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Overview

1. Wireless Sensor Networks

2. Design, programming and analysis techniques for WSNs

3. What has been done within Vérimag ?

4. Where we could go in a near future ?



Wireles Sensor Network

A set of sensing devices (nodes), communicating through radio
links, to collect/agreggate/transmit information about their
external environment.
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Typical hardware characteristics (e.g., Mica motes, Crossbow) :

I CPU : 8/16 bits, 8 MHz, ∼ 128 Kb pgm, ∼ 512 Kb data

I Radio : range ∼ 100 meters, 40.000 bits/sec.

I Energy : 2 AA batteries



Typical radio device

Tx

Rx

Hibernate IdleOff

RXTXEN

RXTXEN

ATTN=0(edge)

(see Section 3.4)

Doze

doze_en (Wait 128)

hibernate_en (Wait 24 cycles)

RST=0 RST=1



Typical MAC protocol
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Typical routing protocol : directed diffusion
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Typical (foreseen) WSN applications

I Environement/health monitoring

I Smart buildings (structure monitoring, home comfort, ...)

I Object tracking

I Traffic management

I Metering

I etc.

⇒ some key parameters :
node mobility, dynamic network (re)-configuration, energy supply,
network size, security concerns, etc.



A real commercial application

Water counter metering, Coronis Systems

I periodic sampling (sensor at 32 hz, 1 measure/hour, 1 emission/day)

I expected lifetime : ∼ 10-15 years (using a 3.6 v Lithium battery)

I network : up to 2000 nodes, partly configured by hand
(no collisions !)



Why is it still a challenging domain ?

WSN = embedded systems
(tight constraints, difficult to update)

+ wireless
(multi-hop communications, timed behaviour)

+ non-functional properties
(energy, QoS, security, dots)

⇒ important need in cross-layers development and tuning
⇒ so far, no “convincing” design and analysis techniques

Some “related” topics :

I Ad hoc networks, vehicular networks (VaNet), . . .

I smart cards, . . .
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Design and programming efforts

I Hardware level :
Tight integration between low power CPU and radio
transceivers
(Berkeley’s motes, Arch Rock, Coronis transceiver, WSN430
(Lyon CITI), . . .)

I Protocol level :
A huge number of MAC proposals, some “integrated”
communication stacks
(802.15.4, ZigBee, Wavenis, . . .)

I OS and application level :
A few dedicated languages, with programming and execution
environments
(nesC/TinyOS, Sun SPOT/Squawk VM, Contiki, etc.)



TinyOS (Berkeley)

An operating system and developemnt plateform for WSNs . . .

1. a component library (hardware interface + com. protocols)

2. a programming language (nesC)

3. a code generator
I for specific hardware motes
I for simulation tools

Generated code = software components + “built-in” scheduler



nesC (Berkeley)

nesC = C + component model + concurency model

Component interface :

I commands (methods accepted by the component)

I events (call backs sent by the component)

Concurency :

I “synchronous” tasks
(executed when CPU is idle, can be preempted)

I events : hardware interuptions, split-phase operations
(preempt the execution of running task or event).

⇒ low level programming model, possible race conditions, . . .



Modeling nesC/TinyOS with BIP

[joint work with Ananda, Joseph, Jacques (Pulou), Marc]

→ a translation of the nesC execution model into BIP

Radio Timer Sensor

ApplicationProtocol

EventManager TaskManager

Radio Timer Sensor

ApplicationProtocol

BIPnesC

I partly automated (nesC behaviour to be translated by hand)

I shows that BIP is expressive enough

I compare to similar work performed with Ptolemy

I could be used for “intra-node” validation ?



Existing analysis techniques

Simulation techniques

I operational model, can be executed

I can be made accurate, including “real”code (cycle-accuracy) :
(“true” packet collisions, inst. energy consumed)

I but non exhaustive, and can be simulator dependant

Analytic techniques

I probabilistic model, descriptive

I requires some abstraction level, are they sound ?
(prob. of collisions, energy = nb. of msgs sent)

I exhaustive analysis (worst case, mean case)
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Useless → Hopeless : how to fill the blank ?

1. Global and accurate simulation model for WSNs
I to better understand the domain . . .
I to build an experimental simulation plateform

2. Experiments with existing model-checking tool
I to know where are their limits
I to propose the necessary extensions

3. Definition of a sound abstraction relation
I taking into account the energy consumption
I that can be applied “component-wised”



Glonemo : specification

A global, component-wise, and accurate WSN model :

I detailed node hardware description

I several software layers (com. protocols, application code)

I the physical environment (comm. canal, sensor inputs)

A simulation engine :

I able to collect various data during a run
(e.g., energy, msg exchanged, . . .)

I efficient enough . . .

⇒ a “benchmark application” :

monitoring and tracking of a pollution cloud



Glonemo : model architecture
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Implementation

Written in Reactive ML (L. Mandel, LRI)

I based upon Caml (expressive, high-level, data structure)

I parallelism is a top-level primitive
(1 process per component, 8 components per node)

I synchronous reactive model (discret global time)
⇒ fixed step simulation

Energy model

I synchronous observers associated to each hardware element
(1 state = 1 instantaneous consumption value)

I mimics the functional behaviour

I a global observer integrates the energy consumed / node



MAC protocol
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Radio energy consumption (Motorola MC13192)
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Global energy consumption (example)
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Environment modelling

Realistic sensor inputs are spatially and temporarally correlated
(6= e.g., Poisson law)

⇒ need to be explicitely modeled . . .

Connection between Reactive ML and Lucky

I a constraint-based language

I description and simulation of stochastic reactive systems

Application : processes wind and cloud

⇒ experimental results showed more pessimistic network lifetimes
than with classical distribution laws



In practice . . .
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efficient : up to 100.000 nodes, faster than real-time below 1000 nodes

modular : set of replacable “components”



Some experiments with Glonemo



“accurate” vs. “abstract” modelling

→ compare the lifetime of each node when energy E :

1. is computed accurately (w.r.t. hardware current state)

2. is abstracted :

E = number of emissions× λ× fixed emission cost

λ = average number of collisions (estimated by simulations)

⇒ mean values not always representative . . .



Comparison with a real network

→ “calibrate” the simulator by comparison with an existing WSN

Coronis :

I network deployed since 2004
(water counter metering, Les Sables d’Olonnes)

I monitoring + precise energy consumption estimation

Work in-progress :

1. simulate this application with Glonemo (2000 nodes)

2. compare the energy consumptions

3. evaluate a possible auto-configuration protocol



A new auto-organisation protocol

→ evaluate a new protocol (T. Watteyne, FT/CITI)

I “geographic” routing from virtual node coordinates

I node coordinates randomly initialized, updated during msg
emissions

I analytic an simulation techniques are encouraging
(good performance, robust, energy efficient)

work in-progress :

1. implement this protocol within the “cloud” benchmark

2. compare with other classical MAC/routing protocol

3. better tune the organisation phase



Using Dynamic Voltage Scaling (DVS) ?

How to reduce the CPU consumption inside a node ?

I V divided by n ⇒ speed divided by n, E divided by n2

I WSN nodes are essentially idle or weakly busy (weak duty cycle)

I synchronous CPU :

I discrete working states
I time (and energy) latency when state changes
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Node activity prediction ? Strong deadlines ? Need for an OS ?

⇒ preliminary answers through simulation . . .
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WSN model-checking with IF : a case study

I Detection of a pollution cloud

I Comparison of the network lifetime w.r.t two routing
algorithms : directed diffusion and flooding.

I Other elements (MAC, hardware, channel, . . .) more abstract
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IF model (details)

I Network lifetime : a global clock, never reset
I MAC layer and channel :

I → real network :
I Unicast : acks ⇒ msgs re-emitted when lost
I Broadcast : no acks, no re-emissions

I → IF model :
I Unicast : arbitrary (finite) emission delays
I Broadcast : non-deterministic failures, fixed emission delays

I Energy : 1 emission = 3 units ; 1 reception = 2 units

I Environnement :
I périodic stimulation of the current node
I move to a neighbour node



Computation of worst-case network lifetime

A node is dead (fail-silent behaviour) when out of energy

Several criteria do define network lifetime :

I elapsed time before the death of X % of the nodes

I elapsed time before the network is partitioned

⇒ notion of “dead” states

worst-case scenario =
shortest path (w.r.t Lifetime clock) from initial to a “dead” state

Implementation :
IF exploration engine + A* shortest path search algo (min-cost tool)



Experimental results
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Worst case lifetime 1st node dead partitioned network

Flooding 14 21
Directed diffusion 41 52

1st node dead worst-case random simulation

Flooding 14 40 32 18 21 19
Directed diffusion 41 80 78 123 108 101



Model-checking with IF : conclusion

In favor :

I WSNs routing algorithms could be modeled

I Possible to define and compute lifetime properties

I performs like similar tools (Uppaal, RT-Maude)

Against :

I strong and uncontroled abstractions
(energy consumed ∼ number of msg transmitted)

I network configuration too small
(12 nodes ⇒ 3.106 states ⇒ 1 day of CPU)



Model-checking with IF : what else could be done ?

I Modeling langage
I communication primitives

(Fifo queues vs radio broadcasts + RDV)
I network topology
I ⇒ a WSN BIP profile ?

I Exploration engine
I dedicated data structures for energy consumption

state = (control, discrete data, clocks, energy)
e.g., symbolic “priced zones” (Linear Priced Timed Automata)

I dedicated exploration algo ? Bounded model-checking ?

I Abstraction techniques
I combine various abstraction degrees :

a detailled node + a few less detailed ones + rest of the net



Linearly Priced Timed Automata (LPTA)

Timed automaton extend with prices (on states and transitions)

p1

c1

[x < D]  send!m

p2

c2

c

(p1, η, p)
δ−→ (p1, η + δ, p + c1.δ)

(p1, η, p)
send !m−→ (p2, η, p + c)

⇒ costs are associated to each run of the automaton

Symbolic state space representations : priced zones

I capture the minimal cost to reach a location

I minimum cost reachability pb is decidable

Efficiency in practice ? Application to maximal cost ?
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Energy preserving abstractions
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Abstraction definition (1/3)
M1 less abstract than M2 iff

1. same inputs → same outputs (functional equivalence)

2. M2 consumes as much as M1 (worst-case lifetime)
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But, very strong abstraction . . .



Abstraction definition (2/3)

S1

1

S2

8

Send

Off

Off

S3

10
Idle

Detailed radio model, M1

Q12

Off 

Q3

10

Send

5

Idle
or Off

Abstract radio model, M2

Finer abstraction, but true only under certain conditions :

∃e such that E (M1, e) � E (M2, e)

⇒ Need to restricts the set of inputs using a context K



Abstraction definition (3/3)

Abstraction might be true only for some “relevant” inputs
(not for all combinations, only after a certain time, etc.)

Context K = set of input traces (e.g., K ∈ 2{Send,Idle,Off}
∗
)

M1 �K M2 ⇐⇒ ∀e ∈ K ,


Out(M1, e) = Out(M2, e)
∧
E (M1, e) ≤ E (M2, e)

→ But radio abstraction still have to be preserved by composition
with the MAC model . . .



Abstraction : model composition
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If, ∀ input e ∈ K ′, Out(Mac, e) ∈ K then

Radio1 �K Radio2 ⇒ Mac ‖ Radio1 �K ′ Mac ‖ Radio2

More generaly :

Out(M,K ′) ⊆ K ⇒ (M1 �K M2 ⇒ M ‖ M1 �K ′ M ‖ M2)



Abstraction : what to do next ?

I decision procedure for relation �K

I “weighted” trace inclusion
I enumerative vs symbolic techniques ?

I transpose this work in the “asynchronous framework”
I general com. primitives, dense time, non-determinism
I weighted simulation relation (e.g. amortized simulation)
I simulation relations between LPTA
I decision procedure

I methodology
I how to guess correct contexts and abstract models ?
I assume-guarantee paradigm for energy related properties ?
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Some more open perspectives

WSN = relevant/challenging application domain for design and
analysis techniques

I Programing
I dedicated language (Gals systems, more abstract than nesC ?)
I code generation for specific platforms

(asics, lightweight run-time environment)

I Analysis
I behavioural vs analytic techniques

(probabilities, is worst case really an issue)
I security properties

I Next ?
I experiment plateform ?


