INF231:
Functional Algorithmic and Programming
Lecture 2: Identifiers and functions

Academic Year 2019-2020

Identifiers

A fundamental concept of programming languages: associating a value to a name (an identifier)

Remark "Close" to the notion of variable but has fundamental differences!
Some rules when defining identifiers:

- Maximal length: 256 characters
- Must begin with a non-capital letter
- No blanks
- Case-sensitive
- Should have a meaningful name

Example (Identifiers (valid and unvalid))

- speed
- Speed x
- average speed x
- average_speed
- S
- $3 m x$
- temporary3

A review...

Maximum of n integers

- Define the function my_max returning the maximum of two integers
- Define the function my_max 3 returning the maximum of three integers
- Define the function my_max 4 returning the maximum of four integers

A review...

Maximum of n integers - second style

- Define the function my_max returning the maximum of two integers
- Define the function my_max3 returning the maximum of three integers: reuse my_max
- Define the function my_max 4 returning the maximum of four integers: my_max 3

Identifiers: Global definition

Syntax of a global definition

$$
\text { let identifier }=\text { expression }
$$

\hookrightarrow the value of expression is bound/linked to identifier
Type of the identifier is the type of the evaluated expression
Definition is global: it can be used

- in other definitions
- in the rest of the program

Simultaneous definitions:

```
let ident1 = expr1
and ident2 = expr2
and identn = exprn
```


Example

- let $x=1$
- let $i=1$

DEMO: global definitions

- let $y=2$
- let $i=1+1$

Identifiers: Local definition

Example (Motivating example)
How to compute $\mathrm{e}=(2 * 3 * 4) *(2 * 3 * 4)+(2 * 3 * 4)+2$?
\hookrightarrow prod= $(2 * 3 * 4)$
$\hookrightarrow e=\operatorname{prod} * \operatorname{prod}+\operatorname{prod}+2$
\hookrightarrow prod is local to e
Syntax of a local definition:
let identifier = expression1 in expression2
\hookrightarrow the value of expression1 is permanently bound/linked to identifier (only) when evaluating expression2

Can be nested:

$$
\begin{aligned}
& \text { let id1=expr1 in } \\
& \text { let id2=expr2 in }
\end{aligned}
$$

$$
\text { let } i d n=\operatorname{exprn} \ldots \text { in expr }
$$

Works with simultaneous definitions:

```
let id1=expr1
    and id2=expr2
    and idn = exprn ... in expr
```

DEMO: local definitions

Functions

So far, we have considered:

- expressions
- pre-defined operators

Defining our own functions: a piece of code with a specific job
Motivations:

- code readability
- its job can be more elaborated than the job of pre-defined functions
- being able to execute this code from several locations

Functions in functional languages

- No side-effect (contrarily to C) - (No modifies some state outside its scope, have not an observable interaction with its calling functions)
- Close to mathematical functions
- First-class objects: they are values \Rightarrow they have a type

Functions: functions with one argument

On an example
Example (Absolute value from a mathematical/abstract point of view)

$$
\begin{array}{ll}
\mathbb{Z} & \rightarrow \mathbb{N} \\
a & \mapsto
\end{array} \text { if } a<0 \text { then }-a \text { else } a
$$

Example (Absolute value in OCaml)

	fun $a \rightarrow$ if $a<0$ then $-a$ else a
or function $a \rightarrow$ if $a<0$ then $-a$ else a	
or fun/function (a:int) \rightarrow if $a<0$ then $-a$ else a	

keyword formal param. keyword function's body

Analysis:

Remark This function is anonymous, i.e., it does not have a name

Functions

How to define them

Naming a function allows to reuse it

Example (Defining the function absolute value)

$$
\begin{aligned}
& \text { let abs = fun }(a: i n t) \rightarrow \text { if } a<0 \text { then }-a \text { else } a \\
& \text { or let } a b s a=\text { if } a<0 \text { then }-a \text { else a } \\
& \text { or let abs (a:int) }=\text { if } a<0 \text { then -a else a } \\
& \text { or let abs (a:int):int }=\text { if } a<0 \text { then }-a \text { else a }
\end{aligned}
$$

Define the function square: int \rightarrow int

Functions

How to use them

As in mathematics, the result of applying f to x is $f(x)$

Example

- abs(2)
- abs(2-3)
- abs 2 (parenthesis can be omitted)

Application of a function
expr1 expr2

Typing: if $\left.\quad \begin{array}{l}\text { expr1 has type } t 1->\text { t2 } \\ \text { expr2 has type } t 1\end{array}\right\}$ then expr1 expr2 has type $t 2$

Functions: Generalization to functions with several arguments

Example (Surface area of a rectangle)

- Needs 2 parameters: length and width (floats)
- definition:

```
let surface (x:float) (y:float):float = x *. y
let surface (length:float) (width:float):float = length *.
width
```

- usage: surface 2.31 .2

Definition of a Function with n parameters
let fct_name (p1:t1) (p2:t2) ... (pn:tn) : t = expr

- $\mathrm{p} 1, \ldots, \mathrm{pn}$ are formal parameters
- Type of fct_name is t1 -> t2 -> ... -> tn -> t

Using a Function with n parameters
fct_name e1 e2 ... en

- e1,...,en are effective parameters
- Type of fct_name e1 e2 ... en is t
if $t i$ is the type of ei and fct_name is of type $t 1$-> $t 2$->...
$\rightarrow t n->t$

Functions: SPECIFICATION and IMPLEMENTATION

In this module (and in your future), it is very important to distinguish two concepts/stages about defining functions (and programs in general)

Specification:

A description of what it is expected to do/ the job

- at an abstract level
- should be precise
- close to maths description in fun programming
- illustrate the function with some interesting examples

Implementation:
The description of how it is done

- the OCaml code

Defining a function: Specification AND THEN Implementation Has many advantages (how big software is developed):

- re-usability
- you will save a lot of time
- thinking before acting
- you will have a better grade

Defining functions: some examples

Example (Defining the function absolute value)

- Specification:
- The function absolute value abs takes an integer n as a parameter and returns n if this integer is positive or $-n$ if this integer is negative. The function absolute value always returns a positive integer.
- Profile: $\mathbb{Z} \rightarrow \mathbb{N}$
- Example: $a b s(1)=1, a b s(0)=0, a b s(-2)=2$
- Implementation: let abs (a:int) = if a<0 then -a else a

Example (Defining the function square)

- Specification:
- The function square sq takes an integer n as a parameter and returns $n * n$.
- Profile: $\mathbb{Z} \rightarrow \mathbb{N}$
- Example: $s q(1)=1, s q(0)=0, s q(3)=9, s q(-4)=16$
- Implementation: let $s q(n: i n t)=n * n$

Some exercises

A piece of algorithmic

Exercise

Define the function my_max returning the maximum of two integers

Exercise

Define functions:

- square: int \rightarrow int
- sum_square: int \rightarrow int \rightarrow int
s.t. sum_square computes the sum of the squares of two numbers

Problem: Olympic mean

Computing the mean of 4 grades (or values), by suppressing the highest and lowest one

1. Propose a type for the function mean
2. Propose an algorithm, by supposing that you have two functions min 4 and $\max 4$, which compute respectively the minimum and the maximum of 4 integers
3. Define functions min4 et max 4 , using min and max
