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Platform

BIP Engine

B

Verimag

BIP Model

A
Behavior: components  automata + ports + data + C code 

init

wait
s

wait

r

compute

init
initinit

s rinit init

Priorities (conflict resolution): { s, r } > { s }

Interactions (synchronizations): { init, init }, { s }, { s, r }

f()



Centralized Implementation of the 
BIP Engine

compute legal
interactions

filter them
using priorities

execute
involved atoms

wait for
a stable state

initialize
atoms

choose one
interaction

deadlock

there is
no interaction

there is
one interaction

(or more)



Timed BIP Model
Behavior: timed automata (clocks with discrete semantics + urgency type)

BA

init

wait
s

wait

r

compute

init
initinit

x:=0 y:=0

[x=P]
delayable
x:=0 s rinit init

f()
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Implementing with Tick Connector

BA

init

wait
s wait

r

compute

init
initinit

x:=0 y:=0

[x=P]
x:=0

s rinit init

f()tick

x++

[x<P ]
x++

tick tick

tick

y++tick

y++
tick

Platform
RT

Clock

Engine

Connector tick is synchronized with the platform clock

time

engine connector
tick

all
components

Problem:
- inefficient: synchronous execution
- not implementable if execution times ≥ clock period



Proposed Engine
Behavior: timed automata (urgency) + ports + data + C code 

Platform
RT

Clock

Engine Event
Handler

Real-Time Engine

BA

init

wait
s

wait

r

compute

init
initinit

x:=0 y:=0

s rinit init

f()
[x=P]
delayable
x:=0



Real-Time BIP Engine (Centralized)

compute legal
timed interactions

execute
involved atoms

wait for
a stable state

initialize
atoms

deadlock

there is
no interactionthere is

one interaction
(or more)

real-time
scheduling policy

restrict guards
using priorities

wait for the 
chosen interaction



Verimag

Outline

1. Introduction: (Timed) BIP Model

2. Computing Timed Interactions

3. Model Time vs Real-Time

4. Real-Time Scheduling Policy

5. Future Work



Verimag 11

Computing Timed Interactions

{ p, q }: [ 17 ≤ t ≤ 20 ]delayable ∩ [ 16 ≤ t ≤ 18 ]eager
{ r, s }: [ -∞ ≤ t ≤ +∞ ]lazy ∩ [ 16 ≤ t ≤ 20 ]delayable

A

p
[ 7 ≤ x ≤ 10 ]
delayable

p B

q
[ 3 ≤ y ≤ 5 ]
eager

q C

r

r Ds

s
[ 1 ≤ z ≤ 5 ]
delayable

t10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

7 ≤ x ≤ 10

3 ≤ y ≤ 5
last reset x

last reset y
(platform clock)p:

q:
r:
s:

last reset z
1 ≤ z ≤ 5

t10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

last reset x
last reset y

(platform clock)

last reset z

{ r, s }

{p,q}

=   [ 17 ≤ t ≤ 18 ]eager

=   [ 16 ≤ t ≤ 20 ]delayable



{ p, q } > { r, s } 
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Priorities

{ r, s }: [ 16 ≤ t ≤ 20 ]delayable \ [ 17 ≤ t ≤ 18 ]eager

t10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

last reset x
last reset y

(platform clock)

last reset z

{ r, s }

{p,q}

A

p
[ 7 ≤ x ≤ 10 ]
delayable

p B

q
[ 3 ≤ y ≤ 5 ]
eager

q C

r

r Ds

s
[ 1 ≤ z ≤ 5 ]
delayable

t10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

last reset x
last reset y

(platform clock)

last reset z

{p,q}

{ r, s }

= [ t = 16 ]lazy ∪ [ 19 ≤ t ≤ 20 ]delayable
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Example #1 (Model Execution)

x = 0

[ x ≥ P ]
eager

[ x = P ]
eager

x = P



Example #1 (Actual Execution)

x = 0

[ x ≥ P ]
eager

[ x = P ]
eager

x = P execution times of transitions: εx = P+ε

deadlock which is not in the model!



Example #2 (Model Execution)

A

[ x ≥ P ]
eager

x := 0

f()

p
x := 0

p B

[ y ≥ 2P ]
eager

y := 0

g()

q
y := 0

q

x = 0
y = 0
x = P
y = P
x = 0
y = P
x = P
y = 2P
x = P
y = 0
x = 0
y = 0



Example #2 (Actual Execution)

A

[ x ≥ P ]
eager

x := 0

f()

p
x := 0

p B

[ y ≥ 2P ]
eager

y := 0

g()

q
y := 0

q

y = 0
x = 0
y = ε
x = εf
y = ε+εf
x = εf+εg
y = ε+εf+εg
x = P
y = P+ε
x = 0
y = P+2ε
x = εf
y = P+2ε+εf
x = P-2ε
y = 2P
x = P-ε
y = 0
x = P
y = ε
x = 0
y = 2ε

execution times of transitions:
f() εf
g() εg
others ε



I
t+ε

(s’,t+ε)

I,ε

actual execution

Model Time vs Real-Time

t
time

(s,t)

(s’,t)

I
s,s’: states
I: interaction

model

In model semantics, interaction execution is instantaneous
In actual implementation, everything takes time
Model time and real-time cannot coincide at each state of the system

The Real-Time BIP Engine should be based on “logical” or “model” time
Synchronizations between model time and real-time are required



I
t+ε

(s’,t+ε)

Exact Synchronization

t
time

(s,t)

Interaction I can be executed for any value of time between t and t+ε
Synchronization at each control state

δ

t+δ

(s,t+δ)

I

(s’,t+δ) ε-δ

Actual execution: (s,t) →I,ε (s’,t+ε)

Model: ∀δ ∈ [0;ε] (s,t) →δ (s,t+δ) →I (s’,t+δ) →ε-δ (s’,t+ε)  

δ

ε-δ

I



InI2I1
t+ε

Relaxed Synchronization

t
time

(s,t)

Synchronization can be made after a finite sequence I1…In of interactions that 
have to be executed at model time t

I1

ε=ε1 + … + εn

Actual execution: (s,t) →I1,ε1 (s1,t+ε1) →I2,ε2 ... →In,εn (sn,t+εn)

Model: (s,t) →I1 (s1,t) →I2 ... →In (sn,t) →ε (sn,t + ε1+…+εn )

(s1,t)

…

(sn,t)

I2
In

(sn,tn+ε)

…

ε

I1

… I2
In



Implementing Clock Synchronization

Platform
RT

Clock

clock z
clock y

clock xReal-Time Engine

Clock t encapsulates the platform clock: it represents logical or model time

Clock t and platform clock are synchronized only when necessary, depending 
on the synchronization model (exact or relaxed)

User clocks x, y, z, … are computed w.r.t. model time t

…

clock t



Implementability
Problem: Given a platform, the synchronized model (exact or relaxed)
may give traces (sequences of transitions) that are not in the model.

1. Using a faster processor solves the problem.
→ OK

2. The model requires an infinite processor speed for executing correctly.
→ not implementable with the considered semantics

Formally, the model is implementable if there exists execution times εi > 0 for 
transitions such that the set of traces of the synchronized model are included in 
the set of traces of the model.



Implementability (Examples 1/3)

[ L ≤ x ≤ U ]
delayable

implementability:

exact 
relaxed 

[ x = P ]
delayable

implementability:

exact 
relaxed 

[ x ≥ P ]
eager

implementability:

exact 
relaxed 



Implementability (Examples 2/3)

[ x ≥ P ]
eager

implementability:

exact 
relaxed 

[ x = P ]
eager

[ x ≥ P ]
eager

implementability:

exact 
relaxed 

[ x = P ]
eager

[ x ≥ 2 ]
eager

implementability:

exact 
relaxed 

[ x ≥ 3 ]
eagerx:=0



Implementability (Examples 3/3)

A

[ x ≥ P ]
eager

x := 0

f()

p
x := 0

p B

[ y ≥ 2P ]
eager

y := 0

g()

q
y := 0

q

y = 0
x = 0
y = 0
x = 2ε
y = 2ε
x = 2ε+εf
y = 2ε+εf
x = 2ε+εf+εg
y = 2ε+εf+εg
x = P
y = P
x = 0
y = P
x = ε
y = P+ε
x = ε+εf
y = P+ε+εf
x = P
y = 2P
x = P
y = 0
x = 0
y = 0
x = 2ε
y = 2ε

implementability:
exact 
relaxed 

execution times of transitions:
f() εf
g() εg
others ε
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Computing Deadlines

deadline(C,T) : deadline associated to constraint C, if the current value of the 
involved clock is T

deadline([L ≤ t ≤ U]lazy,T) = +∞

deadline([L ≤ t ≤ U]delayable,T) = max [L;U] ∩ [T;+∞] (with max ∅ = +∞)

deadline([L ≤ t ≤ U]eager,T) = min [L;U] ∩ [T;+∞] (with min ∅ = +∞)

deadline([L1 ≤ t ≤ U1]u1 ∪... ∪ [LN ≤ t ≤ UN]uN,T) = min deadline([Li ≤ t ≤ Ui]ui,T)
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Computing Next Activation

next(C,T) : next value of the involved clock for which C is enabled, if the current 
value of the clock is T

next([L ≤ t ≤ U]urgency,T) = min [L;U] ∩ [T;+∞] (with min ∅ = +∞)

next([L1 ≤ t ≤ U1]u1 ∪... ∪ [LN ≤ t ≤ UN]uN,T) = min next([Li ≤ t ≤ Ui]ui,T)



Relaxed Sync. Implementation
Engine()

clk := 0 /* reset platform clock */
T := 0 /* logical time := 0 */

infinite_loop
Legals := GetLegalInteractions() /* interactions and constraints */
if (Legals = ∅) break /* deadlock */
Legals’ := ApplyPriorities(Rules, Legals) /* restrict constraints with priorities*/

I := EDF_Scheduler(Legals’, T) /* real-time scheduler */
D := deadline(I, T) /* deadline for I */

if ( D > T || clk - T > MAX_DRIFT ) 
T := clk /* synchronize T and clk */
if ( D > T) break /* deadline is missed */

wait( t ≥ next(I, T ) ) /* wait for next activation of I */
T := next(I, T)) /* update logical time  if needed */

execute(I) /* execute I */



Implementing EDF Scheduling Policy

EDF_Scheduler(Legals’, T)
D := minI∈Legals deadline(I, T)

return I such that deadline(I, T) = D

EDF_∆_Scheduler(Legals’, T)
D := minI∈Legals deadline(I, T)
N := minI∈Legals next(I, T)

if ( D – N > ∆ ) /* enough time to execute non-urgent interactions */
return I such that next(I, T) =N

else
return I such that deadline(I, T) = D



5. Future Work

BIP Toolchain:
- a prototype of a (centralized) Real-Time BIP Engine has been done
→ optimization of the Real-Time BIP Engine
→ modification of the parser and the code generator

Distributed implementation:
→ distributed clocks (synchronizations)
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Backup
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BIP Model

Components = { A1, A2, A1 }
Clocks = { x, y }
Ports = { p, q, r }
Connectors ⊆ 2Ports = { C } 

At a given system state :
Synced = { (p,x,[1;10],δ),

(q,y,[3;5],ε),
(r,-,-,-)  } 

ε: eager
δ: delayable
λ: lazy

ε > δ > λ

p q

p
1 ≤ x ≤ 10δ

q
3 ≤ y ≤ 5ε

r

r

C = { p, q, r } 

A1 A2 A3

Real-time: t ∈ Reals
Reset function: last_reset_date : Clocks → Reals
x:=0 → last_reset_date[x] = t0 where t0 is the current value of t



Platform
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Clocks and Real-Time Constraints

Engine

p

on p
provided
delayable
x in [L;U]

Real-Time t enabled test

L’  = L + last_reset_date[x]
U’ = U + last_reset_date[x]

L’ ≤ t ≤ U’

B1 B2 B3 … Bn

Engine Event
Handler

Real-Time Engine

Interactions

Clock t

p
on p
provided
delayable
x in [L;U]
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Timed BIP Model

Components = { A1, A2, A1 }
Clocks = { x, y }
Ports = { p, q, r }
Connectors ⊆ 2Ports = { C } 

At a given system state :
Synced = { (p,x,[1;10],δ),

(q,y,[3;5],ε),
(r,-,-,-)  } 

ε: eager
δ: delayable
λ: lazy

ε > δ > λ

p q

p
1 ≤ x ≤ 10δ

q
3 ≤ y ≤ 5ε

r

r

C = { p, q, r } 

A1 A2 A3

Real-time: t ∈ Reals
Reset function: last_reset_date : Clocks → Reals
x:=0 → last_reset_date[x] = t0 where t0 is the current value of t
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Time Conversion
Platform clock: t
(p,-,-,-)         → (p,t,[-∞;+∞], λ) 
(p,x,[L;U],τ)  → (p,t,[L’;U’], τ) where L’ = L + last_reset_date[x]

U’= U + last_reset_date[x]

We write p ∈ Synced for (p,t,[L;U],τ) ∈ Synced
p ∈ Synceduntimed for (p,t,[-∞;+∞],λ) ∈ Synced
guard(p) for [L;U] if (p,t,[L;U],τ) ∈ Synced
guard(p) for ∅ if p ∉ Synced
τ(p) τ if for (p,t,[L;U],τ) ∈ Synced

p q

p
1 ≤ x ≤ 10δ

q
3 ≤ y ≤ 5ε

r

r

C = { p, q, r } 

A1 A2 A3

Synced = { (p,x,[1;10],δ), (q,y,[3;5],ε), (r,-,-,-)  }
Synced = { (p,t,[1;10],δ), (q,t,[4;6],ε), (r,-,-,-)  }
if last_reset_date[x]=0 and last_reset_date[y]=1
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Computing Legal Interactions
1. Strong Synchronization

Let C ∈ Connectors such that C = { p1,…,pn } is a strong synchronization,
i.e. C defines the set of interactions { { p1,…,pn } }

For I = { p1,…,pn } we have (I,t,guard(I),τ) ∈ Legals iff:
1. I ⊆ Synced

2. guard(I) = [t0;+∞] ∩ ∩p∈I guard(p) 
3. guard(I) ≠ ∅
4. τ = maxp∈I τ(p)

We have (I,t,guard(I),max τj) ∈ Legals iff:
1. I ⊆ Synced
2. guard(I) = [L;U] where (pj,t,[Lj;Uj],τj) ∈ Synced and L = maxj Lj ,t0

U = minj Uj

3. L≤U
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Computing Legal Interactions
1. Strong Synchronization (example)

If Synced = { (p,t,[1;10],δ), (q,t,[4;6],ε), (r,t,[-∞;+∞],λ)  } and t0 = 5 

then Legals = { ({ p,q,r },t,[5;6],ε) }

p q

p
1 ≤ x ≤ 10δ

q
3 ≤ y ≤ 5ε

r

r

C = { p, q, r } 

A1 A2 A3
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Computing Legal Interactions
2. General Case

Let C ∈ Connectors such that C = { p1,…,pn }
C defines a set of interactions { I1,…,Im } 

For each I∈ { I1,…,Im } we have (I,t,guard(I),τ) ∈ Legals iff:
1. Synceduntimed ⊆ I ⊆ Synced

2. guard(I) = [t0;+∞] ∩ ∩p∈I guard(p) \ ( ∪p∈C \ I guard(p))
3. guard(I) ≠ ∅
4. τ = maxp∈I τ(p)

Notice that guard(I) will be of the form guard(I) = [L1;U1] ∪... ∪ [LN;UN]
(we consider the discrete semantics for \)
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Computing Legal Interactions
2. General Case (example)

p q

p
1 ≤ x ≤ 10δ

q
3 ≤ y ≤ 5ε

r

r

C = { p, q, r’ } 

A1 A2 A3

Synced = { (p,t,[1;10],δ), (q,t,[9;11],ε), (r,t, [-∞;+∞],λ)  }
(last_reset_date[x]=0, last_reset_date [y]=6)

C defines the set of interactions { I1,I2,I3,I4 } such that, for t0 = 1, we have:

I1 = { r } guard(I1) = [t0;+∞] \ ([1;10]∪[9;11]) (I1,t, [12;+∞] ,λ)∈ Legals
I2 = { r,p } guard(I2) = [t0;+∞] ∩ [1;10] \ [9;11] (I2,t, [1;8],δ)∈ Legals
I3 = { r,q } guard(I3) = [t0;+∞] ∩ [9;11] \ [1;10] (I3,t, [11;11] ,ε)∈ Legals
I4 = { r,p,q } guard(I4) = [t0;+∞] ∩ [1;10] ∩ [9;11] (I4,t, [9;10] ,ε) ∈ Legals
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Computing Priorities

Applying priorities: Legals → Legals’

Let I and I1,I2 ,…, In such that I < Ii provided Li ≤ t ≤ Ui

then (I,t, guard’(I) , τ) ∈ Legals’ iff :
1. I ∈ Legals and for all i=1..n Ii ∈ Legals

2. guard’(I) = guard(I) \ ( ∪i=1..n [Li;Ui] ∩ guard(Ii) )
3. guard’(I) ≠ ∅



Implementation (Clocks)
class GlobalClock : Clock

+ time(),reset()

+ wait()

+ freeze(),go(),update()

computed w.r.t. another clock or directly



Centralized Engine (Monothread)
Engine() {

T = new Clock(t); /* T: logical time, t: real-time , both freezed */
t.go(); /* start real-time */

while(true) {
Synced = GetSyncedPorts(); /* list of synced ports */
Legals = GetLegalInteractions(Synced); /* list of legal interactions */
Legals’ = ApplyPriorities(Legals); /* priorities*/

I = EDF_Scheduler(Legals’, T.time()); /* real-time scheduler */
if (I == NULL) break; /* deadlock */

if (SyncPoint(I, T.time(), t.time())) {
old_time = T.time(); T.update(); /* synchronize logical time */
if (CheckDeadlineMiss(I, old_time , T.time())) break;

}

T.wait(next(I, T.time())); /* wait for next activation of I */
I.execute(); /* execute I */
if (CheckForDeadlineMiss(I, T.time(), t.time())) break;

}
DeadlockOrDeadlineMiss();

}



Centralized Engine (Monothread)
SyncPointExact(I, T, t) {
return true;

}

CheckDeadlineMissExact(I, T, t) {
if (deadline(I,T) < t) return true;
else return false;

}

SyncPointRelaxed(I, T, t) {
if (deadline(I,T) == T && t - T < MAX_DRIFT) return false;
else return true; 

}

CheckDeadlineMissRelaxed(I, T, t) {
if (T < deadline(I,T) < t) return true;
else return false;

}



Implementation (Atom, Ports, …)
class Atom class Compound

+ rt_sync() + rt_activate()

class Port

+ constraint real-time constraint associated to the port by rt_sync()
+ rt_execute()

class Connector

+ mFeasibleInter list of feasible interactions (depending on the real-time)
+ rt_execute()

class Interaction

+ constraint associated real-time constraint 
+ mNext next interaction in the list
+ rt_execute()



Planning
BIP engine: Functionality Prototype Tested

clocks  
guard and urgency  

connectors  
hierarchical connectors  

priorities  
real-time scheduler  

BIP tool chain: Functionality Prototype Tested

parser  
code generator  
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Tick Implementation

B1 B2 B3 … Bn

Interactions

Platform

sync(tick)

RT
Clock

Engine
tick

tick

engine connector
tick

all
components

tick

Synchronous execution:
inefficient



Engine
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Standards Ports / Events

p on p

Clock t enabled test

Np: minimal arrival time 
Dp: deadline if present 

Np ≤ t ≤ DpPlatform event

Engine

p on p

Clock t enabled test

Np=t0
Dp=+∞

Np ≤ t ≤ Dp
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Real-Time Engine Implementation

Platform
platform

clock

Application Software

Engine
clocks 
x,y,…

real-
time t

priorities

RT
scheduling

policy

SimulationExecution
Engine clocks 

x,y,…
priorities

RT
scheduling

policy real-
time t

clocks 
x,y,…

priorities
(RT scheduling 

policy) real-
time t

Engine

One engine for simulation and implementation
In simulation mode, the real-time t is driven by the engine
In execution mode, the real-time t is connected to the platform clock



OASIS in BIP: control flow

body start {

code1; advance(1);

code2; advance(2);

do {

code3;

advance(1);

} while (condition);

}

Clock c=0;

provided c=1
code1;
c=0;

provided c=2
code3;
c=0;

provided c=1
code3;
c=0;



Y=f(X)

OASIS in BIP: computation
body start {

...

Y=f(X); advance(1);

...

}

X Y

readwrite write read

on read_X
provided c=0

on write_Y
provided c=1
c=0;

read_X

c=0;

write_Y

provided 0 ≤ c ≤ 1
Y=f(X)

read write

1



OASIS in BIP: coordination

W

write read

R

write_X read_X

X

on write_X on read_X

If the reader doesn’t read old values of X, we store only the current value in X:

The priority rule
write|write_X > read|read_X

resolves conflicts when writing and
reading are possible at the same time.

on write on read

int X int X

X.X = W.X

int X

R.X = X.X

W

R
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Simulation vs Implementation (2/2)

Platform

Environment

Direct implementation:
events are directly handled by the engine
efficient active wait or interruption mechanisms
standard interfaces

B1 B2 B3 … Bn

Engine Event
Handler

Real-Time Engine

Interactions

event

event
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Simulation vs Implementation (1/2)

B1 B2 B3 … Bn Platform Environment

Interactions

Platform

Environment

Engine

Simulation : the BIP model contains
the environment behavior
the platform behavior 

Implementation by encapsulation:
events are handled into components
only active waits (no interruption mechanisms)
specific interfaces

sync() sync()

event event
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