INF231:
 Functional Algorithmic and Programming
 Lecture 6: Polymorphism, Higher-order, and Currying

Academic Year 2019-2020

Outline

Polymorphism

Higher-Order

Currying

Motivating polymorphism on examples

About the identity function:

- Identity on int:

$$
\text { let id (x:int):int }=x \quad \text { val id: int } \rightarrow \text { int }=<\text { fun }>
$$

- Identity on float:

```
let id(x:float):float = x val id:float }->\mathrm{ float = <fun>
```

- Identity on char

$$
\text { let id (x:char):char = x } \quad \text { val id: char } \rightarrow \text { char }=<\text { fun }>
$$

Disadvantages:

- 1 function per type needing the identity function
- Unique/Different names needed if these functions should "live" together

Motivating polymorphism on examples

Limitations of Functions on list

Compute the length of a list:

- of int:

```
let rec length_int (l:int list):int=
match l with
    \(\mid[] \rightarrow 0\)
    | _::1 \(\rightarrow\) 1+ length_int l
```

- on char:

```
let rec length_char (l: char list):int=
match l with
    \(\mid[] \rightarrow 0\)
    | _::1 \(\rightarrow\) 1+ length_char 1
```

- ...

Remark The body of these functions is not specific to char nor int
\rightarrow we need lists that are not bound to a type

Motivating polymorphism on examples

Limitations of (current) lists

Several sorts of lists, à la Lisp:

- type listofint = Nil|Cons int * listofint and then Cons (2, Cons (9,Nil))
- type listofchar = Nil | Cons char $*$ listofchar and then Cons ('t', Cons ('v',Nil))

Several sorts of lists, even with OCaml shorter notations:

- list of int: [1;2] (=1::2::[]) of type int list
- list of char: ['e'; 'n'] (=' b ':: ' n ': []) of type char list
- list of string: ["toto";"titi"] (="toto"::"titi"::[]) of type string list

Back on the examples - introducing polymorphism

Let's come back on the (various) identity functions
What if we omit type?
let id $x=x \quad$ valid:' $a \rightarrow$ ' $a=<$ fun $>$
\rightarrow type inference: OCaml computes the most general type
\rightarrow polymorphic identity: the id on any type (α or ' a)
"id is a polymorphic function" that can be applied to any value
We can specifically indicate that the function can take any type:

DEMO: Polymorphic identity

Polymorphic lists

We can define lists that are parameterized by some type (à la Lisp)
type 't llist = Nil | Cons of 't *'t llist
' t is a type parameter
OCaml pre-defined lists are already parameterized by some type:

- type of [] is ' a list (equivalently α list)
- type of :: is ' a \rightarrow ' a list \rightarrow ' a list (equivalently $\alpha \rightarrow \alpha$ list $\rightarrow \alpha$ list)
Remark Still, the elements should have the same type

Example

- Cons (2,Cons (3,Cons (4,Nil)))
- Cons ('r',Cons ('d',Cons ('w',Nil)))
- Cons ((fun $x \rightarrow x)$, Cons ((fun $x \rightarrow 3 * x+2)$, Nil))

Polymorphic functions on Polymorphic lists

Example (Length of a list)
À la Lisp:
OCaml pre-defined lists:

```
let rec length(l:' a llist):int let rec length(l:' a list):int
    =
match l with
    | Nil }->0\quad|[]->
    | Cons (_, l) }->1+\mathrm{ length l | _::l }->\mathrm{ 1+ length l
```

Exercise: implement some functions on polymorphic lists

- isEmpty: returns true if the argument list is empty
- append: appends two lists together
- reverse: reverse the elements of a list
- separate: inserts a separator between two elements of a list

Note: be careful with the types

Outline

Polymorphism

Higher-Order

Currying

Higher-order

Some motivation

Consider two simple functions returning the maximum of two integers:

```
let max2_v1 (a:int) (b:int):int
=
    if a>= b then a
    else b
```

```
let max2_v2 (a:int) (b:int):int
```

let max2_v2 (a:int) (b:int):int
=
=
if a <= b then b
if a <= b then b
elsea

```
    elsea
```

Several questions:

- How to test whether those functions are correct?
- How to test whether those functions return the same values for the same input values?

DEMO: Higher-order can provide elegant testing solutions

Introduction to higher-order

In OCaml and functional programming, functions is the basic tool:

- to "slice" a program into smaller pieces
- to produce results

Functions are first-class citizens: they are values (e.g., used in lists,...)

A function can also be a parameter or a result of a function
Example (Returning an affine function)
let affine $\mathrm{a} b=(\mathrm{fun} \mathrm{x} \rightarrow \mathrm{a} * \mathrm{x}+\mathrm{b}$)

Several benefits

Higher-order functions

Definition (Higher-Order language)

A programming language is a higher-order language if it allows to pass functions as parameters and functions can return a function as a result

Remark The C programming language allows to pass functions as parameters but does not allow to return a function as a result

Definition (Higher-order function)

A function is said to be a higher-order function or a functional, if it does at least one of the two things:

- take at least one function as a parameter
- return a function as a result

Remark Non higher-order functions are said to be first-order functions

Higher-order functions

Benefits and What you should learn

Conciseness

Some form of expressiveness

At the end of the day, you should know:

- that higher-functions exist
- the associated "vocabulary"
- know how and when to use it

We will demonstrate and experiment those features through examples...

A tour of some higher-order functions

Why it is useful to have higher-order functions
Applying twice a function. Consider the two functions double and square:

- let double (x:int):int $=2 * x$
- let square (x:int):int $=x * x$

How can we define quad and power 4 reusing the previous function?

- let quad (x:int):int = double (double x)
- let power4 (x:int):int = square (square x)

The same: apply a given function twice to a value. By passing in the function to another function twice as an argument, we can abstract this fun:

$$
\text { let twice (f:int } \rightarrow \text { int) (} \mathrm{x}: \text { int }): \text { int }=\mathrm{f}(\mathrm{f} \mathrm{x})
$$

- let quad (x:int):int = twice double x
- let power4 (x:int):int = twice square x
or using anonymous functions:
- let quad (x:int):int $=$ twice (fun ($\mathrm{x}:$ int $) \rightarrow 2 * \mathrm{x}$) x
- let power 4 (x:int):int $=$ twice (fun (x:int) $\rightarrow x * x$) x

A tour of some higher-order functions

Numerical functions

Example (Slope of a function in 0)
Let f be a function defined in 0 (with real values):

$$
\frac{f(h)-f(0)}{h}
$$

(with h small)

DEMO: Slope in 0

Example (Derivating a (derivable) function f)
We approximate $f^{\prime}(x)$ (value of the derivative function in x) by:

$$
\frac{f(x+h)-f(x)}{h}
$$

(with h small)

A tour of some higher-order functions

Reminders:

- A zero of a function f is an x s.t. $f(x)=0$
- Theorem of intermediate values:

Let f be a continuous function, a and b two real numbers, if $f(a)$ and $f(b)$ are of opposite signs, then there is a zero in the interval $[a, b]$

- \sqrt{a} is the positive zero of the function $x \mapsto x^{2}-a$
- $\forall a \geq 0: 0 \leq \sqrt{a} \leq \frac{1+a}{2}$

Exercise: zero of a continuous function using dichotomy

- Define a function sign indicating whether a real is positive or not
- Deduce a function zero that returns the zero of a function, up to some given epsilon, given two reals s.t. there is a zero between those reals
- Deduce a function to approximate the square root of a float

A tour of some higher-order functions

Composing functions

Function composition:

$$
\begin{array}{rll}
f & : & C \longrightarrow D \\
g & : & A \longrightarrow B \\
g \circ f & : & C \longrightarrow B
\end{array} \quad \text { if } D \subseteq A
$$

Let us simplify and take $D=A$, hence $g \circ f: C \xrightarrow{f} A \xrightarrow{g} B$

Exercise: Defining function composition in OCam

- Specify the function compose that composes two functions (beware of types)
- Implement the function compose

A tour of some higher-order functions

n-th term of a series and generalized composition

Consider a series defined as follows:

$$
\begin{aligned}
& u_{0}=a \\
& u_{n}=f\left(u_{n-1}\right), n \geq 1
\end{aligned}
$$

The n-th term u_{n} is $f\left(u_{n-1}\right)=f\left(f\left(u_{n-2}\right)\right)=f\left(f\left(f\left(\ldots\left(u_{0}\right) \ldots\right)\right)\right)$

Exercise: n-th term of a series

Define a function nthterm that computes the n-th term of a series defined as above using a function f and some n

Exercise: n-th iteration of a function

Define a function iterate that computes the function which is the n-th composition of a function, given some n

A tour of some higher-order functions

Generalizing the sum of the n first integers

Sum of n first integers:

$$
1+2+\ldots+(n-1)+n=(1+2+\ldots+(n-1))+n
$$

Implemented as:

```
let rec sum_integers(n:int) =
    if n=0 then 0 else sum_integers ( }n-1)+
```

The sum of squares is similarly:

$$
1^{2}+2^{2}+\ldots+(n-1)^{2}+n^{2}=\left(1^{2}+2^{2}+\ldots+(n-1)^{2}\right)+n^{2}
$$

Implemented as:

```
let rec sum_squares (n:int) =
    if \(n=0\) then 0 else sum_squares \((n-1)+(n * n)\)
```


Sum of the integers through a function - generalization

- Define a function sigma that computes the sum of the results of applying a given function f to the first n integers
- Give an alternative implementation of sum_integers and sum_squares using sigma

A tour of some higher-order functions

Generalizing the sum of the n first integers

Sum of n first integers implemented as:

```
let rec sum_integers (n:int) =
    if n=0 then 0 else sum_integers ( }n-1)+
```

The sum of squares is similarly implemented as:

```
let rec sum_squares (n:int) =
    if n=0 then 0 else sum_squares (n-1) + (n*n)
let rec siggma (n:int) (f:int }->\mathrm{ int):int=
    if n=0 then O (* implicitely we assume that f 0 = 0 *)
    else(f n) + siggma(n-1) f
let sum_integers2 (n:int):int = siggma n(fun x }->\textrm{x}\mathrm{ )
let sum_squares2(n:int):int = siggma n(fun x }->\textrm{x}*\textrm{x}\mathrm{ )
```


A tour of some higher-order functions

Lists: applying a function to all elements in a list - preliminary

Another representation of the list $1=\left[a _1 ; a _2 ; \ldots ; a _n\right]$:

Graphic representation from Pierre Wiels and Xavier Leroy

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map
Given:

- a list of type ' a list
- a function of type ' $\mathrm{a} \rightarrow$ ' b

Remark

- Application of f does not depend on the position of the element
- map returns a list
- map can change the type of the list

Typing
If 1 is of type $t 1$ list and f is of type $t 1 \rightarrow t 2$ then map $\mathrm{f} l$ is of type t 2 list

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Exercise: function map

Define a function map such that:

- given a list and a function f on the elements of that list,
- returns the list where f has been applied to all elements of that list

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Example (Vectorize)

- Specification:
- Profile: vectorize: $\mathrm{Seq}(\mathrm{Elt}) \rightarrow \mathrm{Vec}(\mathrm{Seq}($ Elt $)$), where Vec is the set of lists of one element
- Semantics:

$$
\text { vectorize }[e 1 ; \ldots ; \mathrm{en}]=[[\mathrm{e} 1] ; \ldots ;[\mathrm{en}]]
$$

- Implementation:

$$
\text { let vectorize }=\text { my_map (fun } e \rightarrow[e])
$$

Example (Concatenate to each)

- Specification:
- Profile: Seq(Elt) * $\operatorname{Seq}(\operatorname{Seq}(E l t)) \rightarrow \operatorname{Seq}(\operatorname{Vec}(E l t))$
- Semantics:

```
concatenate_to_each (l, [v1; ... vn] = [ l@v1; .. ; l@vn ]
```

- Implementation:

```
let concatenate_to_each
    = fun (l,seqv) }->\mathrm{ my_map (fun x }->\mathrm{ l@x) seqv
```


A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Exercise: using the function map for converting lists

Define the following functions:

- toSquare: raises all elements of a list of int to their square
- toAscii: returns the ASCII code of a list of char
- toUpperCase: returns a list of char where all elements have been put to uppercase

Exercise: Powerset

Define the function powerset that computes the set of subsets of a set represented by a list

A tour of some higher-order functions

Lists: iterating a function on all elements on a list - function fold_right - some intuition first
Example (Sum of the elements of a list)
let rec sum l=
match l with

$$
[] \rightarrow 0
$$

$$
\text { |elt::remainder } \rightarrow \text { elt + (sum remainder) }
$$

Example (Product of the elements of a list)
let rec product 1 =
match l with

$$
\begin{aligned}
& {[] \rightarrow 1} \\
& \text { | elt::remainder } \rightarrow \text { elt } * \text { (product remainder) }
\end{aligned}
$$

Example (Paste the string of a list)
let rec concatenate $1=$
match l with

$$
\begin{aligned}
& {[] \rightarrow " \text { " }} \\
& \mid \text { elt::remainder } \rightarrow \text { elt ^(concatenate remainder) }
\end{aligned}
$$

Remark Notice that the only elements that change are:

- the "base case", i.e., what the function should return on the empty list
- "how we combine the current element with the result of the recursive call

A tour of some higher-order functions

Lists: iterating a function on all elements on a list - function fold_right
If we place the operator in prefix position, we have:

- sum $[a 1 ; a 2 ; \ldots ; a n]=+a 1(+a 2(\ldots(+$ an 0$) \ldots))$
- product $[a 1 ; a 2 ; \ldots ; a n]=* a 1(* a 2(\ldots(* \operatorname{an} 1) \ldots))$
- concatenate $[a 1 ; a 2 ; \ldots ; \mathrm{an}]=\wedge$ a1 (^ a2 (... (^ an 0)...))

More generally, given:

- f of type ' $\mathrm{a} \rightarrow$ ' b \rightarrow ' b,
- l of type' a list, and
- some initial value bof type 'b

\rightarrow result is of type ' a

A tour of some higher-order functions

Lists: iterating a function on all elements on a list - function fold_right

Exercise: writing fold_right

Given

- f of type ' $\mathrm{a} \rightarrow{ }^{\prime} \mathrm{b} \rightarrow$ ' b, and
- $1=[a 1 ; \ldots ;$ an $]$ of type ' a list,
define a function fold_right s.t.

$$
\text { fold_right } f[a 1 ; \ldots ; a n] b=f(a 1(\ldots f(a n b)))
$$

Exercise: using fold_right

- Re-write the previously defined functions, sum, product, concatenate using fold_right
- Define a function that determines whether the number of elements of a list is a multiple of 3 without using the function returning the length of a list

A tour of some higher-order functions

A small case-study with fold_right

Exercise: tasting testing

The purpose is to write a test suite function
We have seen examples of test cases
A test suite is a series of test cases s.t.:

- each test case is applied in order
- for a test suite to succeed, all its test cases must succeed

Questions:

- Define a function test_suite that checks whether two functions fand g returns the same values on a list of inputs values. Each element of the list is an input to the two functions.
- Here are two simple functions:
- let plus1 = fun $x \rightarrow x+1$
- let plusldummy $=$ fun $x \rightarrow$ if $(x \bmod 2=0)$ then $x-2+3$ else $2 * x$
Find 2 lists of inputs, so that the application of the function test_suite

1. finds the bug
2. does not find the bug

A tour of some higher-order functions

Lists: iterating a function on all elements on a list - function fold_left

More generally, given:

- f of type ' $\mathrm{a} \rightarrow$ ' $\mathrm{b} \rightarrow$ ' a ,
- l of type ' b list, and
- some initial value a of type ' a:

\rightarrow result is of type ' a

A tour of some higher-order functions

Lists: some function parameterized by a predicate

A predicate is a function that returns a Boolean

Recall the function that removes not even integers from a list of integers:

```
let rec remove_odd (l:int list) =
    match l with
    [] \(\rightarrow\) []
    |elt::remainder \(\rightarrow\)
            if elt \(\bmod 2=0\)
            then elt::(remove_odd remainder)
            else (remove_odd remainder)
```


A tour of some higher-order functions

Lists: some function parameterized by a predicate

Exercise: Filtering according to a predicate
Define a function filter that filters the elements of a list according to some given predicate p

Exercise: Checking a predicate on the elements of a list

- Define a function forall that checks whether all the elements of a list satisfy a given predicate p
- Define a function exists that checks whether at least one element of a list satisfy a given predicate p

A tour of some higher-order functions

Some more exercises

Exercise: back to testing

- Redefine the function test_suite using the function forall

Exercise: Map with fold

- Redefine map using fold_left
- Redefine map using fold_right

Exercise: minimum and maximum with one line of code

Define the functions minimum and maximum of a list using fold_left and fold_right. The function can be written with one line of code

Outline

Polymorphism

Higher-Order

Currying

About Currying

A function with n parameter $x 1, \ldots, x n$ is actually a function that takes $x 1$ as a parameter and returns a function that takes $\mathrm{x} 2, \ldots, \mathrm{xn}$ as parameters

The application

$$
\text { f x1 x } 2 \ldots \text { xn }
$$

is actually a series of applications

$$
f(\ldots(f \times 1) \times 2) \ldots) \times n)
$$

Definition: Partial application

Applying a function with n parameters with (strictly) less than n parameters The result of a partial application remains a function

Typing:

If

- f is of type $\mathrm{t} 1 \rightarrow \mathrm{t} 2 \rightarrow \ldots \rightarrow \mathrm{tn} \rightarrow \mathrm{t}$, and
- xi is of type ti for $i \in[1, j] \subseteq[1, n]$

Then $f x 1 \times 2 \ldots x j$ is of type $t(j+1) \rightarrow \ldots \rightarrow t n \rightarrow t$

About Currying

Some example

Example (Apply twice)

Back to the function applyTwice:

$$
\begin{aligned}
& \text { let applyTwice (f:int } \rightarrow \text { int) (x:int):int } \\
& =f(\mathrm{fx})
\end{aligned}
$$

Applying applyTwice with only one argument:

$$
\text { applyTwice (fun } x \rightarrow x+4 \text {) }
$$

is equal to the function

$$
\text { fun } x \rightarrow x+8
$$

DEMO: applyTwice and its testing

Currying has some advantages

Suppose we want a function taking $a \in A$ and $b \in B$ and returning $c \in C$

Without currying:
$\mathrm{f}: \mathrm{tA} * \mathrm{tB} \rightarrow \mathrm{tC}$
f takes 1 argument: a pair
$f(a, b)$ is of type $t c$

With currying:

$$
\begin{aligned}
& \mathrm{f}: \mathrm{tA} \rightarrow \mathrm{tB} \rightarrow \mathrm{tC} \\
& \mathrm{f} \text { takes } 2 \text { arguments } \\
& \mathrm{f} a \mathrm{~b} \text { is of type } \mathrm{tC} \\
& \mathrm{f} a \text { is of type } \mathrm{tB} \rightarrow \mathrm{tC}
\end{aligned}
$$

DEMO: 2 definitions of integer addition \& the predefined (+) in OCaml

Lessons learned

- Currying allows some flexibility
- Allows to specialize functions

Remark When applying curried functions, it can be harder to detect that we have forgot a parameter

Another way to learn the concepts of currying

www.ffconsultancy.com/ocaml/benefits/functional.html

A function of many arguments can be written as a function that accepts one argument and returns a function to consume the remaining arguments. This transformation is known as currying.

In OCaml, functions of many arguments are conventionally written in curried form. This is a stype of written functions.

Another way to learn the concepts of currying

Example: Raise a floating point number x to an integer power n could accept its arguments simultaneously as a 2-tuple (n, x):

```
# let rec pow(n, x) =
    if n=0 then 1. else x *. pow(n-1, x);;
val pow:int * float }->\mathrm{ float =<fun>
```

When written in curried form, this function accepts n and returns a function to raise the given x to the power n :

```
# let rec pow(n)(x)=
    if n=0 then 1. else x *. pow(n-1)(x);;
val pow:int }->\mathrm{ float }->\mathrm{ float =<fun>
```

For example, to create a function to cube a given number by applying only the first argument $\mathrm{n}=3$:

```
# let cube = pow(3);;
val cube: float }->\mathrm{ float =<fun>
# cube 2.;;
- : float = 8.
```


Another way to learn the concepts of currying

Another example: define a plus function:

```
# let plus a b =
    a + b;;
val plus:int }->\mathrm{ int }->\mathrm{ int =<fun>
```

What is plus 2 ?
\# plus 2;;

- : int \rightarrow int $=$ <fun $>$

This isn't an error. It's telling us that plus 2 is in fact a function, which takes an int and returns an int.
We experiment by first of all giving this mysterious function a name (f), and then trying it out on a few integers to see what it does:

```
# let f=plus 2;;
val f:int }->\mathrm{ int =<fun>
# f 10;;
- : int = 12
# f 15;;
- : int = 17
```


Conclusion / Summary

Polymorphism

- general types
- "type parameterization"

Higher-Order

- "taking a function as a parameter or returning a function"
- improve conciseness, expressiveness, quality,...

Currying

- partial application of a function
- function specialization
- define your function so it can be curried

