thesis & slides on http://www-verimag.imag.fr/~boulme/hdr.html

Formally Verified Defensive Programming (FVDP) efficient Coq-verified computations from untrusted ML oracles

Habilitation (HDR) of Sylvain Boulmé — Sep 27, 2021

Reviewers

Andrew W. Appel Sandrine Blazy Greg Morrisett Professor at Princeton University Professeur à l'Université de Rennes 1 Professor, Dean of Cornell Tech

Examiners

Hugo Herbelin Xavier Leroy Jean-François Monin Directeur de Recherche à l'Inria Professeur au Collège de France Professeur à l'UGA

UG Université Grenoble Alpes

Contents

High-level overview of my HDR-thesis contributions

My interface for foreign OCAML functions in COQ

 $\mathrm{Coq}\ \mbox{``Theorems}$ for free'' about polymorphic oracles

List of my research projects (from 2012)

Scientific proposal

Challenge

Formal verification of software that produces/verifies safety-critical systems : compilers, analyzers & verifiers.

Example : prevent compilers from introducing critical bugs with a formal (mechanized) proof of the compiler correctness.

How ? I propose to bind OCAML (the programming language) to COQ (the interactive theorem prover)

and to apply Formally Verified Defensive Programming

$\operatorname{COMPCERT}$, the 1st formally proved C compiler

Major success of software verification

"safest C optimizing compiler" from [Regher,etc@PLDI'11] Commercial support since 2015 by AbsInt (German Company) Compile critical software for Avionics & Nuclear Plants See [Käster,etc@ERTS'18].

Developed since 2005 by Leroy & collaborators (Blazy, etc) More than 100Kloc of $\rm COQ$ & $\rm OCAML$

Lesson

"If the formal-verification problem is too complex, then change it for a simpler one !"

- Drop noncritical requirements, e.g. termination : only consider partial correctness.
- Introduce untrusted oracles...

Formally Verified **Defensive** Programming (FVDP)

Idea : complex computations by efficient functions, called oracles, with an untrusted & hidden implem. for the formal proof ⇒ only a defensive test of their result is formally verified

Example of COMPCERT register allocator [Rideau,Leroy'10]

- finding an efficient allocation is difficult
- checking the correctness of a given allocation is easier
- \Rightarrow Register allocation provided by an $\rm OCAML$ imperative oracle Only a checker is programmed and proved in $\rm CoQ.$

Typical applications NP-hard problems,

complex fixpoints (e.g. memoization or dynamic programming)...

Benefits of FVDP

simplicity + efficiency + modularity

OCAML oracles need to appear in COQ as "foreign functions"...

The issue of foreign OCAML functions in COQ

Standard method to declare a foreign function in COQ "Use an axiom declaring its type; replace this axiom at extraction"

Example of Coq proof

```
Axiom oracle: nat \rightarrow bool. Extract Constant oracle \Rightarrow "foo".
Lemma oracle_pure: \forall n, oracle n = oracle n.
congruence.
Qed.
```

Example of OCaml implementation

```
let foo =
  let b = ref false in
  fun (_:nat) -> (b:=not !b; !b)
```

INCORRECT oracle_pure is wrong for two "successive" calls

OCAML "functions" are not functions in the math sense. Rather view them as "relations", ie "nondeterministic functions" $\mathbb{P}(A \times B) \simeq A \rightarrow \mathbb{P}(B)$ where " $\mathbb{P}(X)$ " is " $X \rightarrow \mathbf{Prop}$ " Oracles in COMPCERT : a soundness issue?

 $\label{eq:COMPCERT} \begin{array}{l} \text{COMPCERT} \text{ oracles } \textit{are declared as "pure" functions} \\ \text{Example of register allocation} : \end{array}$

Axiom regalloc: RTL.func \rightarrow option LTL.func.

implemented by imperative OCAML code using hash-tables.

Not a real issue because their purity is not used in the formal proof !

I propose to formally ensure such a claim [VSTTE'14], by modeling OCAML foreign functions in COQ as "nondeterministic functions" Successfully applied in the VPL (Verified Polyhedra Library) [Boulmé, Fouilhé, Maréchal, Monniaux, Périn, etc, 2013-2018]

A COQ model of OCAML pointer equality (==)

OCAML "==" cannot be modeled as a "pure" COQ function. However, a trusted "==" seems useful for FVDP.

Example of **Instruction scheduling** in COMPCERT Very elegant **FVDP design** of [Tristan,Leroy@POPL'08] based on **symbolic execution** (of [King'76]). But, still not in COMPCERT because of *checkers inefficiency*!

I have shown how to *fix this efficiency issue* with the help of another **FVDP design** where

a "nondeterministic" model of == in Coq suffices to verify the answers of **hash-consing oracles**.

See [Six,Boulmé,Monniaux@OOSPLA'20] & [Six-Phd'21].

A "good" FVDP design is the key!

The FVDP-design **trade-off** (for a given application) : Simplicity of formal verification versus Reduced overhead of "defensive tests"

FVDP designs in my HDR thesis for

- ▶ instruction scheduling in COMPCERT (optimizing compiler)
- abstract domain of polyhedra (VPL) for the VERASCO static analyzer (on the top of COMPCERT)
- Boolean SAT-solving (SATANSCERT)

Central Issue

How "oracles" may help "defensive tests" without being too hindered ?

Polymorphic LCF Style (= Shallow Embeddings of Certificates)

Design patterns for a solver that bounds the set of solutions

Inspired by old LCF prover, **I propose** "Polymorphic LCF Style" as a "lightweight certificate handling".

See [Boulmé, Maréchal, Monniaux, Périn, Yu@SYNASC'2018]

Feedback from the Verified Polyhedra Library

Benefits of switching from "Certificates" to "LCF style".

- Code size at the interface COQ/OCAML divided by 2 : shallow versus deep embedding (of certificates).
- Oracles debugging much easier :

interleaved executions of untrusted and certified computations.

See [Maréchal-Phd'17].

Generating certificates still possible from LCF style oracles. See our COQ tactic for learning equalities in linear rational arithmetic [Boulmé,Maréchal@ITP'18].

FVDP by Data-Refinement

Two sources of "bureaucratic reasoning" in large FVDP proofs

- 1. optimized data-representations (wrt more naive ones)
- 2. impure computations (wrt pure ones)

Data-refinement helps in reducing both of them, simultaneously !

Examples

- Data-refinement for FVDP of Symbolic Execution [Six,Boulmé,Monniaux@OOSPLA'20]
- Data-refinement for FVDP of Abstract Interpretation [Boulmé,Maréchal@JAR'19].

Contents

High-level overview of my HDR-thesis contributions

My interface for foreign OCAML functions in COQ

 Coq "Theorems for free" about polymorphic oracles

List of my research projects (from 2012)

Features of my approach

- Almost any OCAML function embeddable into COQ. (e.g. mutable data-structures with aliasing in COQ)
- No formal reasoning on *effects*, only on results : foreign functions could have bugs, only their type is ensured.
 ⇒ Considered as nondeterministic.
 e.g. for I/O reasoning, use FREESPEC or INTERACTIONTREES instead.
- OCAML polymorphism provides "theorems-for-free" about
 - ▶ (some) invariant preservations by mutable data-structures
 - arbitrary recursion operators (needs a small defensive test)
 - exception-handling
- Exceptionally : additional axioms on results (e.g. pointer equality) In this case, the foreign function must be trusted !

Introduction to my IMPURE library

 ${\sf Impure \ computation} := {\rm Coq \ code \ embedding \ OCAML \ code}.$

Based on may-return monads of [Fouilhé,Boulmé@VSTTE'14]

Axiomatize (in Coq) "A → Prop" as type "??A" to represent "impure computations of type A" with "(k a)" as proposition "k ~ a" with formal type ~A:??A → A → Prop read "computation k may return value a" and composition operators (on next slide)

▶ "??A" extracted like "A".

For any "Axiom oracle:nat->??bool", determinism is unprovable

because, it reduces to contradiction " \forall (b1 b2:bool), b1=b2" when interpreting proposition "(oracle n) \rightarrow b" as "True".

May-return monads operators (and axioms)

Currently, only 3 operators with 2 additional axioms :

▶ RET_A : A → ??A
with axiom (RET
$$a_1$$
) $\rightsquigarrow a_2 \rightarrow a_1 = a_2$

formally interpretable as the identity relation

extracted as the identity function

>=_{A,B}: ??A → (A → ??B) → ??B
with axiom (k₁ ≫= k₂) → b → ∃a, k₁→ a ∧ (k₂ a) → b
formally interpretable as the image of a predicate by a relation
"k₁ ≫= k₂" actually written in COQ "DO a ↔ k₁; k₂ a"
extracted to OCAML as "let a=... in ... "
mk_annot_A: ∀(k:??A), ??{a | k → a}

without axiom

formally interpretable as the trivially "True" relation

extracted as the identity function

My interface for foreign OCAML functions in COQ

FVDP (Formally Verified Defensive Programming) www-verimag.imag.fr/~boulme/hdr.html

Declaration of oracles : a Coq user wish

I would wish some "Import Constant" like

```
Import Constant ident: permissive_type
 := "safe_ocaml_value".
```

that acts like

```
Axiom ident: permissive_type.
Extract Constant ident \Rightarrow "safe_ocaml_value".
```

but with additional typechecking ensuring that

any "safe_ocaml_value" compatible with the OCAML extraction of "permissive_type" soundness of *permissive* type satisfies COQ theorems proved from the axiom.

Should reject "Import Constant ident: nat \rightarrow bool := ..." because "nat \rightarrow bool" is not *permissive*, but accept "nat \rightarrow ??bool" as permissive.

Permissivity

Currently, only an informal notion (i.e. "human expertise"). Hence, the COQ type of OCAML oracles is part of the TCB.

Counter-Examples CoQ types which are not permissive

nat \rightarrow ??{ n:nat n \leq 10}	(*	extracted	as nat	\rightarrow nat	*)
nat $ ightarrow$??(nat $ ightarrow$ nat)	(*		$\textit{nat} \rightarrow$	(nat $ ightarrow$ nat)	*)

Examples COQ types which are permissive

(i.e. they are conjectured to be sound COQ types for oracles)

More detailed explanation in my HDR thesis.

Embedding ML references into COQ

Record cref{A}:={set: $A \rightarrow ??$ unit; get: unit $\rightarrow ??A$ }. Axiom make_cref: \forall {A}, A \rightarrow ?? cref A.

where " $\forall \{A\}, A \rightarrow ??$ cref A" (permissive) is considered sound with OCAML constants of "'a -> 'a cref", like

```
let make_cref x =
   let r = ref x in {
       set = (fun y \rightarrow r := y);
       get = (fun () \rightarrow !r) }
```

but also like

```
let make cref x =
 let hist = ref [x] in {
    set = (fun y -> hist := y::!hist);
   get = (fun () -> nth !hist (Random.int (length !hist))) }
```

\Rightarrow No formal guarantee on reference contents except invariant preservations encoded in instances of type A.

My interface for foreign OCAML functions in COQ

Contents

High-level overview of my HDR-thesis contributions

My interface for foreign OCAML functions in COQ

 $\mathrm{Coq}\ \mbox{``Theorems}$ for free'' about polymorphic oracles

List of my research projects (from 2012)

Soundness of permissivity \Rightarrow unary parametricity of OCAML

MetaThm Assuming that permissivity of $(\forall A, A \rightarrow ??A)$ is sound, any safe OCAML "pid: 'a -> 'a" satisfies when (pid x) returns normally some y then y = x.

Proof

1) a COQ "wrapper" of pid, called cpid is a pseudo-identity

```
Axiom pid: \forall {A}, A\rightarrow??A.
(* We define below cpid: \forall {B}, B \rightarrow ??B *)
Program Definition cpid {B} (x:B): ?? B :=
  DO z \leftrightarrow pid (A:={ y | y = x }) x ;;
  RET 'z.
Lemma cpid_correct A (x y:A): (cpid x) \rightarrow y \rightarrow y=x.
```

2) at extraction : let cpid x = (let z = pid x in z)

This meta-theorem is a "theorem for free" for [Wadler'89] ie a proof by "(unary) parametricity of polymorphism" for [Reynolds'83]

Unary parametricity for imperative higher-order languages

Parametricity comes from the type-erasure semantics : polymorphic values must be handled uniformly.

Has been proved for a variant of system F with references by [Ahmed, Dreyer, Birkedal, Rossberg@POPL+LICS'09] (from seminal works of Appel & co started around 2000).

▶ Open Conjecture for "COQ + ??. + OCAML"

Unary parametricity : ML type \rightarrow $2^{\mathrm{nd}}\text{-order}$ invariant

Example

Deriving a while-loop for Coq (in partial correctness) from a ML oracle such that ML type of the oracle \Rightarrow usual rule of Hoare Logic

Given definition of wli (while-loop-invariant)

```
Definition wli{S}(cond:S→bool)(body:S→??S)(I:S→Prop)

:= ∀ s, I s → cond s = true →

∀ s', (body s) ~ s' → I s'.
```

I aim to define

while {S} cond body (I: S \rightarrow Prop | wli cond body I): \forall s0, ??{s | (I s0 \rightarrow I s) \land cond s = false}. Polymorphic oracle DIRECTLY computing "while" results

Declaration of the oracle in Coq

Axiom loop: \forall {A B}, A * (A \rightarrow ?? (A+B)) \rightarrow ?? B.

 $\begin{cases} A \mapsto \text{loop invariant} & \text{i.e. type of "reachable states"} \\ B \mapsto \text{post-condition} & \text{i.e. type of "final states"} \end{cases}$

Implem. in OCAML

```
let rec loop (a, step) =
match step a with
| Coq_inl a' -> loop (a', step)
| Coq_inr b -> b
```

Definition of the while-loop in Coq

Axiom loop: \forall {A B}, A*(A \rightarrow ?? (A+B)) \rightarrow ?? B.

```
Definition wli{S}(cond:S→bool)(body:S→??S)(I:S→Prop)
\coloneqq \forall s, I s \rightarrow cond s = true \rightarrow
                  \forall s'. (body s) \rightsquigarrow s' \rightarrow I s'.
Program Definition
   while {S} cond body (I:S\rightarrowProp | wli cond body I) s0
   : ??{s | (I s0 \rightarrow I s) \land cond s = false}
:=
   loop (A:={s | I s0 \rightarrow I s})
          (s0.
              fun s \Rightarrow
              match (cond s) with
              | true \Rightarrow
                  DO s' <~ mk_annot (body s) ;;
                  RET (inl (A:={s | I s0 \rightarrow I s })
                               s')
              | false \Rightarrow
                  RET (inr (B={s | (I s0 \rightarrow I s) \land cond s = false})
                               s)
              end).
```

Generalization to impure recursion (e.g. with memoization)

Wrap into a certified recursion operator, any oracle declared as

Axiom fixp: \forall {A B}, ((A \rightarrow ?? B) \rightarrow A \rightarrow ?? B) \rightarrow ?? (A \rightarrow ?? B).

But, formal correctness of **recursive functions** requires a **relation** R between inputs and outputs. How to encode a *binary* relation into the "*unary postcondition*" B?

```
Solution use in COQ "(B=answ R)" where
```

```
Record answ {A O} (R: A \rightarrow O \rightarrow Prop) := {
input: A ;
output: O ;
correct: R input output
}.
```

+ a defensive check on each recursive result r that (input r) "equals to" the actual input of the call

Such a defensive check is needed...

Because of well-typed oracles such as

```
let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
let memo = ref None in
let rec f x =
   match !memo with
   | Some y -> y
   | None ->
    let r = step f x in
   memo := Some r;
   r
in f
```

 \Rightarrow a memoized fixpoint with "a bug" crashing all recursive results into a single memory cell.

Defensive check detects this bug... ...and aborts the recursive computation... ...by exception raising (as shown after next slide)

Any fixp implementation is supported!

Standard fixpoint (pointer equality is sufficient in defensive check)

```
let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
 let rec f x = step f x in f
```

Memoized fixpoint (defensive check of Hashtbl.find equality)

```
let fixp (step: ('a -> 'b) -> 'a -> 'b): 'a -> 'b =
  let memo = Hashtbl.create 10 in
 let rec f x =
   try
      Hashtbl.find memo x (* if buggy: a wrong 'b result *)
    with
      Not_found ->
        let r = step f x in
        Hashtbl.replace memo x r;
        r
  in f
```

See my HDR thesis for details.

Verification "for free" of higher-order impure operators

(more adhoc) operators for loops and fixpoints

Raising and catching exceptions like in

```
Axiom fail: \forall {A}, string \rightarrow ?? A.

Definition FAILWITH {A} msg: ?? A :=

D0 r \leftrightarrow fail (A:=False) msg;; RET (match r with end).

Lemma FAILWITH_correct A msg (P:A \rightarrow Prop):

\forall r, FAILWITH msg \rightarrow r \rightarrow P r.
```

Polymorphic LCF Style

Design pattern for oracles (example next slide)

Certifying UNSAT proofs of Boolean SAT-solvers

where (resolLCF C) is the type of a "Logical Consequences Factory" by binary resolution on clauses of type C

Application (with T. Vandendorpe) Redesign of the CoQ-verified checker of [Cruz-Filipe+@CADE'17]

into SATANSCERT

Contents

- High-level overview of my HDR-thesis contributions
- My interface for foreign OCAML functions in COQ
- $\mathrm{Coq}\,$ "Theorems for free" about polymorphic oracles
- List of my research projects (from 2012)

Projects with results covered by my HDR thesis

VPL [2012-2018]
 D. Monniaux and M. Périn (Verimag)
 with their Phd students A. Fouilhé and A. Maréchal (Verimag)
 + French ANR VERASCO [2012-2016]
 Gallium & Abstraction & Toccata (Inria Paris);
 Celtique (Irisa Rennes).

- SATANSCERT [June-July 2018]
 T. Vandendorpe (UGA Bachelor internship)
- COMPCERT for Kalray VLIW [2018-2021]
 D. Monniaux (Verimag) and B. Dupont de Dinechin (Kalray) with our Phd student C. Six (grant CIFRE Kalray-Verimag) + Xavier Leroy (Inria Collège de France).

Projects uncovered by my HDR thesis

- COMPCERT for a secure RiscV with CFI protections [2018-2020]
 M-L. Potet and D. Monniaux (Verimag)
 with our post-doc P. Torrini (grant of IRT Nanoelec Pulse)
 + O. Savry, T. Hiscock (CEA LETI)
- COMPCERT Verimag-Kalray student internships [06/19-08/21] (co-supervized with D. Monniaux and C. Six)
 T. Vandendorpe, L. Chelles, J. Fasse, L. Chaloyard, P. Goutagny and N. Nardino.
- COMPCERT for in-order embedded RiscV cores [10/20-09/23]
 F. Pétrot (UGA-TIMA) and D. Monniaux (Verimag)
 with our Phd student L. Gourdin (grant of labex Persyval UGA)
 + D. Demange (Irisa Rennes)
- COMPCERT front-end for a subset of Rust/MIR [10/21-09/24]
 D. Monniaux (Verimag) and F. Wagner (UGA-LIG)
 with our Phd student D. Carvalho (grant of IRT Nanoelec Pulse)
 + TODO ?