# INF231: <br> Functional Algorithmic and Programming 

Lecture 4: Recursion

Academic Year 2019-2020


## In the previous episodes of INF 121

- Basic Types:

| Type | Operations | Constants |
| :---: | :---: | :---: |
| Booleans Integers floats char | $\begin{gathered} \text { not, \&\&, । } \\ +,-, *, /, \bmod , \ldots \\ +.,-,, * ., / . \end{gathered}$ <br> lowercase, code, ... |  |

- if ... then ... else ... conditional structure
- identifiers (local and global)
- defining and using functions
- Advanced types: synonym, enumerated, product, union
- Pattern matching on simple and advanced expressions - match...with


## About recursion

What is recursion/a recursive definition?

Example (Some recursive objects)


La vache qui rit is a trademark

$u_{n}, u_{n+1} \ldots$
Fibonacci


Images under Creative Common License

Recursive functions generalize recursive series

Largely used in Computer Science
$\hookrightarrow$ a computer is a zoo of interacting recursive functions

## Outline

Recursive functions

Termination

Recursive types

Conclusion

## Recursive functions in OCaml

## An introductory example

Example (Factorial)
$\begin{cases}3!=1 & =3 \times(3-1)!=3 \times 2! \\ n!=n \times(n-1)!, n \geq 1 & \\ & =3 \times 2 \times(2-1)!=3 \times 2 \times(2-1)! \\ & =3 \times 2 \times 1 \times(1-1)!=3 \times 2 \times 1 \times 0!=\ldots=6\end{cases}$

- This definition is sensible, it allows to obtain a result for all integers: well-founded (changing the - into + in the $2^{\text {nd }}$ line makes the def not well-founded)

How can we detect whether a function or a program is well-founded?
Example (Defining factorial in OCaml)

```
let rec fact ( n :int):int \(=\)
    if \(n=0\) then 1
    else \(\mathrm{n} *\) fact \((\mathrm{n}-1)\)
```

```
let rec fact(n:int):int =
    match n with
    0}->
    | n m n* fact(n-1)
```


## Defining a recursive function

Specification: description, signature, examples, and recursive equations
Implementation: defining a recursive function in OCaml
let rec fct_name (p1:t1) (p2:t2) ... (pn:tn):t = expr
where expr generally contains one or more occurrences of fct_name s.t.:

- Basis case: no call to the function currently defined
- Recursive calls to the currently defined function (with different parameters)

Typing works as for non-recursive functions

## Remark

- $\mathrm{t} 1, . ., \mathrm{tn}$ can be any type (not necessarily integers) - cf. later
- A recursive function cannot be anonymous


## Defining some recursive functions

Example (Sum of integers from 0 to $n$ ) description + profile + examples

$$
\left\{\begin{array}{l}
u_{0}=0 \\
u_{n}=n+u_{n-1} \quad \text { when } 0<n
\end{array}\right.
$$

$$
\begin{aligned}
& \text { let rec sum }(\mathrm{n}: \text { int }): \text { int }= \\
& \text { match } \mathrm{n} \text { with } \\
& \mid 0 \rightarrow 0 \\
& \mid n \rightarrow n+\operatorname{sum}(n-1)
\end{aligned}
$$

Example (Quotient of the Euclidian division) description + profile + examples

$$
a / b=\left\{\begin{array}{lll}
0 & \text { when } a<b & \text { let rec div }(a: \text { int })(b: \text { int }): \text { int }= \\
1+(a-b) / b & \text { when } b \leq a & \text { if }<b \text { then } 0
\end{array}\right.
$$

## Calling a recursive function

"Unfolding the function body" - rewriting

## Example (Factorial and Fibonacci's call trees)



- $\longrightarrow$ : rewriting generated calls and suspending operations
$-\rightarrow-$ : evaluation (in the reverse order) of suspended operations
In OCaml: directive \#trace


## Let's practice

## Exercise: remainder of the Euclidean division

Define a function which computes the remainder of the Euclidean division

## Exercise: The Fibonacci series

Implement a function which returns the $n^{\text {th }}$ Fibonacci number where $n$ is given as a parameter. Formally the Fibonacci series is defined as follows:

$$
\mathrm{fib}_{n}= \begin{cases}1 & \text { when } n=0 \text { or } n=1 \\ \text { fib }_{n-1}+f i b_{n-2} & \text { when } n>1\end{cases}
$$

## Let's practice

Exercise: the power function (two ways)

$$
\left\{\begin{array} { l } 
{ x ^ { 0 } = 1 } \\
{ x ^ { n } = x * x ^ { n - 1 } \quad \text { when } 0 < n }
\end{array} \quad \left\{\begin{array}{ll}
x^{0} & =1 \\
x^{n} & =(x * x)^{n / 2} \quad \text { when } n \text { is even } \\
x^{n} & =x *(x * x)^{\frac{n-1}{2}} \quad \text { when } n \text { is odd }
\end{array}\right.\right.
$$

- Define function power: float $\rightarrow$ int $\rightarrow$ float twice following the two equivalent mathematical definitions
- What is the difference between those two versions?

```
let rec pow (x:float) (n:int):
    float =
    if ( }\textrm{n}=0)\mathrm{ then 1.
    elsex*.(pow x n-1)
```

```
let rec pow (x:float) (n:int):float =
if (n=0) then 1.
else(
    if (n mod 2=0) then (pow (x*.x) (n/2)
    else x*. (pow (x*.x) ((n-1)/2))
)
```


## The Hanoi towers

A word about Divide and Conquer - the French mathematician Édouard Lucas in 1883

https:
//www.geeksforgeeks.org/c-program-for-tower-of-hanoi

https://www.youtube.com/watch?v=fffbT41IuB4

## Mutually recursive functions

On an example
So far "direct" recursion: a function fct contains calls to itself What about a function $f$ which calls $g$ which calls $f$ $\hookrightarrow$ mutually recursive functions

Example (Is a number odd or even)
How to determine whether an integer is odd or even without using $/$, *, mod,and, more specifically using - and $=$ ?

- $n \in \mathbb{N}$ is odd if $n-1$ is even
- $n \in \mathbb{N}$ is even if $n-1$ is odd
- 0 is even
- 0 is not odd

```
let rec even (n:int):bool = if n=0 then true else odd (n-1)
    and odd (m:int):bool = if m=0 then false else even (m-1)
```


## Mutually recursive functions

Generalization

Mutually recursive functions

```
let rec fct1 [parameters+return type] = expr_1
    and fct2[parameters+return type] = expr_2
    and fctn[parameters+return type] = expr_n
```

expr_1, expr_2, ..., expr_n may have calls to fct1, fct $2, \ldots$, fctn

## Outline

## Recursive functions

Termination

## Recursive types

## Conclusion

## Termination

Do you think this function terminates (the McCarthy function)?

$$
\operatorname{mac}(n)= \begin{cases}n-10 & \text { when } n>100 \\ \operatorname{mac}(\operatorname{mac}(n+11)) & \text { when } n \leq 100\end{cases}
$$

What about these ones?

$$
\begin{array}{cl}
\text { The power function } & \text { Ine factorial function } \\
\begin{cases}x^{0} & =1 \\
x^{n} & =x * x^{n-1} \quad \text { when } 0<n\end{cases} & \begin{cases}\operatorname{fact}(0) & 1 \\
\operatorname{fact}(1) & =1 \\
\operatorname{fact}(n) & =\frac{\operatorname{fact}(n+1)}{n+1}\end{cases}
\end{array}
$$

We are only interested in terminating functions...

Can we have an intuitive characterization of termination w.r.t. the calling tree?

## How can we prove that a recursive function terminate?

## Theorem

Every series of positive numbers which is strictly decreasing is converging
General methodology to show a function is terminating
From the def. of the function and its parameters, derive a measurement s.t.:

- it is positive
- the measurement strictly decreases between two recursive calls
$\hookrightarrow$ each recursive call "brings us closer to the base case"
Example (Termination of the function sum)
let rec sum ( n : int) : int $=$ Measurement:

$$
\begin{aligned}
& \text { match n with } \\
& \begin{array}{ll}
\mid 0 \rightarrow 0 & \text { Let's define } \mathcal{M}(n)=n \\
\mid n \rightarrow \mathrm{n}+\operatorname{sum}(\mathrm{n}-1) & \bullet \mathcal{M}(n) \in \mathbb{N}(\text { according to the spec }) \\
& \bullet \mathcal{M}(n)>\mathcal{M}(n-1) \text { since } n>n-1
\end{array}
\end{aligned}
$$

## Termination of some functions

## Exercise: finding measurements

Revisit the functions factorial, power, quotient, remainder and find the measurement proving that your function terminates

## Outline

## Recursive functions

## Termination

Recursive types

Conclusion

## Recursive types

Recursive functions are functions that appear in their own definition
Recursive types are types that appear in their own definition
General syntax: type new_type $=\ldots$ new_type...
Recursive types should be well-founded
They make sense only for Union type with a non recursive constructor (constant or not)

```
DEMO: (not) Well-founded types
```

DEMO: Metaphor of building a wall

Definition of a recursive function on a recursive type should follow the recursive type

## A recursive type: Peano natural numbers

Peano natural numbers NatPeano: an alternative definition of $\mathbb{N}$
Recursive definition of NatPeano:

- a basis natural Zero
- a constructor: Suc: returns the successor of a NatPeano number
- Zero is the successor of no NatPeano number
- two NatPeano numbers having the same successor are equal
$\hookrightarrow \mathbb{N}$ can be defined as the set containing Zero and the successor of any element it contains


Defining NatPeano in OCaml:

$$
\text { type natPeano }=\text { Zero } \mid \text { Suc of natPeano }
$$

$\hookrightarrow$ natPeano is a recursive sum type

## Peano natural numbers

Conversion to and from integers
Example (Converting a Peano natural number into an integer)

- Description: natPeano2int translates a Peano number into its usual counterpart in the set of integers
- Profile/Signature: natPeano2int: natPeano $\rightarrow$ int
- Ex.: natPeano2int Zero $=0$, natPeano2int Suc(Suc(Suc Zero))=3
let rec natPeano2int (n:natPeano):int = match n with

Zero $\rightarrow 0$
$\mid$ Suc (nprime) $\rightarrow 1+$ natPeano2int nprime
Example (Converting an integer into a Peano number)
Same as above but in the converse sense:

```
let rec int2natPeano (n:int):natPeano=
    match n with
    \(0 \rightarrow\) Zero
    | nprime \(\rightarrow\) Suc (int2natPeano ( \(\mathrm{n}-1\) ) )
```


## Peano natural numbers

## Exercise: sum of two Peano numbers

- Define the function that sums two Peano numbers without using the conversion from/to int
- Prove that your function terminates


## Exercise: product of two Peano numbers

- Define the function that multiplies two Peano numbers
- Prove that your function terminates


## Exercise: factorial of a Peano number

- Define the function that computes the factorial of a Peano number
- Prove that your function terminates


## A recursive type: polynomials of 1 variable

A polynomial of one variable (a sum of monomials):

$$
\alpha_{n} X^{n}+\alpha_{n-1} X^{n-1}+\ldots+\alpha_{1} X^{1}+\alpha_{0}
$$

Let's see it as a recursive object: a polynomial is either a monomial or the sum of monomial and another polynomial

Model 1:

```
type coef = int
type degree = int
type monomial = coef * degree
type polynomial = Mn of monomial
    |Plus of monomial * polynomial
```


## A recursive type: polynomials of 1 variable - ctd

## Model 2:

- with canonical representation
- no monomial with null coefficient

```
type polynomial = Zero|Plus of monomial * polynomial
let well_formed (p:polynomial):bool = ...
(* checks order of coef + no null coeff *)
```


## Exercise: Some functions around polynomials

- Define a function that checks whether a polynomial is well-formed, by:
- checking that there is no null coefficient
- degrees are given in decreasing order
- Degree max: Propose a new implementation of the function degree max supposing that a polynomial is well-formed
- Addition of two polynomials:
- Define a function that performs the addition between a polynomial and a monomial
- Define a function that performs the addition between two polynomials


## Conclusion

## Recusion: a fundamental notion

There are two forms of recursion in computer science:

- recursive functions
- recursive equations
- termination
- definition = spec (description, profile, recursive equations, examples) + implem + terminations
- pitfalls
- Recursive types/values/objects
- definition
- Recursive functions on recursive types

