INF231:
 Functional Algorithmic and Programming

Lecture 3: Advanced types

Academic Year 2019-2020

Defining a type

The general form

$$
\text { typet }=\ldots \text { (* possibly with constraints *) }
$$

Now we are going to see how we can define some more complex types using existing types...

Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Defining a synonym type

Motivations:

- context-specific types
- easier to remember
- re-use

General syntax:

```
type new_type = existing_type
    (* possibly with informative usage constraints *)
```


Example (Soldes)

- type price = float (* > 0 *)
- type rate = int (* 0, ..., 99 *)
- Defining a function to reduce prices:
- Description: reducedPrice (p, r) is the price p reduced by $r \%$
- Profile: reducedPrice: price $*$ rate \rightarrow price
- Examples: reducedPrice $(100 ., 25)=75$.
(note that it is more meaningful than the "anonymous signature" reducedPrice: float * int \rightarrow float)

Do to Understand

Example (Soldes)

- type price = float (* > 0 *)
- type rate = int (* 0, ..., 99 *)
- Defining a function to reduce prices:
- Description: reducedPrice(p, r) is the price p reduced by $r \%$
- Profile: reducedPrice: price * rate \rightarrow price
- Examples: reducedPrice $(100 ., 25)=75$.
(note that it is more meaningful than the "anonymous signature" reducedPrice: float * int \rightarrow float)
- Defining a function to reduce by $\mathbf{1 0 \%}$ if she/he is a member of the shop? isMemberPrice (p:price) (m:member):price=...

Do to Understand

Example (Persons)

- Defining a person type which includes name and date. In which:
- name type comprises first and last,
- date type comprises month, day and year.

Example (Students)

- Defining a student type which includes name, date, university, field, and mean. In which:
- name type comprises first and last,
- date type comprises month, day and year,
- university type is the name of the university,
- field type is the field that she/he studying,
- mean type is the average of grades of subjects.

Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Enumerated types

Motivation: How can we model/define/use:

- the family of a card? $\{\boldsymbol{\omega}, \diamond, \diamond, \boldsymbol{\phi}\}$
- the color of a card? \{black, white\}

From a mathematical point of view: sets defined extensively
\hookrightarrow i.e., by an explicit enumeration
Defining an enumerated type in OCaml:
type new_type = Value_1 | Value_2 | ... |Value_n

Remark

- Capital letters are mandatory
- new_type is said to be an enumerated type
- Value_1, ..., Value_n are said to be symbolic constants
- Value_1, ..., Value_n are of type new_type
- Implicit order between constants (consequence of the definition)

Enumerated types: Some examples

Painting / Modelling a card game
Example (Some paint colors)
type paint =
| Red
| Blue
| Yellow
Example (Types of a Card game)
type family $=$ Spade | Heart
| Diamond|Club
DEMO: types of card game
type color=White | Black
Example (Color of a family)
Returning the color associated to a family card

- Description: colorFamily returns the family of a given card.
- Heart and Diamond are associated to White
- Spade and Club are associated to Black
- Signature: colorFamily: family \rightarrow color
- Examples: colorFamily Spade = Black, ...

Do to Understand

Example (Days of week)

type dayOfWeek =
| Monday
| Tuesday
| ...

Example (Months of year)

```
type monthOfYear =
    | January
    | February
    | ...
```


Example (Years)

type years =
| 2015
| 2016
| ...

Example (Today)

type today = dayOfWeek, monthOfYear, years

Back to the language constructs: pattern-matching

Your best friend

One of the most powerful feature of OCaml (and functional languages)
Pattern-matching: computation by case analysis Specified by the following syntax:

```
match expression with
    | pattern_1 }->\mathrm{ expression_1
    | pattern_2 }->\mathrm{ expression_2
    | pattern_n }->\mathrm{ expression_n
```

Meaning:

- expression is matched against the patterns, i.e., its value is evaluated and then compared to the patterns in order \hookrightarrow "matching" depends on the type of expression!
- the expression associated to the first matching pattern is returned

Remark

- First vertical bar is optional
- may use _ as a wild-card (should be the last pattern)

(Pattern) Matching on an example

The card game

Example (colorFamily using if...then...else)

```
let colorFamily (f:family):color=
    if (f=Spade || f= Club) then Black
    else(* necessarily f = Heart || f = Diamond *)
        White
```

Example (colorFamily using pattern-matching)
let colorFamily (f:family):color = match f with
\mid Spade \rightarrow Black
| Club \rightarrow Black
\mid Heart \rightarrow White
| Diamond \rightarrow White

(Pattern) Matching on an example

The card game with more concise pattern-matching
Example (colorFamily using a more concise pattern-matching)
let colorFamily (f:family):color $=$
match f with
Spade | Club \rightarrow Black
\mid Heart \mid Diamond \rightarrow White
Example (colorFamily using an even more concise pattern-matching)

```
let colorFamily(f:family):color =
    match f with
        Spade| Club }->\mathrm{ Black
        |_ -> White
```

Example (colorFamily using an even even more concise pattern-matching)

```
let colorFamily = function| Spade| Club }->\mathrm{ Black
    |_ }->\mathrm{ White
```


Pattern-matching for enumerated types

To the enumerated type
type newtype = Value_1 | Value_2 $|. .$.$| Value_n$
is associated the pattern matching

```
match expression with (* expression is of type newtype *)
    | Value_1 }->\mathrm{ expression_1
    Value_2 }->\mathrm{ expression_2
    Value_n -> expression_n
```

Rules

- Pattern-matching "follows" the definition of the type (not necessarily with the same order)
- expression_i for $i \in\{1, \ldots, n\}$ should be of the same type
- Should be exhaustive (or use the wild-card symbol _)

```
match expression with
    | Value_1 }->\mathrm{ expression_1
    | _ m expression
```


Let's practice enumerated types

Exercise

- Define the enumerated type month which represents the twelve months of the year
- Define the function nb_of_days: month \rightarrow int which associates to each month its number of days

Matching (also) works (more or less) with (some) predefined types
Pattern-matching is a generalization of the if...then...else...
\hookrightarrow works with existing/predefined types: int, bool, float, char, string
Example (Is an integer an even number?)
let is_even (n:int): bool = match n with

```
\(\mid 0 \rightarrow\) true
\(\mid 1 \rightarrow\) false
| \(2 \rightarrow\) true
\(\mid \mathrm{n} \rightarrow\) if \(\mathrm{n} \bmod 2=0\) then true else false
```

Example (Is a character in upper case?)
let is_uppercase (c:char) = match cwith

$$
\text { 'A' } \rightarrow \text { true }
$$

$$
\left.\right|^{\prime} \text { '' } \rightarrow \text { true }
$$

$$
\text { |...(* } 23 \text { conditions *) }
$$

$$
\left.\right|^{\prime} z^{\prime} \rightarrow \text { true }
$$

$$
\mathrm{c} \rightarrow \mathrm{false}
$$

Example (Matching with floats is dangerous)

```
match 4.3-. 1.2 with
```

$3.1 \rightarrow$ true

- \rightarrow false
\rightsquigarrow returns false

Some shortcuts with pattern-matching

For enumerated types

"Disjuncting equivalent patterns":
match something with

\cdots	match something with
$\mid \mathrm{p} 1 \rightarrow \mathrm{v}$	\ldots
$\mathrm{p} 2 \rightarrow \mathrm{v}$	can be shortened into
\ldots	$\|\mathrm{p} 1\| \mathrm{p} 2 \mid \mathrm{pm} \rightarrow \mathrm{v}$
$\mid \mathrm{pm} \rightarrow \mathrm{v}$	\ldots.

Example ("Disjuncting equivalent patterns")

```
let is_uppercase (c:char) = match c with
    'A'|'B' | 'C' | 'D' | 'E' | 'F' |'G' | 'H' | 'I' | 'J' | 'K' | 'L' | 'M'
    | 'N'| 'O' | 'P' | 'R' | 'S' | 'T' | 'U' | 'V' | 'W' | 'X' | 'Y' |'Z' -> true
    | c }->\mathrm{ false
```


Some shortcuts with pattern-matching - ctd

For characters

"Leveraging the order between characters":

```
match something with
```

match something with
| $\mathrm{p} 1 . . \mathrm{pm} \rightarrow \mathrm{v}$
$\mid \mathrm{p} 1 \rightarrow \mathrm{v}$
$\mid \mathrm{p} 2 \rightarrow \mathrm{v} \quad \rightsquigarrow$
match something with
match something with
| pm .. p1 -> v
| pm .. p1 -> v
where $\mathrm{p} 1, . ., \mathrm{pm}$ are consecutive characters and p 1 and pm are the minimal and the maximal characters (not necessarily in this order)
Example ("Leveraging the order between the elements of characters")

```
let is_uppercase (c:char)
        = match cwith
    'A' .. 'z' \(\rightarrow\) true
    \(\mid c \rightarrow\) false
```

```
let is_uppercase (c:char)
```

let is_uppercase (c:char)
= match cwith
= match cwith
'Z'.. 'A' \rightarrow true
'Z'.. 'A' \rightarrow true
$\mid c \rightarrow$ false

```
    \(\mid c \rightarrow\) false
```


Outline

Synonym types

Enumerated types

Product types

Union/Sum types

Case study: Modelling 4 card games

Product type: motivating example(s) and connection with maths
Example (Some complex numbers) How can we model complex numbers?
In maths, we define:

$$
\mathbb{C}=\{a+i b \mid a \in \mathbb{R}, b \in \mathbb{R}\}
$$

\mathbf{z}	\mathbf{a}	\mathbf{b}
$3.0+i * 2.5$	3.0	2.5
$12.0+i * 1.5$	12.0	1.5
$(1.0+i) *(1.0-i)$		

Actually, we could also define:

$$
\mathbb{C}=\mathbb{R} \times \mathbb{R}
$$

The operation \times is the Cartesian product of sets

Example (Defining card)

Same reasoning can be followed if we want to define the type of a card. . .

(Cartesian) Product (of) type

We can build Cartesian product of types, i.e., pairs of object of different types:

Defining new product types:
type new_type = existing_type1 *existing_type2

Two basic operations on pairs:

- fst $\left(\bullet_{1}, \bullet_{2}\right)=\bullet_{1}$
- $\operatorname{snd}\left(\bullet_{1}, \bullet_{2}\right)=\bullet_{2}$

Deconstruction on pairs (hidden pattern matching):

$$
\text { let }(\mathrm{x} 1, \mathrm{x} 2)=(\mathrm{v} 1, \mathrm{v} 2) \text { in expression_using_x1_and_x2 }
$$

\hookrightarrow defines the identifiers x1 and x2 locally

General Cartesian product of types

Same principle

Can be generalized to n-tuples:

- type definition/constrcution:
let my_type $=$ type $1 *$ type $2 * \ldots *$ typen
- value construction: v1,v2,..,vn
- value deconstruction:

$$
\begin{gathered}
\text { let }(x 1, \ldots, x n)=(v 1, \ldots, v n) \text { in expression } \\
(* \text { expression is depending on } x 1, \ldots, x n *)
\end{gathered}
$$

Let's practice product type

Exercise: Getting familiar with tuples

- Define the type pair_of_int which implements pairs of integers
- Define the function swap which swaps the integers in a pair_of_int
- Implement a function my_fst which behaves as the predefined function fst on pairs_of_int

Exercise on Complex numbers

- Define the type complex which corresponds to complex numbers
- Define function real_part of type complex \rightarrow float which returns the real part of a complex number
- Define function im_part of type complex \rightarrow float which returns the imaginary part of a complex number
- Define function conjugation: complex \rightarrow complex Remainder: the conjugation of $a+b . i$ is $a-b . i$

Let's practice more

Exercise on vectors

- Define the type vect which corresponds to vectors in the plane
- Define the function sum : vect \rightarrow vect \rightarrow vect which performs the sum of two vectors
- What is the type of the function which implements the scalar product?
- Implement a function which performs the scalar product of two vectors Remainder: scalar product of two vectors $\vec{u}, \vec{v}:\|\vec{u}\| \cdot\|\vec{v}\| \cdot \cos (\vec{u}, \vec{v})$ with $\cos (\vec{u}, \vec{v})=\frac{u_{x} \cdot v_{x}+u_{y} \cdot v_{y}}{\|\vec{u}\| \cdot\|\vec{v}\|}$
- A vector can represent the position of a point in the plane. The rotation of angle θ of a point of coordinates (x, y) around the origin is expressed by the formula:

$$
\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \cdot\binom{x}{y}
$$

Implement the function rotation: float \rightarrow vect \rightarrow vect such that rotation angle v makes the vector designated by v rotating of an angle angle

Outline

Synonym types
Enumerated types
Product types
Union/Sum types

Case study: Modelling 4 card games

Motivating union types

Mixing carrots and cabbage
... in the context of OCaml type system

Some concepts that we cannot model yet:

- How to build a type figure which can represent circles, triangles, quadrilaterals?
- How to build a type which allows to represent a full color palette ?

- How to build a card game which can represent various games?

Back to the paint

Introducing Union types through an example

Type definition	Filtering
type paint $=$	let is_blue (p:paint):bool=
Blue	match pwith
\mid Yellow	\mid Blue \rightarrow true
\mid Red	\mid Yellow \rightarrow false
	\mid Red \rightarrow false

Remark The type paint contains three constant constructors

How can we add to the set of paints, some new paints that do not have a name, but only reference number?

Back to the paint

Introducing Union types through an example

Type definition	Filtering
type paint $=$	let is_blue (p:paint) : bool $=$
\| Blue	matchpwith
\|Yellow	\| Blue \rightarrow true
\| Red	\|Yellow \rightarrow false
\| Number of int	\| Red \rightarrow false
	\| Numberi \rightarrow false

Remark

- Type paint has 3 constant constructors and one non constant constructor.
- Number 14 represents the paint numbered 14 (in an imaginary catalogue)

Back to the paint

Introducing Union types through an example

Type definition	Filtering
type paint $=$	let is_blue (p:paint):bool =
\| Blue	match pwith
\| Yellow	\| Blue \rightarrow true
\| Red	\| Yellow \rightarrow false
$(*$ palette RGB *)	\|Red \rightarrow false
\| RGB of int $*$ int $*$ int	\|RGB $(r, g, b) \rightarrow r=0 \& \& g=0 \& \& b=255$

- Type paint has three constant constructors and one non-constant constructors
- RGB $(255,0,0)$ corresponds to red
- RGB(255,255,0) corresponds to yellow
- ...

Union types (aka union type, tagged union, algebraic data types)

The general form

Syntax of union types:
type new_type =
| Identifier_1 of type_1
| Identifier_2 of type_2
| Identifier_n of type_n
Note that:

- Identifier_i, $i \in[1, n]$, is an explicit name called a constructor
- the definition "of type_i" is optional
- type_i, $i \in[1, n]$, can be any (existing) type
- Constructor name must be capitalized

Expression Declaration (of some type t):
let expression = Identifier v
(if Identifier of $t t$ is a constructor of type t and v is a value of type $t t$)

Remark

- Union types are a generalization of enumerated types

An example: Generalization of int and float

Having two different sets of operations for int and float is sometimes annoying

Let's define Numbers $=\mathbb{R} \cup \mathbb{N}$

$$
\text { type numbers }=\text { INTEGER of int } \mid \text { REAL of float }
$$

(INTEGER, REAL sont des contructeurs de type)

Let's define additions on two numbers:

```
let add ((nb1,nb2): number*number) : number= match (nb1,nb2) with
    \(\mid(\operatorname{INTEGER}(\mathrm{n} 1)\), INTEGER(n2)) \(\rightarrow\) INTEGER(n1 + n2)
    | (INTEGER(n), REAL(r)) \(\rightarrow \operatorname{REAL}\left(\left(f l o a t \_o f \_i n t n\right)+r\right)\)
    \(\mid(\operatorname{REAL}(r)\), INTEGER(n)) \(\rightarrow\) REAL( (float_of_int n) +. r)
    \(\mid(\operatorname{REAL}(r 1), \operatorname{REAL}(r 2)) \rightarrow \operatorname{REAL}(r 1+. r 2)\)
```

Remark Has some advantages and disadvantages

Another example: Geometry

Type definition

```
    type pt = float * float
type figure=
    | Rectangle of pt * pt
    | Circle of pt * float
    | Triangle of pt * pt * pt
```

let $\mathrm{p} 1=1.0,2.0$ and $\mathrm{p} 2=3.9,2.7$ in Rectangle $(\mathrm{p} 1, \mathrm{p} 2)$
let $\mathrm{p} 1=(1.3,2.9)$ in Circle $(\mathrm{p} 1,3.6)$
let perimeter(f:figure) : float =
match f with
| Rectangle ($\mathrm{p} 1,2$) $\rightarrow \ldots$
| Circle (_, r) \rightarrow...
| Triangle (p1, p2, p3) $\rightarrow \ldots$

Exercise

- Define the function distance: pt \rightarrow pt \rightarrow float
- The area of any triangle of edges a, b, c is computed using the Héron formula:

$$
A=\sqrt{s \cdot(s-a) \cdot(s-b) \cdot(s-c)} \quad \text { with } \quad s=\frac{1}{2} \cdot(a+b+c)
$$

Define the function area: figure \rightarrow float

Remark: distinguish constructors and unary functions

Constructors and unary functions takes a value of some type and return another value of some other type

A function:

- performs a computation
- cannot be used in pattern matching: the value of all functions is <fun>

A type constructor:

- constructs a value
- can be used in a pattern-matching

Remark: Difference between union and sum

There is actually a slight difference between union and sum

Consider two sets E and F :

"everything is merged/mixed" "elements are decorated" and then merged

Second solution is less ambiguous and then preferred by computers

Card Game

Your choice

Playing cards:

Images from Wikipedia, Licence CC

Conclusion

Summary:

- Richer types:

Type	Why?
synonym types	informative type names
enumerated types	Finite set of constants
product types	Cartesian product
sum types	Set Union

- Using filtering and pattern matching to define more complex functions (for each of these types)

Exercise

Find a (personal) example of objects that can be naturally modelled as a union type. Propose/Invent a function using this type.

Union types - A review...

Example (https://caml.inria.fr/pub/docs/fpcl/fpcl-06.pdf):
A type called identification, values can be:

- either strings (name of an individual),
- or integers (encoding of social security number as a pair of integers)

We need a type containing both int * int and strings.
We define identification type:
type identification = Name of string | SS of int * int;;
let id1 = Name "Jean";;

- id1 :identification = Name "Jean"
let id2 = SS (1670728,280305);;
- id2 : identification $=$ SS $(1670728,280305)$

Values id1 and id2 belong to the same type. They may for example be put into lists as in:
[id1;id2];;

- - :identification list = [Name "Jean"; SS (1670728, 280305)]

