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Abstract plant [26]. This remains true independently of whether the
agents are allowed to communicate or not [27].

We introduce and study problems of distributed observa-  Distributed observation problems are also interesting for
tion with bounded or unbounded memory. We are given atheir own sake. For instance, when monitoring a large, dis-
system modeled as a finite-word langudgever some fi-  tributed system such as a network, a vehicle controller con-
nite alphabet and subalphabets,, ..., 3}, of ¥ modeling sisting of many components (ECUs), a manufacturing plant,
n distinct observation points. We want to build (when there etc., one usually relies on local monitors which collect in-
exist)n observers which collect projections of a behavior formation at different parts of the system. This information
in L onto ¥y, ...,%,, then send them to a central decision can then be gathered and analyzed off-line at a central point.
point. The latter must determine whether the original be- Even for finite sets of observations, such problems are in-
havior was in a giverk’ C L. In the unbounded-memory herently difficult from a complexity point of view [28]. No-
case, observers record the entire sequence they observe. lfice that it is often impractical to endow the local moni-
the bounded-memory case, they are required to be finite-tors with advanced capabilities such as communication and

state automata. clock synchronization, which would change the distributed
We show that, wherl is trace-closed with respect nature of the problem in a significant way.

to the usual dependence relation induced By, ..., 2y, The general architecture of the problems we study in this

unbounded-memory observability is equivalentifobe-  paperis shown in Figure 1. There arebservers which are

ing centrally observable and trace-closed, thus decidable. attached to different (distributed) points of the system under
WhenL is not trace-closed, the problem is undecidable, gpservation. The observation takes place in two phases. The
even if K and L are regular. We also show that bounded- first phase, theollection phasgison-line the systemiis left
memory observability is equivalent to unbounded-memorytg execute for a finite amount of time and, meanwhile, each
observability (thus decidable) whehis trace-closed and  opserver collects its own local observation. The second
%; are pairwise disjoint. Otherwise, the problem remains phase, thelecision phases off-line: every observer sends
open. In the decidable cases, observers and decision funcits observation to a central decision point, which makes a
tion can be automatically synthesized. decision. The decision may involve, for instance, detecting
faults in the behavior of the system, measuring its perfor-
mance, and so on.

1 Introduction In particular, we consider a very simple modeling set-
ting. The system under observation fdant) is modeled as
aregular languagg over some finite alphabgt. A letterin

Y can be seen as an event generated by the plant and a finite
word in L can be seen as a behavior of the plant. Observer
1 can only observe a subset of evebits C ¥. Thus, the
observation that observércollects from a behavios € L

In this paper we study problems of distributed obser-
vation. Such problems arise naturally in contexts of dis-
tributed control (e.g., see [9, 23, 24, 17, 16, 18, 26, 19, 2,
20, 14]). There, a number of agents control a single plant,
e"?‘Ch. observing (and aCt'Tg. UD?n) qnl){ part of the p"f"”t' is theprojectionof p onto >;. Notice that:; are not nec-
Distributed control always “hides” a distributed observation LA

essarily disjoint. A regular language€ C L models a set

problem, since the agents must infer, based on a set of par-, . 7 = -

. . L . of distinguishedbehaviors of the plant. For example, be-

tial observations, facts about the original behavior of the T o . .
haviors inK may be those satisfying a given requirement

*Work partially supported by CNRS STIC project “CORTOS” and IST Wh.”e.those inL - K do not. The objective of the deCiSion_
Network of Excellence “ARTIST2". point is to determine whether the plant produced a behavior
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Figure 1. Distributed observation in two phases.

inKorinL — K. tion theory. The third point is, to the best of our knowledge,
Obviously, it is not always possible to make a correct de- rarely found in works on decentralized controller synthesis.

cision, based only on the distributed observations. For ex-Some of these links may prove helpful in answering the re-

ample, ifY = {a,b}, 1 = {a}, X3 = {b}, L = {ab, ba} maining open questions.

andK = {ab}, then it is impossible, based on the observa-

tions (a, b), to determine whethetb or ba happened. Thus, o

our first concern is taheck observabilityOur second con-  Related work:  The unbounded-memory distributed ob-

cern is tosynthesizéhe observers and the decision function Servation problem was introduced in [26], where it was
automatically. shown to be undecidable using a direct reduction from

In this paper, we consider two versions of the problem, POSt's Correspondence Problem. In this paper, we provide
depending on the memory requirements of the observers. Irf different proof, using a reduction from the intersection
the unbounded memomersion, the observers are assumed problem of rational relations, known to be undecidable [6].
to record the entire observed sequence (notice that, even irf "€ Néw proof is interesting not only as an alternative proof
this case, observability is not guaranteecc.f. example but also because it relates the problem to the theory of ra-

above). In thefinite memoryersion, the observers are re- tional relations.
quired to be finite state automata. The synthesis of bounded-memory observers (and the
The main results we obtain are as follows. We show that, decision function) is related to the synthesis problems con-
whenL is trace-closed, unbounded-memory distributed ob- sidered in [4, 21, 8, 22, 1, 25]. Generally put, the problem
servability is equivalent td< being trace-closed and cen- IS, given a specificatiory, synthesize a distributed system
trally observable (i.e., observable by a single observer! Which satisfiesS. In [21, 8] S is a finite labelled transi-
able to see all observable events). Checking observabil-tion system (LTS)/ is a product of LTSs synchronizing on
ity in this case is decidable for regular languages, sincecommon labels andlis required to be isomorphic or bisim-
central observability reduces to a simple emptiness quesilar to S. LTSs do not have accepting states, whereas in
tion and trace-closure is also decidable. We show thatOur observation setting, the decision function plays a role of
checking observability in the general case (i.e., wien “global” acceptance.
is not trace-closed) is undecidable, by a reduction of the In [25], S is a regular languagel is a (safe) asyn-
intersection problem for rational relations. We also show chronous automatof29] and the language of must be
that bounded-memory distributed observability is equiva- contained inS, plus some conditions to avoid trivial so-
lent to unbounded-memory distributed observability (thus, lutions. In [4, 3] I is a Petri net. Both Petri nets and
also equivalent to trace-closure &, thus, decidable) when  (safe) asynchronous automata are more powerful than our
L is trace-closed and the subalphab®tsare pairwise dis-  distributed observers in terms of communication between
joint. In all decidable cases, observers and decision func-the concurrent agents. Indeed, in our model, the observa-
tions can be automatically synthesized. tion of a letter leads an observer to a unique next state
The topic of this paper is distributed observation. Al- dependenthof the states of the other observers (thus, the
though we use results from trace theory as well as from observers do not communicate at all during the collection
the theory of rational relations, our objective is not to make phase). Whereas in Petri nets and (safe) asynchronous au-
contributions in these domains, but to study the distributed tomata a transition generally depends on the global state of
observation. Thus, the contributions of this paper are, first,the system. Another difference is that [8, 25] allow non-
the definition of two off-line distributed observation prob- determinism, whereas our observers are required to be de-
lems, second, (un)decidability results for these problems,terministic.
and third, links of such problems to trace and rational rela- In [1] S is a message-sequence chart (MSC) grdph,



is a set of automata asynchronously communicating overY of X is called a generator ok iff X = Y™, where

FIFO buffers and it is required thdt exhibits exactly the

behaviors ofS. MSC specifications are also considered

V*=noYiandY? = {1}, Y+l =Y . V7,
A machine overX is a tuple(S, so, t), whereS is a set

in [22]. Also slightly related to this paper are works on dis- of statessy € S is the initial state, antl: Sx X — Sisthe
tributed system estimation or fault diagnosis based on Petri(deterministic) transition function, satisfying the following
nets [15, 5]. The problem in [15] is to estimate the current condition:Vz,z’ € X,Vs € S, t(s,z - 2') = t(t(s,z),2’).
marking of a Petri net based on the local observations. [5]Givenz € X, ¢(x) is a shorthand notation fat(sg, ).
show how to construct, given a Petri net, an unfolding which An automaton oveX is a tupleA = (S, so,t, F'), where
“explains” in some sense the local observations of the set of(.5, so, t) is @ machine oveX andF' C S is the set of final

distributed sensors.
[13, 29] have independently considered so-cattéded

states. The subset &f recognized byA, denotedL(A), is
the set{z € X | t(z) € F}. The class of recognizable

and weakly-mixedtrace languages. These are languagessubsets ofX, denotedRec(X), is defined as the class of all
accepted by products of finite automata synchronizing onsubsets ofX’ which are recognized by finite-state automata
common letters (i.e., products of LTSs with accepting overX.

states). In mixed languages, the automata Hawal ini-

The class of rational subsets &f, denotedRat(X), is

tial and accepting sets of states and the initial/acceptingthe class of all subsets &f which can be defined by rational
set of the product is the cartesian product of the local ini- expressions oX . The latter aré) (denoting the empty set),
tial/accepting sets. In weakly-mixed languages, the initial z, for z € X (denoting the sefz}), e- ¢, e+ ¢/, *, where

and accepting sets are arbitrary, iglgbal. Weakly-mixed

e, ¢’ are rational expressions, denoting, respectiveélyy”,

languages correspond to a special case of bounded-memory U Y’ andY™, whereY, Y’ are the sets denoted bye’.

distributed observation, whetle = ¥*. In [13] it is shown

For any finitely generated monoiX, Rec(X) C

that every weakly-mixed language is a finite union of mixed Rat(X). The converse inclusion does not generally hold.
languages and that every regular trace language is the holt holds in the monoid=*, whereX is a finite set (oral-
momorphic image of a weakly-mixed language. Partial de- phabe}. ¥* is the set of all finite words ovex, concate-
cidability results on the problem, given a regular trace lan- nation of words plays the role of the product operator and

guage, is it mixed (weakly-mixed), are provided in [7].

the empty word, denoted is the neutral element. Kleene’s

Finally, as mentioned in the introduction, distributed theorem states thatec(X*) = Rat(X*).

observation is related to distributed control.

In fact,

In the monoidX; x ¥5, whereX,, ¥, are finite disjoint

unbounded-memory distributed observation can be reducedphabets,ec(¥] x ¥3) is a strict subset oftat (%] x

to distributed control without communication [27]. This

¥5) [6]. X1 x X% is the set of all pairs of finite words over

may seem surprising, since observation is done in two 21 andX,. The neutral element i, ¢) and the product is
phases and the second phase is centralized, whereas the didefined as piecewise concatenatidpi, p2) - (01,02) =

tributed control problem used in [27] is on-line, withaat

(p1o1, p202). The rational subsets df] x 33 are also

priori communication between the controllers. The paradox calledrational relationsover:; and¥,.

is resolved by the fact that there exist plants which allow

the controllers to communicabedirectly, through enabling

A number of problems on rational sets are undecid-
able. For instance, it is undecidable to check, givere

and disabling plant transitions. Thus, two-phase observa-flat(X] x X3), whetherR € Rec(X] x ¥3). Itis also un-

tion can be simulated by on-line control.

2 Preliminaries

decidable to check, giveR;, Ry € Rat(X] x £3), whether
RiNRy=10.

Projections of words: Givenp € ¥* and¥; C %,
the projection ofp onto £, denotedPs, (p), is the word

In this section we give a brief overview of standard con- ; ¢ >% obtained fromp by erasing all letters not ix; .

cepts, to be used in the rest of the paper. For more detailsFor example, ifY =

the reader is referred, for instance, to [6, 11].

Recognizable and rational subsets of monoids: A
monoid is a setX equipped with a binary product oper-
ator - which is associative (i.e., for alty,zs,23 € X,
(x1 - x9) - w3 = x1 - (22 - x3)) and a neutral elemerit
(e, forallz € X, z-1 =1-2 = z). The prod-
uct naturally extends to subsets &f for X;, X, C X,
X1 Xo = {a1 20 | 21 € X1,29 € Xa}. A subset

{a,b,c} andX; = {a,c}, then
Ps,, (abbcbab) = aca. When no confusion arises, we ab-
breviatePs,, (p) by P;(p). The following properties of pro-
jections can be easily derived from the definitions.

Lemma 1 LetX, 34, 35 be finite alphabets such that, C
¥; C X. ThenVp,p' € ¥* . Py, (p) = Py, (p) =
Pe,(p) = Py (0).

Projection extends naturally to sets of words, thus,
Py, (L) ={Pxs,(p) | p € L}. GivenK C X3, the inverse



projection is defined a§§11(K) ={peX| Pp € f:37 x - x ¥ — {0,1}, such that
K} (notice thatt D %4 is implicit in this case).

VPGL (peKﬁf(PXH(p)aaPZn(p)) = 1)
Trace equivalence: A concurrent alphabet is a pair
(X, D) whereX is a finite alphabet and C X x X is According to Definition 1K is observable iff functiorf
a reflexive and symmetric relation, called the dependencecan decide whether a behavjoof L was inK based solely
relation. D induces the irreflexive and symmetric relation on then observations, that is, the projections @fonto
I = (£ x %) — D, called the independence relatiol2 ¥1,...,2,. 1 The observers here are trivial. They merely
also induces the equivaleneg called the trace equivalence, record the entire sequence they observe. Since this se-
defined as the reflexive and transitive closure of the rela- quence is a-priori unbounded in length, the observers need
tion ='C ¥* x X*, wherer =' p iff there exist words  unbounded memory. It is interesting to consider also the

01,02 € ¥* and(a,b) € I, such thatr = o1aboz and  case where the observers are required to have finite mem-
p = o1baocsy. Thatis,m = p iff © can be obtained from by ory.

repeatedly swapping adjacent independent letters. >*
is said to be a trace language oy&); D) if it is closed un-
der=, thatisVp,p' e X*,p=p' = (pe L & p € L).
Alternatively, a trace languagk can be viewed as a sub-
set of thequotientmonoid of ¥* with respect to=, de-
noted M (X*, D). Thus, an element oM (X*, D) is an
equivalence class of words related by Forp € X%,

Definition 2 (Distr. observation with bounded memaory)
Let K C L C ¥*. We say thatl is finitely observable
with respect tal. and (X4, ..., 3,,) iff there exist finite-state
machinesd4; overy;, A; = (S;,s9,t;),i =1,...,n,and a
functiong : S; x --- x S,, — {0, 1}, such that

o] = {p’ € Z* | p = p'} is the equivalence class pf

[p] € M(X*, D). VpelL. (p €K < g(ti(Ps,(p)), - ta(Ps, (p))) = 1).
Consider a finite alphabet® and subalphabets

S0 S, €Y LetY, =, , Ziands, =% -3, According to Definition 2, in the finite-memory case, ob-

We define the following dependence relation: server; does not record the entire observatiby, (p), but

only a states; = ¢;(Px,(p)) among a finite set of states
Dy, . s, =( U Y x 3) U{(u,u) |ueX,}. (1) S;. The decision function has access to the state of each
i=1,..,n observer in order to make its decision.

o ) _ It should be noted thak’ is finitely observable in a triv-
In other words, two distinct letters are dependent iff there is j5| way whenk = ( or K = L. Also, if an observer

a subalphabeX; containing both. Notice that the;’s are cannot observe anything, i.e; = 0, then this observer
not necessarily disjoint neither do they cover can be ignored, since it does not bring any information. On
The following lemma states an important property relat- the other hand, if there exists an observer which can ob-
ing projections and trace equivalence. Similar results canseryve all events that all other observers can observe, i.e.,
be found in [10, 13]. 3i,Vj,%; C %, then the problem degenerates to a central-
ized observation problem, since all observers exceptthe
are redundant.
Obviously, finite observability implies observability.
The converse is not generally true. This is illustrated be-
low, in Example 1.

Lemma 2 Let 3 be a finite alphabet and; C X, for
i = 1,...,n. Let= be the trace equivalence induced by
Dy, .. », defined as above. Then, for apyy’ € %*,
p=piffVie {l,..,n}.Pi(p) = Pi(p) and Py (p) =

Ps, (p').
5. () The following lemma states some closure properties of
o . observability with respect to union, intersection and relative
3 Distributed Observation Problems complement.

Unless otherwise stated, in the rest of the paper, we asi1emma 3 If K, and K, are observable (resp. finitely ob-
sume thate is a finite alphabet and consider subalphabets servable) w.r.t.L and (%4, ..., X,) thenK; U Ko, K1 N K,
Y, Cx,fori=1,...,n. %, = Ui:l,....n Y; is the set of all and L — K, are also observable (resp. finitely observable)
observableevents. Notice thal; need not be disjoint and  w.r.t. L and (%4, ..., X,).
Y, need not be equal tB.

IMore generally, we could associatenaskfunction M; : ¥ — O; U

Definition 1 (Distr. observation with unbounded memory) {7} to each observer [9], with the meaning that even€ I is either
totally unobservable to observe(when M;(a) = 7) or is perceived as

LetK C L C ¥*. We say thaIK is Obse.rvable with €~ 4 € O; (when)M;(a) = o). This would not affect the results of this paper
spect toL and (X4,...,%,) iff there exists a function in an essential way.



4 Necessary and sufficient conditions When L and K are regular languages, conditions (3)
and (4) can be checked algorithmically, since regular lan-
We begin by a necessary and sufficient condition for guages are closed under intersection, complementation and
unbounded-memory observability. Intuitively, the condition Projection, and checking regular language emptiness is de-
states thakk is observable w.r.tL iff there exist no two be-  cidable. Fom = 1, Conditions (2-4) are equivalent, which

haviors inZ which y|e|d the same observations, yet one is |mp||es that CheCking centralized observability is decidable.
in K and the other is not. The following lemma provides another necessary condi-

tion for observability.

Lemma4 K is observable with respect ta, and _ -
(S 5, iff P Lemma 7 If K is observable (resp. finitely observable)
) ) n

w.rt. Land (%4, ...,%,) thenPs_(K) is observable (resp.
Vpe K .¥p € L-K .3ie{1,...n}. Ps,(p) # Ps,(p)). finitely observable) w.rtPs (L) and (X4, ..., X,,).

@) Proof Supposek is observable and lef be the decision
function. We claim thatf is a valid decision function for
observability of Py (K) w.rt. Py, (L) and (24, ..., Z,,).
Letr € Py (L). There existp € L such thatr = Ps_(p).
Foralli =1,...,n, sinceX; C 3,, Ps,(p) = Py, (1) =
(Lemma 1). Suppos¢(my,...,m,) = 1. Then,p € K,
thus, = € Py (K). Supposef(m,...,m,) = 0. Then,
,%,,) then p € L — K. We claim thatr ¢ Py (K). Otherwise,
m € Py (K)N Py, (L — K), thus, by Lemma 5K is not
Ps (K)N Pg,(L—K)=10. ©) observable, which contradicts the hypothesis. The proof is
similar in the finite observability case. ]

Although the above condition characterizes observabil-
ity, it cannot be verified algorithmically. Indeed, as we shall
see in Section 6, checking observability is undecidable for
n > 2. Thus, we provide some conditions which are decid-
able.

Lemma5 If K is observable w.rtL and (%, ...

Condition (3) essentially states thitis observable in a
centralized manner. This is clearly a necessary, but not suf-
fiCient, condition for distributed Obsel’vability. Notice that 5 A SpeCIal case: L trace |anguage over
the above condition is necessary also for finite observabil- (Z D )
ity, since the latter implies observability. e

Lemma 6 If In this section we examine a special case of the obser-
vation problems, namely, wheh is a trace language over
Jie{l,..,n}.Py,(K)NPs,(L-—K)=0. (4) (2, Ds,,..%, ). Thisis an important case in practice. For
instance, wherl is obtained from the asynchronous prod-
thenK is finitely observable w.r.tL and (X1, ..., £,,). uct of a set of automata ov&), ..., ¥, then it is guaranteed
to be trace-closed. This is also the case whea >*, that
Condition (4) essentially states that all observers except thejg \when we have no model of the system under observa-
i-th one are redundant. Thus, this is a degenerate case whefigon (although we do have a model of the requiremei,
the problem is reduced to a centralized observation prob-when [ is trace-closed, we call the observation problems
lem. It is well-known that in the centralized case observ- gimple
ability and finite observability are equivalent: the finite ob-  The main results of this section are two. First, we show
server is simply obtained by a determinization procedure that unbounded-memory simple observability is “almost”

(subset construction). equivalent to trace-closure and decidable for regular lan-
Condition (4) is not necessary, as we now show with an gyages. Second, we show finite-memory simple observabil-

example. Let = {a,b,c}, ¥1 = {a,b}, ¥ = {b,c}. ity is equivalent to unbounded-memory simple observabil-

Let p = abc, p1 = ab, p2 = be. Let L = {p,p1,p2}, ity, in the case where the subalphabgtsare disjoint. In a

K = {p1,p2}. We havePs, (p) = Ps,(p1) = ab,  sense this is the best we can do, since there is an example

Ps,(p) = Ps,(p2) = beand Py, (p1) = Pe,(p2) = b. of a system which is observable but not finitely observable,
Then, Py, (K) N P, (L — K) = {ab,b} N {ab} = {ab} whereX; are not disjoint (Example 1).

andPs, (K)NPs, (L — K) = {b,be}N{be} = {be}. Thus,

Condition (4) does not hold. However, Condition (2) holds. Theorem 1 LetX be a finite alphabet anil; C X, fori =

Indeed, observer 2 can distinguish betweeand p;, be- 1,...n. LetK C L C ¥*. Assumd. is a trace language
causePs, (p) = bc # b = Ps,(p1). Also, observer 1 can  over (X, Ds, . x,). Then,K is observable w.r.t.L and
distinguish betweep andp,, becauseé™., (p) = ab # b = (34, ..., 2,) iff K is a trace language ove2, Dy, .. =, )
Ps, (p2). and Condition (3) holds.



Proof Only if: Supposek is observable. Lep € K and
considerp’ € X* such thato = p’, where= is the trace
equivalence induced bPs, s, . Sincep € L andL is
trace-closedp’ € L. By the “only if” part of Lemma 2,
Vi € {1,...,n}, Pi(p) = Pi(p'). By Lemma 4,0’ must be
in K, otherwiseK would not be observable w.r.tL and
(31,...,25,). Thus,K is a trace language. By Lemma 5,
Condition (3) holds.

If: SupposeK is not observable. By Lemma 4, there
existp € K, p € L — K, such thatvi € {1,...,n},
P;(p) = Pi(p'). Without loss of generality, we can as-
sume thap = ¢ - uwandp’ = ¢’ - v/, whereoc = Pg_(p),

o' = Py, (p') andu, v’ € (X — 3,)*. This is because we
can “push” unobservable letters to the encghaindp’, ob-

taining trace-equivalent words (recall that unobservable let-

ters are independent from observable letters). Transformin
p into a new, trace-equivalent word does not affect the as
sumptionp € K (becauseX is trace-closed) neither the
assumptiorvi € {1,...,n}, P;(p) = Pi(p’) (by the “only
if” part of Lemma 2). Similarly forp’. Thus, we still have
p andp’ contradicting the observability df. We will next
show thato = ¢’. This implieso - v = o’ - u, thus, by
trace-closure o, ¢’ - u € K. Sinceo’ = Py (o’ - u) and
o' =Py (p'), we havePs, (K)NPs, (L — K) # 0, which
contradicts our hypothesis. Thus, must be observable.

We complete the proof by showing= ¢’. To see this,
observe that the “if” part of Lemma 2 applies ¢doand ¢’
by takingX to beX,. ]

We can therefore conclude that simple observability for
regular languages is decidable:

Corollary 1 WhenK and L are regular languages and
is trace-closed, checking observability is decidable.

Proof By Lemma 5 and Theorem 1, Condition (3)
and trace-closure off is a necessary and sufficient
condition for simple observability of. Checking trace-

However, K is not finitely observable. Intuitively, this is
because the number &% can be arbitrary, and observer
needs to record the parity of the numberagk it observes
betweereverytwo consecutivé's. ]

Observe that, in the example above, N X5 # (. It
turns out that wherx; are pairwise disjoint, an& is reg-
ular, finite simple observability is equivalent to simple ob-
servability, as we show below. Disjointnesssgfmeans the
observers do not share any observable event. This is not an
unusual situation in practice: often in a distributed system
the observers are placed separately so that one observer has
no access to information transferred through the interfaces
of the others.

gTheorem 2 Let X be a finite alphabet an&d; C %, for

i=1,.,n,s0thatvyl <i<j<nX,NY;=0(.e,X;
are pairwise disjoint). Lef{ C L C ¥*. Assume thak is
regular and thatl is a trace language ovei:, Dy, . s, ).
Then, K is finitely observable w.r.tL and (%4, ..., %,,) iff
K is observable w.rtL and (X4, ..., X,).

Proof Finite observability clearly implies observability, so
we only need to prove the converse. By Part 1 of Theo-
rem 1,K is a trace language ov€E, Dy, . ) and Con-
dition (3) holds. Let us viewK as a subset of the quotient
monoid M (X*, Dy, . »,). Let3, = {u1,...,un}. By
the fact that:; are pairwise disjoint and disjoint withl,,,

it can be easily shown that/(¥*, Dx, s, ) is isomor-
phic to X} x -+ X% x {u}* x -+ x {u,, }*: it suffices
to map [p] to (PE1 (0)7 ey PZn (0)7 P{m}(p)? sy P{um}(p)
and vice-versa. By Mezei's theorem [6], there exists 0
and regular languages; ; C X andU;; C {u}*, for
i=1,...,n,l=1,...,m,j=1,..,q,suchthat

q
K:UKL]'X"'XK”’]’XUL]’X'”

j=1

X Um,,j-

closure of regular languages is decidable. So is checking _ _ _
Condition (3), since regular languages are closed underWWe claim that we can assume, without loss of generality,
intersection, complementation and projection, and checkingthatU; ; = {w;}*, foranyl = 1,..m ,j = 1,...,q. In-

emptiness for regular languages is decidable. ]

Obviously, simple finite observability implies simple ob-

deed, suppose there is soigsuch that/; ; # {w; }*, that
is, there is somé such that} ¢ U, ;. Now, considep =
(p]_, vy Py 01, ...,O'm> S KLj X e X Kn,j X UL]‘ X e X

servability. The converse is not always true, as the following Un.; = K; (notice that thigj is the same as fdV, ; fixed
example shows. (Similar examples can be found in [21, 8].) above). Also consides’ = (p1, ..., pn, 01, s Ufs ..o Oy

Example 1 (Observability - finite observability) Let

¥ = {al,b}, Yo = {GQ,b} andX = {al,ag,b}. Let

K = ((a1 + a2)(a1 + a2 + b))*. It can be checked that

is observable w.r.tX* and (X, X3). Intuitively, it suffices

Since K is observable and for all = 1,...,n, Ps,(p)
pi = Ps,(p'), it must be thayy’ € K. This means that
by addingu} to U; ; we do not add any extra words .
Proceeding like this for any word “missing” froij, ;, we
reach our claim. The result of the claim is that we can ig-

for the decision function to check that between every twonore alll; ; when we build the observers.

consecutiveéy’s (or from the beginning of the computation
until the firstb observed) the sum af;’'s and as’s is odd.

Indeed, let4, ; be the finite-state deterministic automa-
ton recognizingK; ;, fori = 1,..,n , j = 1,...,q. For



1 = 1,...,n, we build a finite-state deterministic machine
A;, defined as thesynchronous producdf A; 1, ..., 4; 4
that is, the set of states of; is the cartesian product of
the sets of4; 1, ..., A; 4, and a move ofd; corresponds to a
move of each of4; i, ..., 4; , by the same letter. The ma-
chinesAq, ..., A, correspond to the finite-state observers.
The decision functiom is defined as follows:
GU(S1.15-+351,q) s -+o» (Sn1s s Snrg)) =
{ 1, if3je{l,....q}.Vie{l,..,n}.si; € F;;
07

otherwise
whereF; ; is the set of accepting states 4f ;. It can be
checked thap € K iff g(t1(Ps,(p)), -+, ta(Ps, (p))
1. Thus,K is finitely observable w.r.tL and (%, ..., X,,).

Proof  We reduce the intersection problem of ratio-
nal relations to checking observability. Lé&t;,>s be
disjoint alphabets and leE 1 U Xo. Consider
Ry, Ry € Rat(X3 x X3). CheckingR; N Ry = () is unde-
cidable [6]. By Lemma 8, we can build regular languages
L; C ¥* such thatkR;, = Ps, »,(L;), for ¢ 1,2. If
L1 N Ly 7& 0 then le,EQ(Ll) N PEl,Ez(LQ) 7é 0, i.e.,
RiN R, 7& 0. If LiNLy = @then(Ll ULQ) — L1 = Lo.
Thus,R; N Ry = 0 iff PE1,22 (Ll) n PEl,Eg (Lg) = () iff
P§31722 (Ll) N P21722((L2 @] Ll) — Ll) = 0. By Lemma 9,
the last equation holds iff,; is observable w.r.tL; U Ly
and(Xq, Xo). [ ]

It is interesting to note that the above construction does not/ Synthesis

depend orl.

6 The general case

We now consider the general case, i.e., wheris not

In the cases where checking observability or finite ob-
servability is decidable, we can synthesize observers and
decision function that solve the problem. Let us outline how
this can be done.

trace-closed. The main result is that checking unbounded-  First, consider the unbounded-memory case and suppose
memory observability is undecidable, even wHeérand L. L is trace-closed (otherwise, checking observability is un-
are regular languages. This was first shown in [26], using decidable). The first step is to ensure Condition (3) 'and
a direct reduction of Post's Correspondence Problem. Intrace-closure oft hold. Then, we just need to synthesize
this paper, we provide an alternative proof using a reduc- the decision functiorf, since the observers are trivial (they

tion from the problem of checking whether the intersection "€cord the entire sequence they observe).7;et %7, for

of two rational relations is empty, which is known to be

undecidable (see, for instance, [6]). In the process, we pro-
vide some links between the distributed observation prob- f(ry,....7,) =

lems and the theory of rational relations.

For this section, let us assume that, ..., 33, are pair-
wise disjoint alphabets and &t = U;—;
L C ¥*, we define

PEl,m,Zn(L) = {(le (10)7 Py, (,0)) | pe L}'
Thus, Py, . x, (L) isasubset ok} x --- x . If Lis
regular (i.e., a rational subsetBf) thenPs, s (L)isa
rational subset o] x --- x ¥%. On the other hand, given

R € Rat(X} x --- x %), there exists a regular language
L C ¥*suchthat® = Pys,, .. s, (L) [6].

.....

Lemma 8 Forany R € Rat(X% x --- x ¥*) we can build
L € Rec(¥*) suchthatR = Py, ., (L).

We can now restate Condition (2) in the context of ratio-
nal relations.
Lemma 9 K is observable w.r.tL and (X4, ..., 2,,) iff
Py, . .s,(K)NPs, s, (L-—K)=0. (5)

Theorem 3 Checking unbounded-memory distributed ob-
servability for regular languages is undecidable.

i =1,...,n. We definef as follows:

1, it KNy, Pol(m) #0
1 0, otherwise
(6)

That is, f should return 1 iff there is a word iK which
produces the observatiofis;, ..., 7). Clearly, f is com-
putable. It is also correct. Indeed, lpt € L such
that P,(p) = m;, fori = 1,...n. If p € K then
f(m1,...,m,) = 1 by definition of f. If p ¢ K then
f(m,...,m,) must be equal to 0. Otherwise, there exists
p' € KNN_y ., Ps'(m), which impliesP;(p') = m,
fori =1, ...,n. This contradicts observability df .

Second, consider the bounded-memory case whese
trace-closed and&; are pairwise disjoint (otherwise, we
do not know whether checking finite observability is de-
cidable). Again, the first step is to check trace-closure of
K. If K is not trace-closed, then it is not (finitely) ob-
servable. Otherwise, by Theorem R, is finitely observ-
able. In fact, the proof of the theorem provides an algo-
rithm to construct the observer machines and decision func-
tion g necessary for bounded-memory observation. The
algorithm is based on the construction of a deterministic
asynchronous automaton recognizifig using existing al-
gorithms (e.g. [29, 12]). Due to the assumption that
are pairwise disjoint, the asynchronous automaton is a set
of non-communicating finite-state machines, as observed in



Bounded-memory observation Unbounded-memory observation
L trace Equivalent to unbounded-memory | Equivalent to Condition (3) an& trace,
observation whex; pairwise disjoint. decidable.
Otherwise ?
L not trace ? Undecidable.

Table 1. Summary of results and open questions.
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