABFalse) msg ;; RET (match r with end).

Lemma FAILWITH_correct A msg (P:A → Prop):
∀ r, FAILWITH msg { r →P r.

I Polymorphic LCF Style
Design pattern for oracles (example next slide)

Coq “Theorems for free” about polymorphic oracles 29/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Certifying UNSAT proofs of Boolean SAT-solvers

Record resolLCF C B { binary_resolution : C → C → ?? C;
get_id : C → clause_id }.

Axiom refute : ∀ {C}, (resolLCF C)*(list C) → ?? C.

where (resolLCF C) is the type of a “Logical Consequences Factory”
by binary resolution on clauses of type C

Application (with T. Vandendorpe)
Redesign of the Coq-verified checker

of [Cruz-Filipe+@CADE’17] into SatAnsCert

Certificate (Abstract Syntax) Polymorphic LCF style

Coq “Theorems for free” about polymorphic oracles 30/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Contents

High-level overview of my HDR-thesis contributions

My interface for foreign OCaml functions in Coq

Coq “Theorems for free” about polymorphic oracles

List of my research projects (from 2012)

List of my research projects (from 2012) 31/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Projects with results covered by my HDR thesis

I VPL [2012-2018]
D. Monniaux and M. Périn (Verimag)
with their Phd students A. Fouilhé and A. Maréchal (Verimag)
+ French ANR Verasco [2012-2016]
Gallium & Abstraction & Toccata (Inria Paris) ;
Celtique (Irisa Rennes).

I SatAnsCert [June-July 2018]
T. Vandendorpe (UGA Bachelor internship)

I CompCert for Kalray VLIW [2018-2021]
D. Monniaux (Verimag) and B. Dupont de Dinechin (Kalray)
with our Phd student C. Six (grant CIFRE Kalray-Verimag)
+ Xavier Leroy (Inria - Collège de France).

List of my research projects (from 2012) 32/33

www-verimag.imag.fr/~boulme/hdr.html

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/˜boulme/hdr.html Sep. 2021

Projects uncovered by my HDR thesis
I CompCert for a secure RiscV with CFI protections [2018-2020]

M-L. Potet and D. Monniaux (Verimag)
with our post-doc P. Torrini (grant of IRT Nanoelec - Pulse)
+ O. Savry, T. Hiscock (CEA LETI)

I CompCert Verimag-Kalray student internships [06/19-08/21]
(co-supervized with D. Monniaux and C. Six)
T. Vandendorpe, L. Chelles, J. Fasse, L. Chaloyard, P. Goutagny
and N. Nardino.

I CompCert for in-order embedded RiscV cores [10/20-09/23]
F. Pétrot (UGA-TIMA) and D. Monniaux (Verimag)
with our Phd student L. Gourdin (grant of labex Persyval UGA)
+ D. Demange (Irisa Rennes)

I CompCert front-end for a subset of Rust/MIR [10/21-09/24]
D. Monniaux (Verimag) and F. Wagner (UGA-LIG)
with our Phd student D. Carvalho (grant of IRT Nanoelec - Pulse)
+ TODO ?

List of my research projects (from 2012) 33/33

www-verimag.imag.fr/~boulme/hdr.html

	High-level overview of my HDR-thesis contributions
	My interface for foreign OCaml functions in Coq
	Coq ``Theorems for free'' about polymorphic oracles
	List of my research projects (from 2012)

