Modeling and Analysis of WSNs

Joint work with :

F. Maraninchi, L. Samper, O. Bezet, W. Znaidi

And many discussions within the ARESA project : France-Télécom, Coronis Systems, LIG-Drakkar, CITI, TIMA

Overview

- 1. Wireless Sensor Networks
- 2. Design, programming and analysis techniques for WSNs
- 3. What has been done within VÉRIMAG?
- 4. Where we could go in a near future?

Wireles Sensor Network

A set of sensing devices (nodes), communicating through radio links, to collect/agreggate/transmit information about their external environment.

Node architecture

Typical hardware characteristics (e.g., Mica motes, Crossbow) :

- \blacktriangleright CPU : 8/16 bits, 8 MHz, \sim 128 Kb pgm, \sim 512 Kb data
- Radio : range \sim 100 meters, 40.000 bits/sec.
- Energy : 2 AA batteries

Typical radio device

Typical routing protocol : directed diffusion

Typical (foreseen) WSN applications

- Environement/health monitoring
- Smart buildings (structure monitoring, home comfort, ...)
- Object tracking
- Traffic management
- Metering
- etc.

\Rightarrow some key parameters :

node mobility, dynamic network (re)-configuration, energy supply, network size, security concerns, etc.

A real commercial application

Water counter metering, Coronis Systems

- periodic sampling (sensor at 32 hz, 1 measure/hour, 1 emission/day)
- ▶ expected lifetime : ~ 10-15 years (using a 3.6 v Lithium battery)
- network : up to 2000 nodes, partly configured by hand (no collisions !)

Why is it still a challenging domain?

- WSN = embedded systems (tight constraints, difficult to update) + wireless (multi-hop communications, timed behaviour) + non-functional properties (energy, QoS, security, dots)
- \Rightarrow important need in cross-layers development and tuning \Rightarrow so far, no "convincing" design and analysis techniques

Some "related" topics :

- Ad hoc networks, vehicular networks (VaNet),
- smart cards, ...

Overview

- 1. Wireless Sensor Networks
- 2. Design, programming and analysis techniques for WSNs
- 3. What has been done within VÉRIMAG?
- 4. Where we could go in a near future?

Design and programming efforts

► Hardware level :

Tight integration between low power CPU and radio transceivers (Berkeley's motes, Arch Rock, Coronis transceiver, WSN430 (Lyon CITI), ...)

Protocol level :

A huge number of MAC proposals, some "integrated" communication stacks (802.15.4, ZigBee, Wavenis, ...)

► OS and application level :

A few dedicated languages, with programming and execution environments (nesC/TinyOS, Sun SPOT/Squawk VM, Contiki, etc.)

TinyOS (Berkeley)

An operating system and developemnt plateform for WSNs

- 1. a **component library** (hardware interface + com. protocols)
- 2. a **programming language** (nesC)
- 3. a code generator
 - for specific hardware motes
 - for simulation tools

Generated code = software components + "built-in" scheduler

nesC (Berkeley)

 $\mathsf{nesC} = \mathsf{C} + \mathsf{component} \; \mathsf{model} + \mathsf{concurrency} \; \mathsf{model}$

Component interface :

- commands (methods accepted by the component)
- events (call backs sent by the component)

Concurrency :

- "synchronous" tasks (executed when CPU is idle, can be preempted)
- events : hardware interuptions, split-phase operations (preempt the execution of running task or event).

\Rightarrow low level programming model, possible race conditions, \ldots

Modeling nesC/TinyOS with BIP

[joint work with Ananda, Joseph, Jacques (Pulou), Marc]

 \rightarrow a translation of the nesC execution model into BIP

- partly automated (nesC behaviour to be translated by hand)
- shows that BIP is expressive enough
- compare to similar work performed with Ptolemy
- could be used for "intra-node" validation ?

Existing analysis techniques

Simulation techniques

- operational model, can be executed
- can be made accurate, including "real" code (cycle-accuracy) : ("true" packet collisions, inst. energy consumed)
- but non exhaustive, and can be simulator dependant

Analytic techniques

- probabilistic model, descriptive
- requires some abstraction level, are they sound? (prob. of collisions, energy = nb. of msgs sent)
- exhaustive analysis (worst case, mean case)

The current picture

Exaustiveness

Overview

- 1. Wireless Sensor Networks
- 2. Design, programming and analysis techniques for WSNs
- 3. What has been done within VÉRIMAG?
- 4. Where we could go in a near future?

Useless \rightarrow Hopeless : how to fill the blank?

- 1. Global and accurate simulation model for WSNs
 - to better understand the domain . . .
 - to build an experimental simulation plateform
- 2. Experiments with existing model-checking tool
 - to know where are their limits
 - to propose the necessary extensions
- 3. Definition of a sound abstraction relation
 - taking into account the energy consumption
 - that can be applied "component-wised"

Glonemo : specification

A global, component-wise, and accurate WSN model :

- detailed node hardware description
- several software layers (com. protocols, application code)
- the physical environment (comm. canal, sensor inputs)

A simulation engine :

- able to collect various data during a run (e.g., energy, msg exchanged, ...)
- efficient enough ...

\Rightarrow a "benchmark application" :

monitoring and tracking of a *pollution cloud*

Glonemo : model architecture

Implementation

Written in **Reactive ML** (L. Mandel, LRI)

- based upon Caml (expressive, high-level, data structure)
- parallelism is a top-level primitive (1 process per component, 8 components per node)
- ► synchronous reactive model (discret global time) ⇒ fixed step simulation
- .

Energy model

- synchronous observers associated to each hardware element (1 state = 1 instantaneous consumption value)
- mimics the functional behaviour
- ▶ a global observer integrates the energy consumed / node

MAC protocol

Radio energy consumption (Motorola MC13192)

Global energy consumption (example)

Radio	in	Idle	-	Tx	-	-	Off
	state	Sleep	Idle	Idle	Tx	Tx	Тx
	conso (mW)	0.0	105.3	105.3	110.7	110.7	110.7
CPU	in	Fast	-	-	-	-	Slow
	state	Slow	Fast	Fast	Fast	Fast	Fast
	conso (mW)	11	35.1	35.1	35.1	35.1	35.1
Node	(mW)	11	140.4	140.4	145.8	145.8	145.8
	mJ (1 step = 10^{-2} s)	0.11	1.514	2.918	4.376	5.834	7.292

Environment modelling

Realistic sensor inputs are spatially and temporarally correlated (\neq e.g., Poisson law)

 \Rightarrow need to be explicitely modeled \ldots

Connection between Reactive ML and Lucky

- a constraint-based language
- description and simulation of stochastic reactive systems

Application : processes wind and cloud

 \Rightarrow experimental results showed more pessimistic network lifetimes than with classical distribution laws

In practice ...

efficient : up to 100.000 nodes, faster than real-time below 1000 nodes modular : set of replacable "components"

Some experiments with Glonemo

"accurate" vs. "abstract" modelling

- \rightarrow compare the lifetime of each node when energy E :
 - 1. is computed accurately (w.r.t. hardware current state)
 - 2. is abstracted :

E =number of emissions $\times \lambda \times$ fixed emission cost

 $\lambda =$ average number of collisions (estimated by simulations)

 \Rightarrow mean values not always representative ...

Comparison with a real network

 $\rightarrow\,$ "calibrate" the simulator by comparison with an existing WSN

Coronis :

- network deployed since 2004 (water counter metering, Les Sables d'Olonnes)
- monitoring + precise energy consumption estimation

Work in-progress :

- 1. simulate this application with Glonemo (2000 nodes)
- 2. compare the energy consumptions
- 3. evaluate a possible auto-configuration protocol

A new auto-organisation protocol

- \rightarrow evaluate a new protocol (T. Watteyne, FT/CITI)
 - "geographic" routing from virtual node coordinates
 - node coordinates randomly initialized, updated during msg emissions
 - analytic an simulation techniques are encouraging (good performance, robust, energy efficient)

work in-progress :

- 1. implement this protocol within the "cloud" benchmark
- 2. compare with other classical MAC/routing protocol
- 3. better tune the organisation phase

Using Dynamic Voltage Scaling (DVS)?

How to reduce the CPU consumption inside a node?

- ▶ V divided by $n \Rightarrow$ speed divided by n, E divided by n^2
- WSN nodes are essentially idle or weakly busy (weak duty cycle)
- synchronous CPU :
 - discrete working states
 - time (and energy) latency when state changes

Node activity prediction? Strong deadlines? Need for an OS? \Rightarrow preliminary answers through simulation ...

The current picture

Exaustiveness

WSN model-checking with IF : a case study

- Detection of a pollution cloud
- Comparison of the network lifetime w.r.t two routing algorithms : directed diffusion and flooding.
- ▶ Other elements (MAC, hardware, channel, ...) more abstract

IF model (details)

- Network lifetime : a global clock, never reset
- MAC layer and channel :
 - $\blacktriangleright \rightarrow real network$:
 - Unicast : acks \Rightarrow msgs re-emitted when lost
 - Broadcast : no acks, no re-emissions
 - $\blacktriangleright \rightarrow \mathsf{IF} \mathsf{ model}$:
 - Unicast : arbitrary (finite) emission delays
 - Broadcast : non-deterministic failures, fixed emission delays
- Energy : 1 emission = 3 units; 1 reception = 2 units

Environnement :

- périodic stimulation of the current node
- move to a neighbour node

Computation of worst-case network lifetime

A node is *dead* (fail-silent behaviour) when out of energy

Several criteria do define network lifetime :

- elapsed time before the death of X % of the nodes
- elapsed time before the network is partitioned
- \Rightarrow notion of "dead" states

worst-case scenario =

shortest path (w.r.t Lifetime clock) from initial to a "dead" state

Implementation :

IF exploration engine + A* shortest path search algo (min-cost tool)

Experimental results

Worst case lifetime	1st node dead	partitioned network		
Flooding	14	21		
Directed diffusion	41	52		

1st node dead	worst-case	random simulation				
Flooding	14	40	32	18	21	19
Directed diffusion	41	80	78	123	108	101

Model-checking with IF : conclusion

In favor :

- WSNs routing algorithms could be modeled
- Possible to define and compute lifetime properties
- performs like similar tools (Uppaal, RT-Maude)

Against :

- strong and uncontroled abstractions (energy consumed ~ number of msg transmitted)
- ▶ network configuration too small (12 nodes ⇒ 3.10⁶ states ⇒ 1 day of CPU)

Model-checking with IF : what else could be done?

Modeling langage

- communication primitives (Fifo queues vs radio broadcasts + RDV)
- network topology
- \blacktriangleright \Rightarrow a WSN BIP profile?

Exploration engine

- dedicated data structures for energy consumption state = (control, discrete data, clocks, energy)
 e.g., symbolic "priced zones" (Linear Priced Timed Automata)
- dedicated exploration algo? Bounded model-checking?

Abstraction techniques

combine various abstraction degrees :
 a detailled node + a few less detailed ones + rest of the net

Linearly Priced Timed Automata (LPTA)

Timed automaton extend with prices (on states and transitions)

 $\begin{array}{ll} (p1,\eta,p) & \xrightarrow{\delta} & (p1,\eta+\delta,p+c1.\delta) \\ (p1,\eta,p) & \xrightarrow{\text{send !m}} & (p2,\eta,p+c) \\ \Rightarrow & \text{costs} \text{ are associated to each run of the automaton} \\ & \text{Symbolic state space representations : priced zones} \end{array}$

- capture the minimal cost to reach a location
- minimum cost reachability pb is decidable

Efficiency in practice? Application to maximal cost?

The current picture

Exaustiveness

Energy preserving abstractions

Abstraction definition (1/3)

 M_1 less abstract than M_2 iff

- 1. same inputs \rightarrow same outputs (functional equivalence)
- 2. M_2 consumes as much as M_1 (worst-case lifetime)

Detailed radio model, M_1

 $\begin{array}{l} M_1 \leq M_2 =_{def} \\ \forall \text{ input } e. \ Out(M_1, e) = Out(M_2, e) \land E(M_1, e) \leq E(M_2, e)) \end{array}$ But, very strong abstraction ...

Abstraction definition (2/3)

Detailed radio model, M_1

Finer abstraction, but true only under certain conditions :

$$\exists e \text{ such that } E(M_1, e)
eq E(M_2, e)$$

 \Rightarrow Need to restricts the set of inputs using a **context** K

Abstraction definition (3/3)

Abstraction might be true only for some "relevant" inputs (not for all combinations, only after a certain time, etc.)

Context K = set of input traces (e.g., $K \in 2^{\{\text{Send}, \text{Idle}, \text{Off}\}^*}$)

$$M_1 \preceq_{\kappa} M_2 \iff \forall e \in K, \ \left\{ egin{array}{c} \operatorname{Out}(M_1, e) = \operatorname{Out}(M_2, e) \ \land \ E(M_1, e) \leq E(M_2, e) \end{array}
ight.$$

 \rightarrow But radio abstraction still have to be preserved by composition with the MAC model \ldots

Abstraction : model composition

If, \forall input $e \in K'$, $Out(Mac, e) \in K$ then

 $Radio_1 \preceq_K Radio_2 \Rightarrow Mac \parallel Radio_1 \preceq_{K'} Mac \parallel Radio_2$

More generaly :

$$Out(M, K') \subseteq K \Rightarrow (M_1 \preceq_K M_2 \Rightarrow M \parallel M_1 \preceq_{K'} M \parallel M_2)$$

Abstraction : what to do next?

• decision procedure for relation \leq_K

- "weighted" trace inclusion
- enumerative vs symbolic techniques?

transpose this work in the "asynchronous framework"

- general com. primitives, dense time, non-determinism
- weighted simulation relation (e.g. amortized simulation)
- simulation relations between LPTA
- decision procedure

methodology

- how to guess correct contexts and abstract models?
- assume-guarantee paradigm for energy related properties?

Overview

- 1. Wireless Sensor Networks
- 2. Design, programming and analysis techniques for WSNs
- 3. What has been done within VÉRIMAG?
- 4. Where we could go in a near future?

Some more open perspectives

 $\mathsf{WSN}=\mathsf{relevant}/\mathsf{challenging}$ application domain for design and analysis techniques

Programing

- dedicated language (Gals systems, more abstract than nesC?)
- code generation for specific platforms (asics, lightweight run-time environment)

Analysis

- behavioural vs analytic techniques (probabilities, is worst case really an issue)
- security properties

Next ?

experiment plateform ?