
Verimag

Real-Time Implementation of BIP:
Clocks and Real-Time Constraints

Jacques Combaz

DCS Days – March 27, 2009

Verimag

Outline

1. Introduction: (Timed) BIP Model

2. Computing Timed Interactions

3. Model Time vs Real-Time

4. Real-Time Scheduling Policy

5. Future Work

Verimag

Outline

1. Introduction: (Timed) BIP Model

2. Computing Timed Interactions

3. Model Time vs Real-Time

4. Real-Time Scheduling Policy

5. Future Work

Platform

BIP Engine

B

Verimag

BIP Model

A
Behavior: components  automata + ports + data + C code

init

wait
s

wait

r

compute

init
initinit

s rinit init

Priorities (conflict resolution): { s, r } > { s }

Interactions (synchronizations): { init, init }, { s }, { s, r }

f()

Centralized Implementation of the
BIP Engine

compute legal
interactions

filter them
using priorities

execute
involved atoms

wait for
a stable state

initialize
atoms

choose one
interaction

deadlock

there is
no interaction

there is
one interaction

(or more)

Timed BIP Model
Behavior: timed automata (clocks with discrete semantics + urgency type)

BA

init

wait
s

wait

r

compute

init
initinit

x:=0 y:=0

[x=P]
delayable
x:=0 s rinit init

f()

Verimag

Implementing with Tick Connector

BA

init

wait
s wait

r

compute

init
initinit

x:=0 y:=0

[x=P]
x:=0

s rinit init

f()tick

x++

[x<P]
x++

tick tick

tick

y++tick

y++
tick

Platform
RT

Clock

Engine

Connector tick is synchronized with the platform clock

time

engine connector
tick

all
components

Problem:
- inefficient: synchronous execution
- not implementable if execution times ≥ clock period

Proposed Engine
Behavior: timed automata (urgency) + ports + data + C code

Platform
RT

Clock

Engine Event
Handler

Real-Time Engine

BA

init

wait
s

wait

r

compute

init
initinit

x:=0 y:=0

s rinit init

f()
[x=P]
delayable
x:=0

Real-Time BIP Engine (Centralized)

compute legal
timed interactions

execute
involved atoms

wait for
a stable state

initialize
atoms

deadlock

there is
no interactionthere is

one interaction
(or more)

real-time
scheduling policy

restrict guards
using priorities

wait for the
chosen interaction

Verimag

Outline

1. Introduction: (Timed) BIP Model

2. Computing Timed Interactions

3. Model Time vs Real-Time

4. Real-Time Scheduling Policy

5. Future Work

Verimag 11

Computing Timed Interactions

{ p, q }: [17 ≤ t ≤ 20]delayable ∩ [16 ≤ t ≤ 18]eager
{ r, s }: [-∞ ≤ t ≤ +∞]lazy ∩ [16 ≤ t ≤ 20]delayable

A

p
[7 ≤ x ≤ 10]
delayable

p B

q
[3 ≤ y ≤ 5]
eager

q C

r

r Ds

s
[1 ≤ z ≤ 5]
delayable

t10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

7 ≤ x ≤ 10

3 ≤ y ≤ 5
last reset x

last reset y
(platform clock)p:

q:
r:
s:

last reset z
1 ≤ z ≤ 5

t10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

last reset x
last reset y

(platform clock)

last reset z

{ r, s }

{p,q}

= [17 ≤ t ≤ 18]eager

= [16 ≤ t ≤ 20]delayable

{ p, q } > { r, s }

Verimag 12

Priorities

{ r, s }: [16 ≤ t ≤ 20]delayable \ [17 ≤ t ≤ 18]eager

t10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

last reset x
last reset y

(platform clock)

last reset z

{ r, s }

{p,q}

A

p
[7 ≤ x ≤ 10]
delayable

p B

q
[3 ≤ y ≤ 5]
eager

q C

r

r Ds

s
[1 ≤ z ≤ 5]
delayable

t10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

last reset x
last reset y

(platform clock)

last reset z

{p,q}

{ r, s }

= [t = 16]lazy ∪ [19 ≤ t ≤ 20]delayable

Verimag

Outline

1. Introduction: (Timed) BIP Model

2. Computing Timed Interactions

3. Model Time vs Real-Time

4. Real-Time Scheduling Policy

5. Future Work

Example #1 (Model Execution)

x = 0

[x ≥ P]
eager

[x = P]
eager

x = P

Example #1 (Actual Execution)

x = 0

[x ≥ P]
eager

[x = P]
eager

x = P execution times of transitions: εx = P+ε

deadlock which is not in the model!

Example #2 (Model Execution)

A

[x ≥ P]
eager

x := 0

f()

p
x := 0

p B

[y ≥ 2P]
eager

y := 0

g()

q
y := 0

q

x = 0
y = 0
x = P
y = P
x = 0
y = P
x = P
y = 2P
x = P
y = 0
x = 0
y = 0

Example #2 (Actual Execution)

A

[x ≥ P]
eager

x := 0

f()

p
x := 0

p B

[y ≥ 2P]
eager

y := 0

g()

q
y := 0

q

y = 0
x = 0
y = ε
x = εf
y = ε+εf
x = εf+εg
y = ε+εf+εg
x = P
y = P+ε
x = 0
y = P+2ε
x = εf
y = P+2ε+εf
x = P-2ε
y = 2P
x = P-ε
y = 0
x = P
y = ε
x = 0
y = 2ε

execution times of transitions:
f() εf
g() εg
others ε

I
t+ε

(s’,t+ε)

I,ε

actual execution

Model Time vs Real-Time

t
time

(s,t)

(s’,t)

I
s,s’: states
I: interaction

model

In model semantics, interaction execution is instantaneous
In actual implementation, everything takes time
Model time and real-time cannot coincide at each state of the system

The Real-Time BIP Engine should be based on “logical” or “model” time
Synchronizations between model time and real-time are required

I
t+ε

(s’,t+ε)

Exact Synchronization

t
time

(s,t)

Interaction I can be executed for any value of time between t and t+ε
Synchronization at each control state

δ

t+δ

(s,t+δ)

I

(s’,t+δ) ε-δ

Actual execution: (s,t) →I,ε (s’,t+ε)

Model: ∀δ ∈ [0;ε] (s,t) →δ (s,t+δ) →I (s’,t+δ) →ε-δ (s’,t+ε)

δ

ε-δ

I

InI2I1
t+ε

Relaxed Synchronization

t
time

(s,t)

Synchronization can be made after a finite sequence I1…In of interactions that
have to be executed at model time t

I1

ε=ε1 + … + εn

Actual execution: (s,t) →I1,ε1 (s1,t+ε1) →I2,ε2 ... →In,εn (sn,t+εn)

Model: (s,t) →I1 (s1,t) →I2 ... →In (sn,t) →ε (sn,t + ε1+…+εn)

(s1,t)

…

(sn,t)

I2
In

(sn,tn+ε)

…

ε

I1

… I2
In

Implementing Clock Synchronization

Platform
RT

Clock

clock z
clock y

clock xReal-Time Engine

Clock t encapsulates the platform clock: it represents logical or model time

Clock t and platform clock are synchronized only when necessary, depending
on the synchronization model (exact or relaxed)

User clocks x, y, z, … are computed w.r.t. model time t

…

clock t

Implementability
Problem: Given a platform, the synchronized model (exact or relaxed)
may give traces (sequences of transitions) that are not in the model.

1. Using a faster processor solves the problem.
→ OK

2. The model requires an infinite processor speed for executing correctly.
→ not implementable with the considered semantics

Formally, the model is implementable if there exists execution times εi > 0 for
transitions such that the set of traces of the synchronized model are included in
the set of traces of the model.

Implementability (Examples 1/3)

[L ≤ x ≤ U]
delayable

implementability:

exact 
relaxed 

[x = P]
delayable

implementability:

exact 
relaxed 

[x ≥ P]
eager

implementability:

exact 
relaxed 

Implementability (Examples 2/3)

[x ≥ P]
eager

implementability:

exact 
relaxed 

[x = P]
eager

[x ≥ P]
eager

implementability:

exact 
relaxed 

[x = P]
eager

[x ≥ 2]
eager

implementability:

exact 
relaxed 

[x ≥ 3]
eagerx:=0

Implementability (Examples 3/3)

A

[x ≥ P]
eager

x := 0

f()

p
x := 0

p B

[y ≥ 2P]
eager

y := 0

g()

q
y := 0

q

y = 0
x = 0
y = 0
x = 2ε
y = 2ε
x = 2ε+εf
y = 2ε+εf
x = 2ε+εf+εg
y = 2ε+εf+εg
x = P
y = P
x = 0
y = P
x = ε
y = P+ε
x = ε+εf
y = P+ε+εf
x = P
y = 2P
x = P
y = 0
x = 0
y = 0
x = 2ε
y = 2ε

implementability:
exact 
relaxed 

execution times of transitions:
f() εf
g() εg
others ε

Verimag

Outline

1. Introduction: (Timed) BIP Model

2. Computing Timed Interactions

3. Model Time vs Real-Time

4. Real-Time Scheduling Policy

5. Future Work

Verimag 27

Computing Deadlines

deadline(C,T) : deadline associated to constraint C, if the current value of the
involved clock is T

deadline([L ≤ t ≤ U]lazy,T) = +∞

deadline([L ≤ t ≤ U]delayable,T) = max [L;U] ∩ [T;+∞] (with max ∅ = +∞)

deadline([L ≤ t ≤ U]eager,T) = min [L;U] ∩ [T;+∞] (with min ∅ = +∞)

deadline([L1 ≤ t ≤ U1]u1 ∪... ∪ [LN ≤ t ≤ UN]uN,T) = min deadline([Li ≤ t ≤ Ui]ui,T)

Verimag 28

Computing Next Activation

next(C,T) : next value of the involved clock for which C is enabled, if the current
value of the clock is T

next([L ≤ t ≤ U]urgency,T) = min [L;U] ∩ [T;+∞] (with min ∅ = +∞)

next([L1 ≤ t ≤ U1]u1 ∪... ∪ [LN ≤ t ≤ UN]uN,T) = min next([Li ≤ t ≤ Ui]ui,T)

Relaxed Sync. Implementation
Engine()

clk := 0 /* reset platform clock */
T := 0 /* logical time := 0 */

infinite_loop
Legals := GetLegalInteractions() /* interactions and constraints */
if (Legals = ∅) break /* deadlock */
Legals’ := ApplyPriorities(Rules, Legals) /* restrict constraints with priorities*/

I := EDF_Scheduler(Legals’, T) /* real-time scheduler */
D := deadline(I, T) /* deadline for I */

if (D > T || clk - T > MAX_DRIFT)
T := clk /* synchronize T and clk */
if (D > T) break /* deadline is missed */

wait(t ≥ next(I, T)) /* wait for next activation of I */
T := next(I, T)) /* update logical time if needed */

execute(I) /* execute I */

Implementing EDF Scheduling Policy

EDF_Scheduler(Legals’, T)
D := minI∈Legals deadline(I, T)

return I such that deadline(I, T) = D

EDF_∆_Scheduler(Legals’, T)
D := minI∈Legals deadline(I, T)
N := minI∈Legals next(I, T)

if (D – N > ∆) /* enough time to execute non-urgent interactions */
return I such that next(I, T) =N

else
return I such that deadline(I, T) = D

5. Future Work

BIP Toolchain:
- a prototype of a (centralized) Real-Time BIP Engine has been done
→ optimization of the Real-Time BIP Engine
→ modification of the parser and the code generator

Distributed implementation:
→ distributed clocks (synchronizations)

Verimag 32

Backup

Verimag 33

BIP Model

Components = { A1, A2, A1 }
Clocks = { x, y }
Ports = { p, q, r }
Connectors ⊆ 2Ports = { C }

At a given system state :
Synced = { (p,x,[1;10],δ),

(q,y,[3;5],ε),
(r,-,-,-) }

ε: eager
δ: delayable
λ: lazy

ε > δ > λ

p q

p
1 ≤ x ≤ 10δ

q
3 ≤ y ≤ 5ε

r

r

C = { p, q, r }

A1 A2 A3

Real-time: t ∈ Reals
Reset function: last_reset_date : Clocks → Reals
x:=0 → last_reset_date[x] = t0 where t0 is the current value of t

Platform

Verimag 34

Clocks and Real-Time Constraints

Engine

p

on p
provided
delayable
x in [L;U]

Real-Time t enabled test

L’ = L + last_reset_date[x]
U’ = U + last_reset_date[x]

L’ ≤ t ≤ U’

B1 B2 B3 … Bn

Engine Event
Handler

Real-Time Engine

Interactions

Clock t

p
on p
provided
delayable
x in [L;U]

Verimag 35

Timed BIP Model

Components = { A1, A2, A1 }
Clocks = { x, y }
Ports = { p, q, r }
Connectors ⊆ 2Ports = { C }

At a given system state :
Synced = { (p,x,[1;10],δ),

(q,y,[3;5],ε),
(r,-,-,-) }

ε: eager
δ: delayable
λ: lazy

ε > δ > λ

p q

p
1 ≤ x ≤ 10δ

q
3 ≤ y ≤ 5ε

r

r

C = { p, q, r }

A1 A2 A3

Real-time: t ∈ Reals
Reset function: last_reset_date : Clocks → Reals
x:=0 → last_reset_date[x] = t0 where t0 is the current value of t

Verimag 36

Time Conversion
Platform clock: t
(p,-,-,-) → (p,t,[-∞;+∞], λ)
(p,x,[L;U],τ) → (p,t,[L’;U’], τ) where L’ = L + last_reset_date[x]

U’= U + last_reset_date[x]

We write p ∈ Synced for (p,t,[L;U],τ) ∈ Synced
p ∈ Synceduntimed for (p,t,[-∞;+∞],λ) ∈ Synced
guard(p) for [L;U] if (p,t,[L;U],τ) ∈ Synced
guard(p) for ∅ if p ∉ Synced
τ(p) τ if for (p,t,[L;U],τ) ∈ Synced

p q

p
1 ≤ x ≤ 10δ

q
3 ≤ y ≤ 5ε

r

r

C = { p, q, r }

A1 A2 A3

Synced = { (p,x,[1;10],δ), (q,y,[3;5],ε), (r,-,-,-) }
Synced = { (p,t,[1;10],δ), (q,t,[4;6],ε), (r,-,-,-) }
if last_reset_date[x]=0 and last_reset_date[y]=1

Verimag 37

Computing Legal Interactions
1. Strong Synchronization

Let C ∈ Connectors such that C = { p1,…,pn } is a strong synchronization,
i.e. C defines the set of interactions { { p1,…,pn } }

For I = { p1,…,pn } we have (I,t,guard(I),τ) ∈ Legals iff:
1. I ⊆ Synced

2. guard(I) = [t0;+∞] ∩ ∩p∈I guard(p)
3. guard(I) ≠ ∅
4. τ = maxp∈I τ(p)

We have (I,t,guard(I),max τj) ∈ Legals iff:
1. I ⊆ Synced
2. guard(I) = [L;U] where (pj,t,[Lj;Uj],τj) ∈ Synced and L = maxj Lj ,t0

U = minj Uj

3. L≤U

Verimag 38

Computing Legal Interactions
1. Strong Synchronization (example)

If Synced = { (p,t,[1;10],δ), (q,t,[4;6],ε), (r,t,[-∞;+∞],λ) } and t0 = 5

then Legals = { ({ p,q,r },t,[5;6],ε) }

p q

p
1 ≤ x ≤ 10δ

q
3 ≤ y ≤ 5ε

r

r

C = { p, q, r }

A1 A2 A3

Verimag 39

Computing Legal Interactions
2. General Case

Let C ∈ Connectors such that C = { p1,…,pn }
C defines a set of interactions { I1,…,Im }

For each I∈ { I1,…,Im } we have (I,t,guard(I),τ) ∈ Legals iff:
1. Synceduntimed ⊆ I ⊆ Synced

2. guard(I) = [t0;+∞] ∩ ∩p∈I guard(p) \ (∪p∈C \ I guard(p))
3. guard(I) ≠ ∅
4. τ = maxp∈I τ(p)

Notice that guard(I) will be of the form guard(I) = [L1;U1] ∪... ∪ [LN;UN]
(we consider the discrete semantics for \)

Verimag 40

Computing Legal Interactions
2. General Case (example)

p q

p
1 ≤ x ≤ 10δ

q
3 ≤ y ≤ 5ε

r

r

C = { p, q, r’ }

A1 A2 A3

Synced = { (p,t,[1;10],δ), (q,t,[9;11],ε), (r,t, [-∞;+∞],λ) }
(last_reset_date[x]=0, last_reset_date [y]=6)

C defines the set of interactions { I1,I2,I3,I4 } such that, for t0 = 1, we have:

I1 = { r } guard(I1) = [t0;+∞] \ ([1;10]∪[9;11]) (I1,t, [12;+∞] ,λ)∈ Legals
I2 = { r,p } guard(I2) = [t0;+∞] ∩ [1;10] \ [9;11] (I2,t, [1;8],δ)∈ Legals
I3 = { r,q } guard(I3) = [t0;+∞] ∩ [9;11] \ [1;10] (I3,t, [11;11] ,ε)∈ Legals
I4 = { r,p,q } guard(I4) = [t0;+∞] ∩ [1;10] ∩ [9;11] (I4,t, [9;10] ,ε) ∈ Legals

Verimag 41

Computing Priorities

Applying priorities: Legals → Legals’

Let I and I1,I2 ,…, In such that I < Ii provided Li ≤ t ≤ Ui

then (I,t, guard’(I) , τ) ∈ Legals’ iff :
1. I ∈ Legals and for all i=1..n Ii ∈ Legals

2. guard’(I) = guard(I) \ (∪i=1..n [Li;Ui] ∩ guard(Ii))
3. guard’(I) ≠ ∅

Implementation (Clocks)
class GlobalClock : Clock

+ time(),reset()

+ wait()

+ freeze(),go(),update()

computed w.r.t. another clock or directly

Centralized Engine (Monothread)
Engine() {

T = new Clock(t); /* T: logical time, t: real-time , both freezed */
t.go(); /* start real-time */

while(true) {
Synced = GetSyncedPorts(); /* list of synced ports */
Legals = GetLegalInteractions(Synced); /* list of legal interactions */
Legals’ = ApplyPriorities(Legals); /* priorities*/

I = EDF_Scheduler(Legals’, T.time()); /* real-time scheduler */
if (I == NULL) break; /* deadlock */

if (SyncPoint(I, T.time(), t.time())) {
old_time = T.time(); T.update(); /* synchronize logical time */
if (CheckDeadlineMiss(I, old_time , T.time())) break;

}

T.wait(next(I, T.time())); /* wait for next activation of I */
I.execute(); /* execute I */
if (CheckForDeadlineMiss(I, T.time(), t.time())) break;

}
DeadlockOrDeadlineMiss();

}

Centralized Engine (Monothread)
SyncPointExact(I, T, t) {
return true;

}

CheckDeadlineMissExact(I, T, t) {
if (deadline(I,T) < t) return true;
else return false;

}

SyncPointRelaxed(I, T, t) {
if (deadline(I,T) == T && t - T < MAX_DRIFT) return false;
else return true;

}

CheckDeadlineMissRelaxed(I, T, t) {
if (T < deadline(I,T) < t) return true;
else return false;

}

Implementation (Atom, Ports, …)
class Atom class Compound

+ rt_sync() + rt_activate()

class Port

+ constraint real-time constraint associated to the port by rt_sync()
+ rt_execute()

class Connector

+ mFeasibleInter list of feasible interactions (depending on the real-time)
+ rt_execute()

class Interaction

+ constraint associated real-time constraint
+ mNext next interaction in the list
+ rt_execute()

Planning
BIP engine: Functionality Prototype Tested

clocks  
guard and urgency  

connectors  
hierarchical connectors  

priorities  
real-time scheduler  

BIP tool chain: Functionality Prototype Tested

parser  
code generator  

Verimag 47

Tick Implementation

B1 B2 B3 … Bn

Interactions

Platform

sync(tick)

RT
Clock

Engine
tick

tick

engine connector
tick

all
components

tick

Synchronous execution:
inefficient

Engine

Verimag 48

Standards Ports / Events

p on p

Clock t enabled test

Np: minimal arrival time
Dp: deadline if present

Np ≤ t ≤ DpPlatform event

Engine

p on p

Clock t enabled test

Np=t0
Dp=+∞

Np ≤ t ≤ Dp

Verimag 49

Real-Time Engine Implementation

Platform
platform

clock

Application Software

Engine
clocks
x,y,…

real-
time t

priorities

RT
scheduling

policy

SimulationExecution
Engine clocks

x,y,…
priorities

RT
scheduling

policy real-
time t

clocks
x,y,…

priorities
(RT scheduling

policy) real-
time t

Engine

One engine for simulation and implementation
In simulation mode, the real-time t is driven by the engine
In execution mode, the real-time t is connected to the platform clock

OASIS in BIP: control flow

body start {

code1; advance(1);

code2; advance(2);

do {

code3;

advance(1);

} while (condition);

}

Clock c=0;

provided c=1
code1;
c=0;

provided c=2
code3;
c=0;

provided c=1
code3;
c=0;

Y=f(X)

OASIS in BIP: computation
body start {

...

Y=f(X); advance(1);

...

}

X Y

readwrite write read

on read_X
provided c=0

on write_Y
provided c=1
c=0;

read_X

c=0;

write_Y

provided 0 ≤ c ≤ 1
Y=f(X)

read write

1

OASIS in BIP: coordination

W

write read

R

write_X read_X

X

on write_X on read_X

If the reader doesn’t read old values of X, we store only the current value in X:

The priority rule
write|write_X > read|read_X

resolves conflicts when writing and
reading are possible at the same time.

on write on read

int X int X

X.X = W.X

int X

R.X = X.X

W

R

Verimag 53

Simulation vs Implementation (2/2)

Platform

Environment

Direct implementation:
events are directly handled by the engine
efficient active wait or interruption mechanisms
standard interfaces

B1 B2 B3 … Bn

Engine Event
Handler

Real-Time Engine

Interactions

event

event

Verimag 54

Simulation vs Implementation (1/2)

B1 B2 B3 … Bn Platform Environment

Interactions

Platform

Environment

Engine

Simulation : the BIP model contains
the environment behavior
the platform behavior

Implementation by encapsulation:
events are handled into components
only active waits (no interruption mechanisms)
specific interfaces

sync() sync()

event event

	Real-Time Implementation of BIP: Clocks and Real-Time Constraints ��Jacques Combaz���DCS Days – March 27, 2009
	Outline
	Outline
	BIP Model
	Centralized Implementation of the BIP Engine
	Timed BIP Model
	Implementing with Tick Connector
	Proposed Engine
	Real-Time BIP Engine (Centralized)
	Outline
	Computing Timed Interactions
	Priorities
	Outline
	Example #1 (Model Execution)
	Example #1 (Actual Execution)
	Example #2 (Model Execution)
	Example #2 (Actual Execution)
	Model Time vs Real-Time
	Exact Synchronization
	Relaxed Synchronization
	Implementing Clock Synchronization
	Implementability
	Implementability (Examples 1/3)
	Implementability (Examples 2/3)
	Implementability (Examples 3/3)
	Outline
	Computing Deadlines
	Computing Next Activation
	Relaxed Sync. Implementation
	Implementing EDF Scheduling Policy
	5. Future Work
	Backup
	BIP Model
	Clocks and Real-Time Constraints
	Timed BIP Model
	Time Conversion
	Computing Legal Interactions�1. Strong Synchronization
	Computing Legal Interactions�1. Strong Synchronization (example)
	Computing Legal Interactions�2. General Case
	Computing Legal Interactions�2. General Case (example)
	Computing Priorities
	Implementation (Clocks)
	Centralized Engine (Monothread)
	Centralized Engine (Monothread)
	Implementation (Atom, Ports, …)
	Planning
	Tick Implementation
	Standards Ports / Events
	Real-Time Engine Implementation
	OASIS in BIP: control flow
	OASIS in BIP: computation
	OASIS in BIP: coordination
	Simulation vs Implementation (2/2)
	Simulation vs Implementation (1/2)

