V.

Real-Time Implementation of BIP:
Clocks and Real-Time Constraints

Jacques Combaz

DCS Days — March 27, 2009

Verimag

Qutline

. Introduction: (Timed) BIP Model

. Computing Timed Interactions

. Model Time vs Real-Time

. Real-Time Scheduling Policy

. Future Work

Verimag

1.

Qutline

Introduction: (Timed) BIP Model

Verimag

BIP Model

Behavior: components — automata + ports + data + C code
A

init

init
wait

compute

int s r init

Interactions (synchronizations): { init, init }, {s }, {s, r}

Priorities (conflict resolution): {s,r}>{s}

1 1

BIP Engine

Platform

Verimag

Centralized Implementation of the
BIP Engine

initialize
atoms

Y

wait for
a stable state

execute
involved atoms
choose one
interaction
there is

one interaction
(or more)

compute legal
interactions

filter them
using priorities

there is
no interaction

deadlock

\/_

Timed BIP Model

Behavior: timed automata (clocks with discrete semantics + urgency type)
A B

init

init

x=P
delayable
R init s r init compute

Implementing with Tick Connector

Connector tick is synchronized with the platform clock

Al tiek
++
S wait
x=P '
x:=0 compute
tick init s rinit tick tick y++

Problem:
- inefficient: synchronous execution
- not implementable if execution times > clock period

/

—
5

connector all

engine :
g tick components

Verimag \/

Proposed Engine

Behavior: timed automata (urgency) + ports + data + C code

x=P

delayable

init s r init

init

init

compute

1

Real-Time BIP Engine (Centralized)

v
wait for
a stable state
execute
involved atoms
compute legal
wait for the imed interaction
chosen interaction
v
restrict guards
real-time using priorities _

| ther(? IS
no Interaction

there is
one interaction
(or more)

deadlock

\/_

Qutline

2. Computing Timed Interactions

Verimag

Computing Timed Interactions

o A q B r C s D

P q S
[7<x<10] [3<y<5] r [1<z<5]
delayable eager delayable

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 t

41 1 4+ 1 4 &+ & 1 1 1 1 1 >

last reset x {p.q} (platform clock)
last reset y
{r.s}
last reset z

{p,q} [17<t<20Q]delayable ~[16<t<18]eager = [17 <t< 18]eager
{r,s} [-0 <t<+o0]1a2y N[16 <t <20]delayable _ [16 <t < 20]delayable

Verimag \/ 1

Priorities
| {p.a}>{rs} |

| S
o A q B r C s D

P q S
[7<x<10] [3<y<5] r [1<z<5]
delayable eager delayable

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 t

41 1 4+ 1 4 &+ & 1 1 1 1 1 >

last reset x {p.q} (platform clock)
last reset y
{r.s}
last reset z
{r,s} [16 <t < 20]delayable \[17 <t < 18]eager

=[t=16]"y U [19 <t <20 Jdelayable

Verimag \/

12

Qutline

3. Model Time vs Real-Time

Verimag

Example #1 (Model Execution)

[X>P]
eager

[X=P]
eager

Example #1 (Actual Execution)

X = P+e

deadlock which is not in the model!

N

C%xZP]

y eager
®

& =r

y eager

\ execution times of transitions: ¢

\/_

< X

o O

Example #2 (Model Execution)

[X>P]
eager

Example #2 (Actual Execution)

A
0
[X>P]
eager £fO
x:=0
execution times of transitions:
L= 0 L{O N
v = 2 JORES

others ¢

\/_

Model Time vs Real-Time

a4 In model semantics, interaction execution is instantaneous
2 In actual implementation, everything takes time
2 Model time and real-time cannot coincide at each state of the system

t t+e .
| time
>

(St)
s,s.states [T e
| interaction | B U

v o T AN
(s,) (s',t+¢)
model actual execution

2 The Real-Time BIP Engine should be based on “logical” or “model” time
J Synchronizations between model time and real-time are required \/

Exact Synchronization

- Interaction | can be executed for any value of time between t and t+¢
2 Synchronization at each control state

é@ t t+3 t+e |
0 | | | time
I

(sg, t) g (s,tg+6)

@8-5 l' I

(s',t+9) > (S',t+¢)
2 Actual execution: (s,t) =2 (s',t+e)
i Model: Vo € [0;e] (s,t) =9 (s,t+0) —! (8',t+0) —>&9 (S',t+e)

Relaxed Synchronization

4 Synchronization can be made after a finite sequence I,...1, of interactions that
have to be executed at model time t

é.s t t+e

! | l, L, |, }tlme
? (.9
- vl
I (Si’t)
€ I,
Iy e=g, + ... ¢,
(S,:1) > (s,t,+¢€)
4 Actual execution: (s,f) olva (s,t+e) o282 . Shhen (s t+e)
4 Model: (s,t) o1 (sp,t) 2.0 5h(s,,1) 2 (St + g,+...tg,)

\/_

Implementing Clock Synchronization

Clock t encapsulates the platform clock: it represents logical or model time

Clock t and platform clock are synchronized only when necessary, depending
on the synchronization model (exact or relaxed)

User clocks X, Y, z, ... are computed w.r.t. model time t

Real-Time Engine clock x
clock y
clock t
clock z
RT
Platform Clock

al

Implementability

Problem: Given a platform, the synchronized model (exact or relaxed)

may give traces (sequences of transitions) that are not in the model.

1. Using a faster processor solves the problem.
— OK

2. The model requires an infinite processor speed for executing correctly.
— not implementable with the considered semantics

Formally, the model is implementable if there exists execution times g; > O for
transitions such that the set of traces of the synchronized model are included in
the set of traces of the model.

\/_

Implementability (Examples 1/3)

\
Y
[L<Xx<U]
delayable

Q

N

implementability:

exact M
relaxed ™

®

[x=P]
delayable

O

implementability:

exact
relaxed

@P

[X>P]
eager

implementability:

exact
relaxed

\/_

Implementability (Examples 2/3)

<

® ®
%XZP] [X=P]
C eager C eager
%X:P] [x=P]
eager eager

(e
o/

N

implementability: implementability: implementability:
exact exact exact
relaxed M relaxed relaxed M

\/_

Implementability (Examples 3/3)

A
0
LLO)
implementability: execution times of transitions:
« = ¢ exact O Ef
y =2 relaxed M agO £g

others ¢

\/_

Qutline

4. Real-Time Scheduling Policy

Verimag

Computing Deadlines

deadline(C,T) : deadline associated to constraint C, if the current value of the
involved clock is T

deadline([L <t < UJ'@YT) = +o0
deadline([L < t < U]detayable T) = max [L;U] N [T;+o0] (with max & = +0)
deadline([L <t < UJ®a9er T) = min [L;U] N [T;+o0] (with min & = +o0)

deadline([L; <t < U]t U... U [Ly £t < UJUN,T) = min deadline([L, <t < U]U1,T)

Verimag \/

27

Computing Next Activation

next(C,T) : next value of the involved clock for which C is enabled, if the current
value of the clock is T

next([L < t < U]urgency, T) = min [L;U] A [T;+o0] (With min @ = +o)

next([L; <t < U U u... U [Ly St < U™, T) = min next([L; <t < UYL, T)

Verimag \/ 28

Relaxed Sync. Implementation

Engine()
clk:=0 /* reset platform clock */
T:=0 /* logical time := 0 */

infinite_loop

Legals := GetLegallnteractions()
if (Legals = &) break
Legals’ := ApplyPriorities(Rules, Legals)

| := EDF_Scheduler(Legals’, T)
D :=deadline(l, T)

if (D>T ||clk- T >MAX_DRIFT)
T:=clk
if (D >T) break

wait(t >next(l, T))
T:=next(l, T))

execute(l)

[* interactions and constraints */
/* deadlock */
[* restrict constraints with priorities*/

[* real-time scheduler */
[* deadline for | */
[* synchronize T and clk */

/* deadline is missed */

[* wait for next activation of | */
[* update logical time if needed */

[* execute | */

\/_

Implementing EDF Scheduling Policy

EDF_Scheduler(Legals’, T)
D :=min, .y, deadline(l, T)

return | such that deadline(l, T) =D

EDF_A_Scheduler(Legals’, T)
D :=min, .y, deadline(l, T)
N :=min, oqqs next(l, T)

if(D-N>A) /* enough time to execute non-urgent interactions */
| return | such that next(l, T) =N

else

| return|suchthat deadline(l, T)=D

\/_

al

5. Future Work

BIP Toolchain:
- a prototype of a (centralized) Real-Time BIP Engine has been done

— optimization of the Real-Time BIP Engine
— modification of the parser and the code generator

Distributed implementation:
— distributed clocks (synchronizations)

Backup

Verimag

BIP Model

C={paqr}
P q r
Components ={A, A, A}
Clocks = { X, Y } D :
Ports ={p,q,r} 1<x<10° 3<y<5 .
Connectors ¢ 2Ports ={C}
A A; As

Real-time: t € Reals
Reset function: last_reset_date : Clocks — Reals
X:=0 — last_reset_date[X] = t, where t, is the current value of t

At a given system state : g: eager

Synced ={(p,x,[1;10],5), o: delayable
(9.y.[3:5],2), A lazy
(r---) } £>8>\

Verimag \/

33

Clocks and Real-Time Constraints

N
B, ||B,||Bsl] --- B,
Interactions
Engine Event
: : Handler A
Real-Time Engine
Platform Clock t

Real-Timet Engine

onp
provided ' L' =L + last_reset_date[X]
P delayable U’ = U + last_reset_date[X]

x in[L;U]

onp
provided
delayable
x in[L;U]

enabled test

L' <t <U

Verimag

Vi

Timed BIP Model

C={paqr}
P q r
Components ={A, A, A}
Clocks = { X, Y } D :
Ports ={p,q,r} 1<x<10° 3<y<5 .
Connectors ¢ 2Ports ={C}
A A; As

Real-time: t € Reals
Reset function: last_reset_date : Clocks — Reals
X:=0 — last_reset_date[X] = t, where t, is the current value of t

At a given system state : g: eager

Synced ={(p,x,[1;10],5), o: delayable
(9.y.[3:5],2), A lazy
(r---) } £>8>\

Verimag \/

35

Time Conversion

- Platform clock: t
(p""") — (p’t’['oo;-l_oo]’ 7\')
(p.x,[L;U],n) — (p.t[L;U], ©) where L =L+ last_reset_date[X]
U'= U + last_reset_date[X]

C={p,a.r}

i Synced ={(p,x,[1;10],3), (q,y.[3;5],€), (r,-,-,-) }
Synced ={ (p,t[1;101,9), (a.t.[4:6L.), (=) b 10] | ey < |
if last_reset_date[x]=0 and last_reset_date[y]=1 - o

Ay A; As
J We write p € Synced for (p,t,[L;U],t) € Synced
P € Synced, 1imeq fOr (P,t,[-00;+],A) € Synced
guard(p) for [L;U] if (p,t,[L;U],t) € Synced
guard(p) for Jif p ¢ Synced
T(p) T if for (p,t,[L;U],t) € Synced

Verimag \/ 36

Computing Legal Interactions
1. Strong Synchronization

Let C € Connectors such thatC = { p,,...,p, } IS & strong synchronization,
l.e. C defines the set of interactions { { p,-.-,P, } }

Forl={p4-.-,.p, } we have (l,t,guard(l),t) € Legals iff:
1. /< Synced
2. guard(l) = [ty;+o0] N M, guard(p)
3. guard(l) # I
4. 1= max,, 1(p)

We have (l,t,guard(l),max 1)) € Legals Iiff:

1. /< Synced

2. guard(l) = [L;U] where (p;,t,[L;U]],ty) € Syncedand L = max; L;,t,
U =min, U,

3. LU

Verimag \/

37

Computing Legal Interactions
1. Strong Synchronization (example)

C={p.qr}
P q r
p q
Il<x<1oﬁ I3<y<58 Ir
Al A2 A3

If Synced = { (p,t,[1,10],9), (q,t,[4;6],€), (r,t,[-00;+0],A) }and t; =5

then Legals = { ({ p,q,r },t,[5;6],¢) }

Verimag

38

Computing Legal Interactions
2. General Case

Let C € Connectors such that C = {py,...,p, }
C defines a set of interactions { 1,,...,1, }

Foreachl e {l,....I,} we have (l,t,guard(l),t) € Legals iff:
1. Synced, 1imeq < | < Synced

2. guard(l) = [ty;+oo] N My guard(p) \ (U, guard(p))
3.quard() # O
4. 1= max,, 1(p)

Notice that guard(l) will be of the form guard(l) = [L;;U;] U... U [Ly;Upl
(we consider the discrete semantics for \)

Verimag

39

Computing Legal Interactions
2. General Case (example)

C={paqr}
P q r
1<x<10° 3<y<5e r
Aq A, As

' Synced = { (p,,[1;10],8), (a.t,[9;11],¢), (r,t, [-oo;+e0],A) }
(last_reset_date[x]=0, last_reset_date [y]=6)

| C defines the set of interactions { I,,1,,15,1, } such that, for t, = 1, we have:

l,={r} guard(l,) = [ty;+] \ ([1;10]U[9;11]) (I,,t, [12;+0] ,A) € Legals
L={rp} guard(l,) = [ty;+o0] N [1;10] \ [9;11] (1,,t, [1,8],0) € Legals
l,={r,q} guard(lg) = [ty;+o0] N [9;11] \ [1;10] (I5,t, [11;11] ,e) € Legals
l,={r.p,q} guard(l,) = [ty;+] N [1;10] N [9;11] (I5,t, [9;10] ,¢) eyals
Verimag 40

ﬂ.‘

ﬂ.‘

Computing Priorities

Applying priorities: Legals — Legals’

Letland I,l,,..., |, such that | < [, provided L, <t < U,
then (I,t, guard’(l) , 1) € Legals'iff:
1.1 € Legals and for all i=1..n I, € Legals

2. guard’(l) = guard() \ (U, , [Li;U] m guard(l))
3. guard'(l) # &

Verimag

41

Implementation (Clocks)

J class GlobalClock - Clock

+ time(),reset()
+ wait()
+ freeze(),go(),update()

computed w.r.t. another clock or directly

Centralized Engine (Monothread)

Engine() {
T = new Clock(t); [* T: logical time, t: real-time , both freezed */
t.goQ); [* start real-time */

while(true) {

Synced = GetSyncedPorts(); /* list of synced ports */
Legals = GetLegal Interactions(Synced); /* list of legal interactions */
Legals’ = ApplyPriorities(Legals); [* priorities*/

| = EDF_Scheduler(Legals’, T-time()); [* real-time scheduler */
iIT (I == NULL) break; [* deadlock */

if (SyncPoint(l, T.time(), t.time()) {
old time = T.time(); T.update(); /* synchronize logical time */
IT (CheckDeadlineMiss(l, old time , T.time())) break;

}

T.waitt(next(l, T-time())); [* wait for next activation of | */
|.execute(); [* execute | */
iIT (CheckForDeadlineMiss(l, T.time(), t.time())) break;

+

DeadlockOrDeadlineMiss();

}

\/_

Centralized Engine (Monothread)

SyncPointExact(l, T, t) {
return true;

}

CheckDeadlineMissExact(l, T, t) {
iIT (deadline(l,T) < t) return true;
else return false;

}

SyncPointRelaxed(l, T, t) {
iIT (deadline(l,T) == T && t - T < MAX DRIFT) return false;
else return true;

}

CheckDeadl ineMissRelaxed(l, T, t) {
iIT (T < deadline(l,T) < t) return true;
else return false;

}

Implementation (Atom, Ports, ...)

class Atom class Compound
+ rt_sync() + rt_activate()

class Port

+ constraint real-time constraint associated to the port by rt_sync()
+ rt_execute()

class Connector
+ mFeasiblelnter list of feasible interactions (depending on the real-time)
+ rt_execute()

class Interaction

+ constraint associated real-time constraint
+ mNext next interaction in the list

+ rt_execute()

Planning

& BIP engine: Functionality Prototype

clocks
guard and urgency
connectors
hierarchical connectors
priorities

real-time scheduler

4 BIP tool chain: Functionality Prototype

parser
code generator

N NNRNHRK
N M X N N X

\/_

Tick Implementation

N
B,[|B,||Bs]|..-|| B, jﬂc(tick) A
|_ tick .
Interactions
l I étick
Engine :
RT
Platform Clock

§ >

connector all

engine :
d tick components

a Synchronous execution:

2l

Inefficient

Verimag

vV

47

Platform

Standards Ports / Events

Clock t Engine enabled test
Np=to N <t<D
Clock t Engine enabled test
event 5 onp ‘ Np: minimal arrival time Np <t <D

D,: deadline if present

Verimag \/

48

Real-Time Engine Implementation

2 One engine for simulation and implementation

2 In simulation mode, the real-time t is driven by the engine
aIn execution mode, the real-time t is connected to the platform clock

Application Software

L1

priorities En g | ne
(RT scheduling
policy)

Platform

platform
clock

Execution

Verimag

OASIS in BIP: control flow

U
C)Clock c=0;

body start { \
codel; advance(l);
code2; advance(2);
do { —
code3;
advance(1);
} while (condition);

)

provided c=1
codel;
c=0;

Q

provided c=2
code3;

, c=0;

provided c=1
code3;
c=0;

OASIS in BIP: computation

body start {
read

;;%(X); advance(1); I

Y=F(X)

write

write read read X write_Y

c=0;

(a\<

?on read X

provided c=0

M\

Pmnvkbd03031
Y=F(X)

N\

Pon write_Y
provided c=1
)C:O;

N\

write

read

OASIS in BIP: coordination

i If the reader doesn’t read old values of X, we store only the current value in X:

X X=W_.X R.X=X_.X
Snt X write_ X write read read_X int X
int X
on write on read
on write X on read X
W X R
J The priority rule
The pric w |1 | L]
writejwrite_X>read|read_X = = _LL —_—
resolves conflicts when writing and = >| 1 1
>

reading are possible at the same time.

Simulation vs Implementation (2/2)

N
B.lIB,|IBs]|--- || B
Interactions
Engine Event
: : Handler .~
Real-Time Engine e
Platform e

2 Direct implementation:
a2l events are directly handled by the engine
1l efficient active wait or interruption mechanisms
sl standard interfaces
Verimag \/ >3

Simulation vs Implementation (1/2)

N
B,||B,||B:]|... || B, syneO, /0
Interactions
l I -‘-‘-_-eventg
Engine y o
Platform P B

2 Implementation by encapsulation:
2 events are handled into components
s only active waits (no interruption mechanisms)

sl specific interfaces
Verimag \/ >

	Real-Time Implementation of BIP: Clocks and Real-Time Constraints ��Jacques Combaz���DCS Days – March 27, 2009
	Outline
	Outline
	BIP Model
	Centralized Implementation of the BIP Engine
	Timed BIP Model
	Implementing with Tick Connector
	Proposed Engine
	Real-Time BIP Engine (Centralized)
	Outline
	Computing Timed Interactions
	Priorities
	Outline
	Example #1 (Model Execution)
	Example #1 (Actual Execution)
	Example #2 (Model Execution)
	Example #2 (Actual Execution)
	Model Time vs Real-Time
	Exact Synchronization
	Relaxed Synchronization
	Implementing Clock Synchronization
	Implementability
	Implementability (Examples 1/3)
	Implementability (Examples 2/3)
	Implementability (Examples 3/3)
	Outline
	Computing Deadlines
	Computing Next Activation
	Relaxed Sync. Implementation
	Implementing EDF Scheduling Policy
	5. Future Work
	Backup
	BIP Model
	Clocks and Real-Time Constraints
	Timed BIP Model
	Time Conversion
	Computing Legal Interactions�1. Strong Synchronization
	Computing Legal Interactions�1. Strong Synchronization (example)
	Computing Legal Interactions�2. General Case
	Computing Legal Interactions�2. General Case (example)
	Computing Priorities
	Implementation (Clocks)
	Centralized Engine (Monothread)
	Centralized Engine (Monothread)
	Implementation (Atom, Ports, …)
	Planning
	Tick Implementation
	Standards Ports / Events
	Real-Time Engine Implementation
	OASIS in BIP: control flow
	OASIS in BIP: computation
	OASIS in BIP: coordination
	Simulation vs Implementation (2/2)
	Simulation vs Implementation (1/2)

