UNIVERSITE
JOSEPH FOURIER

INF231:
Functional Algorithmic and Programming
Lecture 6: Polymorphism, Higher-order, and Currying

Academic Year 2019 - 2020

fv

Outline

Polymorphism

Motivating polymorphism on examples

Limitations of Functions

About the identity function:
» Identity on int:
let id (x!int)iint =x val id:int — int = <fun>

» |dentity on float:
let id (x:float):float =x val id: float — float = <fun>

» Identity on char
let id (x:char)ichar = x val id:char — char = <fun>

Disadvantages:
» 1 function per type needing the identity function
» Unique/Different names needed if these functions should “live” together

Motivating polymorphism on examples

Limitations of Functions on list

Compute the length of a list:
» of int:
let rec length_int (1:int list)iint=
match 1 with

[[1—=0
_ul — 1+ length_int
1 1+1 h_i 1

» on char:

let rec length_char (1: char list):int=
match 1 with
[[1—0
| i1 — 1+ length_char 1l

Remark The body of these functions is not specific to char nor int

— we need lists that are not bound to a type

38

Motivating polymorphism on examples

Limitations of (current) lists

Several sorts of lists, a la Lisp:

» type listofint =Nil |Cons int * listofint
and then Cons (2, Cons (9,Ni1))

» type listofchar =Nil | Cons char * listofchar
and then Cons ('t’, Cons ('v’,Nil))

Several sorts of lists, even with OCaml shorter notations:
> list of int: [1;2] (=1::2:[]) of type int 1ist
» list of char: ['e’; 'n’] (=" b i’ n ;[]) of type char 1ist
» list of string: [“toto”;“titi”] (="toto”"titi”:[]) of type
string list

38

Back on the examples - introducing polymorphism

Let’s come back on the (various) identity functions

What if we omit type?
let idx=x val id: a — ' a=<fun>

— type inference: OCaml computes the most general type
— polymorphic identity: the id on any type (« or’ a)

“id is a polymorphic function” that can be applied to any value

We can specifically indicate that the function can take any type:

let id(x:’a):'a=x
equivalently let id(x:’b):’b=x
equivalently let id(x:’toto):’ toto=x

— the type returned by OCamlis’ a — '’ a
(equivalently a—«)

Polymorphic lists

We can define lists that are parameterized by some type (a la Lisp)
type 't 11ist =Nil |Cons of 't x 't 11ist
't is a type parameter
OCaml pre-defined lists are already parameterized by some type:
» typeof[]is ’alist (equivalently o 1ist)
» typeofiis 'a—'alist - alist
(equivalently a—a 1ist—a list)

Still, the elements should have the same type

Example
» Cons (2,Cons (3,Cons (4,Ni1)))
» Cons ('r’,Cons ('d’,Cons ('w’,Nil)))
» Cons ((fun x — x), Cons ((fun x — 3xx+2), Nil))

Polymorphic functions on Polymorphic lists

Let’s practice

Example (Length of a list)
Ala Lisp: OCaml pre-defined lists:

let rec length (1:'a 1list):int let rec length (1:’a list)iint

match 1 with match 1 with

|Nil —0 [[]—0
| cons (_,1) =+ 1+ length 1 | 51— 1+ lengthl

» isEmpty: returns true if the argument list is empty

» append: appends two lists together

» reverse: reverse the elements of a list

» separate: inserts a separator between two elements of a list

Note: be careful with the types

38

Outline

Higher-Order

Higher-order

Some motivation

Consider two simple functions returning the maximum of two integers:

let max2_vl (a:int) (b:int):int let max2_v2 (a:int) (b:int):int

ifa>=bthena ifa<=bthenb
elseb else a

Several questions:
» How to test whether those functions are correct?

» How to test whether those functions return the same values for the same
input values?

Introduction to higher-order

In OCaml and functional programming, functions is the basic tool:
» to “slice” a program into smaller pieces
» to produce results

Functions are first-class citizens: they are values (e.g., used in lists,. .

A function can also be a parameter or a result of a function

Example (Returning an affine function)
let affine ab = (fun x — a* x + b)

Several benefits

)

38

Higher-order functions

Some vocabulary

A programming language is a higher-order language if it allows to pass
functions as parameters and functions can return a function as a result

The C programming language allows to pass functions as
parameters but does not allow to return a function as a result

A function is said to be a higher-order function or a functional, if it does at
least one of the two things:

» take at least one function as a parameter
» return a function as a result

Non higher-order functions are said to be first-order functions

10/38

Higher-order functions

Benefits and What you should learn

Conciseness

Some form of expressiveness

At the end of the day, you should know:
» that higher-functions exist
» the associated "vocabulary"”
» know how and when to use it

We will demonstrate and experiment those features through examples. ..

11/38

A tour of some higher-order functions
Why it is useful to have higher-order functions
Applying twice a function. Consider the two functions double and square:
> let double (x:int):int = 2%x
> let square (x!int)iint = x*x
How can we define quad and power4 reusing the previous function?
» let quad (x:int):int = double (double x)
» let power4 (x:int):int = square (square x)

The same: apply a given function twice to a value. By passing in the function
to another function twice as an argument, we can abstract this fun:

let twice (f:int — int) (x:int):int = £ (£ x)

» let quad (x:int):int = twice double x
» let power4 (x:int):int = twice square x
or using anonymous functions:
» let quad (x:int):int = twice (fun (x:int) — 2% x) x

» let powerd (x:int):int = twice (fun (x:int) — x % x) x

12/38

A tour of some higher-order functions

Numerical functions

Example (Slope of a function in 0)
Let f be a function defined in 0 (with real values):

f(h) — 1(0)

(with h small)
h

‘ DEMO: Slope in 0

Example (Derivating a (derivable) function f)
We approximate f'(x) (value of the derivative function in x) by:

"("L})*"(X) (with h small)

‘ DEMO: Derivative

13/38

A tour of some higher-order functions

Numerical functions

Reminders:
» A zero of a function fisan x s.t. f(x) =0

» Theorem of intermediate values:
Let f be a continuous function, a and b two real numbers, if f(a) and f(b)
are of opposite signs, then there is a zero in the interval [a, b]

» \/ais the positive zero of the function x — x — a
»Va>0:0<+a< 2

» Define a function sign indicating whether a real is positive or not

» Deduce a function zero that returns the zero of a function, up to some
given epsilon, given two reals s.t. there is a zero between those reals

» Deduce a function to approximate the square root of a float

14/38

A tour of some higher-order functions

Composing functions

Function composition:

f c—D
g : A—B
f

go C—B ifDCA

Let us simplify and take D = A, hence gof: C —+ A -2+ B

» Specify the function compose that composes two functions
(beware of types)

» Implement the function compose

15/38

A tour of some higher-order functions

n-th term of a series and generalized composition

Consider a series defined as follows:

U = a
Upn = f(Up=1),n>1

The n-th term uy, is f(up—1) = f(f(Un—2)) = F(f(f(... (W) ...)))

Define a function nthterm that computes the n-th term of a series defined
as above using a function f and some n

Define a function iterate that computes the function which is the n-th
composition of a function, given some n

16/38

A tour of some higher-order functions

Generalizing the sum of the n first integers

Sum of nfirst integers:
1+2+...+(n—-1)+n=(1+2+...+(n—1))+n

Implemented as:
let rec sum_integers (n:int) =
if n=0 then 0 else sum_integers (n—1) +n

The sum of squares is similarly:
P22 (-1 =P +22 4+ (n—1)) + 1

Implemented as:
let rec sum_squares (n:int) =
if n=0 then 0 else sum_squares (n—1) + (nxn)

» Define a function sigma that computes the sum of the results of
applying a given function f to the first n integers

» Give an alternative implementation of sum_integers and
sum_squares Using sigma

A tour of some higher-order functions

Generalizing the sum of the n first integers

Sum of n first integers implemented as:
let rec sum_integers (niint) =
if n=0 then 0 else sum_integers (n—1) +n

The sum of squares is similarly implemented as:

let rec sum_squares (niint) =
if n=0 then 0 else sum_squares (n—1) + (nx*n)

let rec siggma (n:int) (f:int — int):int=
ifn=0thenO0 (+ implicitely we assume that f 0 = 0 =)
else (f n) + siggma (n—1) £

let sum_integers2 (n:int):int = siggma n (fun x — x)

let sum_squares?2 (niint):int = siggma n (fun x — x*x)

18/38

A tour of some higher-order functions

Lists: applying a function to all elements in a list - preliminary

Another representation of the list 1 =[a_1;a_2;...; a_n]:

A\

a_2

.

a_n [

Graphic representation from Pierre Wiels and Xavier Leroy

19/38

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Given:
> alistoftype’a list
» afunction of type’a — b

Remark
» Application of £ does not depend on the position of the element
» map returns a list
» map can change the type of the list

Typing
If 1isoftypetl 1list and £ is of type t1—t2
thenmap £ 1isof type t2 1list

20/38

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Define a function map such that:

» given a list and a function £ on the elements of that list,

» returns the list where £ has been applied to all elements of that list

/N
/- e

A\
/

21/38

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Example (Vectorize)

» Specification:
» Profile: vectorize: Seq(Elt) — Vec(Seq(Elt)), where Vec is the set of lists of
one element
» Semantics:
vectorize [el;...;en] =[[el];...;[en]]

» Implementation:

let vectorize =my_map (fun e — [e])

Example (Concatenate to each)

» Specification:
> Profile: Seq(Elt) * Seq(Seq(Elt)) — Seq(Vec(Elt))
> Semantics:
concatenate_to_each (1, [vl;...;vn] =[1@vl;..;1Qvn]

» Implementation:

let concatenate_to_each
= fun (1,seqv) = my_map (fun x — 1@x) seqv

22/38

A tour of some higher-order functions

Lists: applying a function on all elements on a list - function map

Define the following functions:
» toSquare: raises all elements of a list of int to their square
» toAscii: returns the ASCII code of a list of char

» toUpperCase: returns a list of char where all elements have been put
to uppercase

Define the function powerset that computes the set of subsets of a set
represented by a list

23/38

A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_right - some intuition first

Example (Sum of the elements of a list)
let recsuml =
match 1 with
[1]—0

| eltiiremainder — elt + (sum remainder)

Example (Product of the elements of a list)
let rec product 1 =
match 1 with
[1]—1
| elt:iremainder — elt * (product remainder)

Example (Paste the string of a list)
let rec concatenate 1 =
match 1 with
[] —mon
| elt:iremainder — elt * (concatenate remainder)

Remark Notice that the only elements that change are:
» the “base case”, i.e., what the function should return on the empty list
» “how we combine the current element with the result of the recursive call
O

24/38

A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_right
If we place the operator in prefix position, we have:
» sum[al;a2;..;an] =+ al (+ a2 (... (+ an 0)...))
» product [al;a2;...;an] =% al (* a2 (... (* an 1)..))
» concatenate [al;a2;..;an]="al (*a2 (... (" an 0)...))
More generally, given:
» foftype’a —-"b — b,
» 1 oftype’a list, and
» some initial value b of type ’ b

/ \ a_1l f
a_l o
/ fold_right £1b /)
>

" A /\

— resultis of type ’ a

25/38

A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_right

Given
» foftype’a —'b — b, and
» 1 =[al;...;an] of type’ a list,
define a function fold_right s.t.

fold_right f[al;...;an] b = £ (al (... £ (an b)))

» Re-write the previously defined functions, sum, product,
concatenate using fold_right

» Define a function that determines whether the number of elements of a
list is a multiple of 3 without using the function returning the length of a
list

26/38

A tour of some higher-order functions
A small case-study with fold_right

The purpose is to write a test suite function
We have seen examples of test cases
A test suite is a series of test cases s.t.:

» each test case is applied in order
» for a test suite to succeed, all its test cases must succeed

Questions:

» Define a function test_suite that checks whether two functions £ and
g returns the same values on a list of inputs values. Each element of the
list is an input to the two functions.

» Here are two simple functions:

> let plusl = fun x — x+1
> let plusldummy = fun x — if (xmod2=0) thenx -2+ 3
else 2*x
Find 2 lists of inputs, so that the application of the function test_suite

1. finds the bug
2. does not find the bug

38

A tour of some higher-order functions
Lists: iterating a function on all elements on a list - function fold_left

More generally, given:
» foftype’a — b=’ a,
» loftype’ b list, and
» some initial value a of type ’ a:

f

/ \ b_n f
b_1 i
/ : fold left fal / \
T b_2 f

VAN VAN

b_n []
— result is of type ’ a

28/38

A tour of some higher-order functions

Lists: some function parameterized by a predicate

A predicate is a function that returns a Boolean

Recall the function that removes not even integers from a list of integers:

let rec remove_odd (1l:int list) =
match 1 with
[1—11
| elt:iremainder —
ifeltmod2=0
then elt:(remove_odd remainder)
else (remove_odd remainder)

29/38

A tour of some higher-order functions

Lists: some function parameterized by a predicate

Define a function £i1ter that filters the elements of a list according to some
given predicate p

» Define a function forall that checks whether all the elements of a list
satisfy a given predicate p

» Define a function exists that checks whether at least one element of a
list satisfy a given predicate p

30/38

A tour of some higher-order functions

Some more exercises

» Redefine the function test_suite using the function forall

» Redefine map using fold_left
» Redefine map using fold_right

Define the functions minimum and maximum of a list using fold_left and
fold_right. The function can be written with one line of code

31/38

Outline

Currying

About Currying

A function with n parameter x1,...,xn is actually a function that takes x1 as a
parameter and returns a function that takes x2,...,xn as parameters

The application

f x1 X2 ... xn

is actually a series of applications
f (... (£ x1) x2) ...) xn)

Applying a function with n parameters with (strictly) less than n parameters
The result of a partial application remains a function

Typing:
If
» fisoftypetl - t2 — ... > tn — t, and
» xiisoftype tiforie[1,j]C[1,n]
Then £ x1 %2 ... xjisof type t(j+1) - ... > tn —> ¢t

32/38

About Currying

Some example

Example (Apply twice)
Back to the function applyTwice:

let applyTwice (f:int — int) (x:int):int
=f (f x)

Applying applyTwice with only one argument:
applyTwice (fun x — x +4)
is equal to the function

funx - x+8

DEMO: applyTwice and its testing

33/38

Currying has some advantages

Suppose we want a function taking a € Aand b € B and returning c € C
Without currying: : With currying:
fitA > tB— tC
fitA % tB — tC
f takes 2 arguments

fabisoftype tcC
faisoftype tB — tC

£ takes 1 argument: a pair
f (a,b) is of type tC

Lessons learned

» Currying allows some flexibility
» Allows to specialize functions

When applying curried functions, it can be harder to detect that we
have forgot a parameter

34/38

Another way to learn the concepts of currying

www.ffconsultancy.com/ocaml/benefits/functional.html

A function of many arguments can be written as a function that accepts one
argument and returns a function to consume the remaining arguments. This
transformation is known as currying.

In OCaml, functions of many arguments are conventionally written in curried
form. This is a stype of written functions.

35/38

Another way to learn the concepts of currying

www.ffconsultancy.com/ocaml/benefits/functional.html

Example: Raise a floating point number x to an integer power n could accept
its arguments simultaneously as a 2-tuple (n, x):

let rec pow(n, x) =
if n=0 then 1. else x *. pow(n—1, x);;
val pow :int * float =+ float = <fun>

When written in curried form, this function accepts n and returns a function to
raise the given x to the power n:

let rec pow(n)(x) =
if n=0 then 1. else x *. pow(n—1)(x);;
val pow :int =+ float — float = <fun>

For example, to create a function to cube a given number by applying only
the first argument n=3:

let cube = pow(3);;

val cube ! float = float =<fun>
cube 2.;;

— :float =8.

36/38

Another way to learn the concepts of currying

Another example: define a plus function:

#let plusabs=
a+b;;
val plus :int = int = int = <fun>

What is plus 27

#plus 2;;
— int — int = <fun>

This isn’t an error. It’'s telling us that plus 2 is in fact a function, which takes an
int and returns an int.

We experiment by first of all giving this mysterious function a name (f), and
then trying it out on a few integers to see what it does:

#let f =plus 2;;

val £ :int — int =<fun>
#£10;;

—1int =12

£15;;

—1int =17

38

Conclusion / Summary

Polymorphism

» general types
» "type parameterization”

Higher-Order

» "taking a function as a parameter or returning a function"
> improve conciseness, expressiveness, quality,. . .

Currying

» partial application of a function
» function specialization
» define your function so it can be curried

38/38

	Polymorphism
	Higher-Order
	Currying

