
Two-phase distributed observation problems∗

Stavros Tripakis
Verimag Laboratory

Centre Equation, 2, avenue de Vignate, 38610 Gières, France
Stavros.Tripakis@imag.fr

Abstract

We introduce and study problems of distributed observa-
tion with bounded or unbounded memory. We are given a
system modeled as a finite-word languageL over some fi-
nite alphabetΣ and subalphabetsΣ1, ...,Σn of Σ modeling
n distinct observation points. We want to build (when there
exist)n observers which collect projections of a behavior
in L ontoΣ1, ...,Σn, then send them to a central decision
point. The latter must determine whether the original be-
havior was in a givenK ⊆ L. In the unbounded-memory
case, observers record the entire sequence they observe. In
the bounded-memory case, they are required to be finite-
state automata.

We show that, whenL is trace-closed with respect
to the usual dependence relation induced byΣ1, ...,Σn,
unbounded-memory observability is equivalent toK be-
ing centrally observable and trace-closed, thus decidable.
WhenL is not trace-closed, the problem is undecidable,
even ifK andL are regular. We also show that bounded-
memory observability is equivalent to unbounded-memory
observability (thus decidable) whenL is trace-closed and
Σi are pairwise disjoint. Otherwise, the problem remains
open. In the decidable cases, observers and decision func-
tion can be automatically synthesized.

1 Introduction

In this paper we study problems of distributed obser-
vation. Such problems arise naturally in contexts of dis-
tributed control (e.g., see [9, 23, 24, 17, 16, 18, 26, 19, 2,
20, 14]). There, a number of agents control a single plant,
each observing (and acting upon) only part of the plant.
Distributed control always “hides” a distributed observation
problem, since the agents must infer, based on a set of par-
tial observations, facts about the original behavior of the

∗Work partially supported by CNRS STIC project “CORTOS” and IST
Network of Excellence “ARTIST2”.

plant [26]. This remains true independently of whether the
agents are allowed to communicate or not [27].

Distributed observation problems are also interesting for
their own sake. For instance, when monitoring a large, dis-
tributed system such as a network, a vehicle controller con-
sisting of many components (ECUs), a manufacturing plant,
etc., one usually relies on local monitors which collect in-
formation at different parts of the system. This information
can then be gathered and analyzed off-line at a central point.
Even for finite sets of observations, such problems are in-
herently difficult from a complexity point of view [28]. No-
tice that it is often impractical to endow the local moni-
tors with advanced capabilities such as communication and
clock synchronization, which would change the distributed
nature of the problem in a significant way.

The general architecture of the problems we study in this
paper is shown in Figure 1. There aren observers which are
attached to different (distributed) points of the system under
observation. The observation takes place in two phases. The
first phase, thecollection phase, ison-line: the system is left
to execute for a finite amount of time and, meanwhile, each
observer collects its own local observation. The second
phase, thedecision phase, is off-line: every observer sends
its observation to a central decision point, which makes a
decision. The decision may involve, for instance, detecting
faults in the behavior of the system, measuring its perfor-
mance, and so on.

In particular, we consider a very simple modeling set-
ting. The system under observation (orplant) is modeled as
a regular languageL over some finite alphabetΣ. A letter in
Σ can be seen as an event generated by the plant and a finite
word in L can be seen as a behavior of the plant. Observer
i can only observe a subset of eventsΣi ⊆ Σ. Thus, the
observation that observeri collects from a behaviorρ ∈ L
is theprojectionof ρ ontoΣi. Notice thatΣi are not nec-
essarily disjoint. A regular languageK ⊆ L models a set
of distinguishedbehaviors of the plant. For example, be-
haviors inK may be those satisfying a given requirement
while those inL−K do not. The objective of the decision
point is to determine whether the plant produced a behavior



observer 1 observern

observer 1 observern

? ?

?

? ?

observed system

decision function· · ·

· · ·

(a) collection phase (b) decision phase

decision

Figure 1. Distributed observation in two phases.

in K or in L−K.
Obviously, it is not always possible to make a correct de-

cision, based only on the distributed observations. For ex-
ample, ifΣ = {a, b}, Σ1 = {a}, Σ2 = {b}, L = {ab, ba}
andK = {ab}, then it is impossible, based on the observa-
tions(a, b), to determine whetherab or ba happened. Thus,
our first concern is tocheck observability. Our second con-
cern is tosynthesizethe observers and the decision function
automatically.

In this paper, we consider two versions of the problem,
depending on the memory requirements of the observers. In
theunbounded memoryversion, the observers are assumed
to record the entire observed sequence (notice that, even in
this case, observability is not guaranteed− c.f. example
above). In thefinite memoryversion, the observers are re-
quired to be finite state automata.

The main results we obtain are as follows. We show that,
whenL is trace-closed, unbounded-memory distributed ob-
servability is equivalent toK being trace-closed and cen-
trally observable (i.e., observable by a single observer
able to see all observable events). Checking observabil-
ity in this case is decidable for regular languages, since
central observability reduces to a simple emptiness ques-
tion and trace-closure is also decidable. We show that
checking observability in the general case (i.e., whenL
is not trace-closed) is undecidable, by a reduction of the
intersection problem for rational relations. We also show
that bounded-memory distributed observability is equiva-
lent to unbounded-memory distributed observability (thus,
also equivalent to trace-closure ofK, thus, decidable) when
L is trace-closed and the subalphabetsΣi are pairwise dis-
joint. In all decidable cases, observers and decision func-
tions can be automatically synthesized.

The topic of this paper is distributed observation. Al-
though we use results from trace theory as well as from
the theory of rational relations, our objective is not to make
contributions in these domains, but to study the distributed
observation. Thus, the contributions of this paper are, first,
the definition of two off-line distributed observation prob-
lems, second, (un)decidability results for these problems,
and third, links of such problems to trace and rational rela-

tion theory. The third point is, to the best of our knowledge,
rarely found in works on decentralized controller synthesis.
Some of these links may prove helpful in answering the re-
maining open questions.

Related work: The unbounded-memory distributed ob-
servation problem was introduced in [26], where it was
shown to be undecidable using a direct reduction from
Post’s Correspondence Problem. In this paper, we provide
a different proof, using a reduction from the intersection
problem of rational relations, known to be undecidable [6].
The new proof is interesting not only as an alternative proof
but also because it relates the problem to the theory of ra-
tional relations.

The synthesis of bounded-memory observers (and the
decision function) is related to the synthesis problems con-
sidered in [4, 21, 8, 22, 1, 25]. Generally put, the problem
is, given a specificationS, synthesize a distributed system
I which satisfiesS. In [21, 8] S is a finite labelled transi-
tion system (LTS),I is a product of LTSs synchronizing on
common labels andI is required to be isomorphic or bisim-
ilar to S. LTSs do not have accepting states, whereas in
our observation setting, the decision function plays a role of
“global” acceptance.

In [25], S is a regular language,I is a (safe) asyn-
chronous automaton[29] and the language ofI must be
contained inS, plus some conditions to avoid trivial so-
lutions. In [4, 3] I is a Petri net. Both Petri nets and
(safe) asynchronous automata are more powerful than our
distributed observers in terms of communication between
the concurrent agents. Indeed, in our model, the observa-
tion of a letter leads an observer to a unique next statein-
dependentlyof the states of the other observers (thus, the
observers do not communicate at all during the collection
phase). Whereas in Petri nets and (safe) asynchronous au-
tomata a transition generally depends on the global state of
the system. Another difference is that [8, 25] allow non-
determinism, whereas our observers are required to be de-
terministic.

In [1] S is a message-sequence chart (MSC) graph,I

2



is a set of automata asynchronously communicating over
FIFO buffers and it is required thatI exhibits exactly the
behaviors ofS. MSC specifications are also considered
in [22]. Also slightly related to this paper are works on dis-
tributed system estimation or fault diagnosis based on Petri
nets [15, 5]. The problem in [15] is to estimate the current
marking of a Petri net based on the local observations. [5]
show how to construct, given a Petri net, an unfolding which
“explains” in some sense the local observations of the set of
distributed sensors.

[13, 29] have independently considered so-calledmixed
and weakly-mixedtrace languages. These are languages
accepted by products of finite automata synchronizing on
common letters (i.e., products of LTSs with accepting
states). In mixed languages, the automata havelocal ini-
tial and accepting sets of states and the initial/accepting
set of the product is the cartesian product of the local ini-
tial/accepting sets. In weakly-mixed languages, the initial
and accepting sets are arbitrary, i.e.,global. Weakly-mixed
languages correspond to a special case of bounded-memory
distributed observation, whereL = Σ∗. In [13] it is shown
that every weakly-mixed language is a finite union of mixed
languages and that every regular trace language is the ho-
momorphic image of a weakly-mixed language. Partial de-
cidability results on the problem, given a regular trace lan-
guage, is it mixed (weakly-mixed), are provided in [7].

Finally, as mentioned in the introduction, distributed
observation is related to distributed control. In fact,
unbounded-memory distributed observation can be reduced
to distributed control without communication [27]. This
may seem surprising, since observation is done in two
phases and the second phase is centralized, whereas the dis-
tributed control problem used in [27] is on-line, withouta
priori communication between the controllers. The paradox
is resolved by the fact that there exist plants which allow
the controllers to communicateindirectly, through enabling
and disabling plant transitions. Thus, two-phase observa-
tion can be simulated by on-line control.

2 Preliminaries

In this section we give a brief overview of standard con-
cepts, to be used in the rest of the paper. For more details,
the reader is referred, for instance, to [6, 11].

Recognizable and rational subsets of monoids: A
monoid is a setX equipped with a binary product oper-
ator · which is associative (i.e., for allx1, x2, x3 ∈ X,
(x1 · x2) · x3 = x1 · (x2 · x3)) and a neutral element1
(i.e., for all x ∈ X, x · 1 = 1 · x = x). The prod-
uct naturally extends to subsets ofX: for X1, X2 ⊆ X,
X1 · X2 = {x1 · x2 | x1 ∈ X1, x2 ∈ X2}. A subset

Y of X is called a generator ofX iff X = Y ∗, where
Y ∗ =

⋃
i≥0 Y i andY 0 = {1}, Y i+1 = Y · Y i.

A machine overX is a tuple(S, s0, t), whereS is a set
of states,s0 ∈ S is the initial state, andt : S×X → S is the
(deterministic) transition function, satisfying the following
condition:∀x, x′ ∈ X,∀s ∈ S, t(s, x · x′) = t(t(s, x), x′).
Given x ∈ X, t(x) is a shorthand notation fort(s0, x).
An automaton overX is a tupleA = (S, s0, t, F ), where
(S, s0, t) is a machine overX andF ⊆ S is the set of final
states. The subset ofX recognized byA, denotedL(A), is
the set{x ∈ X | t(x) ∈ F}. The class of recognizable
subsets ofX, denotedRec(X), is defined as the class of all
subsets ofX which are recognized by finite-state automata
overX.

The class of rational subsets ofX, denotedRat(X), is
the class of all subsets ofX which can be defined by rational
expressions onX. The latter are∅ (denoting the empty set),
x, for x ∈ X (denoting the set{x}), e · e′, e + e′, e∗, where
e, e′ are rational expressions, denoting, respectively,Y ·Y ′,
Y ∪ Y ′ andY ∗, whereY, Y ′ are the sets denoted bye, e′.

For any finitely generated monoidX, Rec(X) ⊆
Rat(X). The converse inclusion does not generally hold.
It holds in the monoidΣ∗, whereΣ is a finite set (oral-
phabet). Σ∗ is the set of all finite words overΣ, concate-
nation of words plays the role of the product operator and
the empty word, denotedε, is the neutral element. Kleene’s
theorem states thatRec(Σ∗) = Rat(Σ∗).

In the monoidΣ∗
1 × Σ∗

2, whereΣ1,Σ2 are finite disjoint
alphabets,Rec(Σ∗

1 × Σ∗
2) is a strict subset ofRat(Σ∗

1 ×
Σ∗

2) [6]. Σ∗
1 × Σ∗

2 is the set of all pairs of finite words over
Σ1 andΣ2. The neutral element is(ε, ε) and the product is
defined as piecewise concatenation:(ρ1, ρ2) · (σ1, σ2) =
(ρ1σ1, ρ2σ2). The rational subsets ofΣ∗

1 × Σ∗
2 are also

calledrational relationsoverΣ1 andΣ2.
A number of problems on rational sets are undecid-

able. For instance, it is undecidable to check, givenR ∈
Rat(Σ∗

1 × Σ∗
2), whetherR ∈ Rec(Σ∗

1 × Σ∗
2). It is also un-

decidable to check, givenR1, R2 ∈ Rat(Σ∗
1×Σ∗

2), whether
R1 ∩R2 = ∅.

Projections of words: Given ρ ∈ Σ∗ and Σ1 ⊆ Σ,
the projection ofρ onto Σ1, denotedPΣ1(ρ), is the word
π ∈ Σ∗

1 obtained fromρ by erasing all letters not inΣ1.
For example, ifΣ = {a, b, c} and Σ1 = {a, c}, then
PΣ1(abbcbab) = aca. When no confusion arises, we ab-
breviatePΣ1(ρ) by P1(ρ). The following properties of pro-
jections can be easily derived from the definitions.

Lemma 1 LetΣ,Σ1,Σ2 be finite alphabets such thatΣ2 ⊆
Σ1 ⊆ Σ. Then,∀ρ, ρ′ ∈ Σ∗ . PΣ1(ρ) = PΣ1(ρ

′) ⇒
PΣ2(ρ) = PΣ2(ρ

′).

Projection extends naturally to sets of words, thus,
PΣ1(L) = {PΣ1(ρ) | ρ ∈ L}. GivenK ⊆ Σ∗

1, the inverse

3



projection is defined asP−1
Σ1

(K) = {ρ ∈ Σ∗ | PΣ1(ρ) ∈
K} (notice thatΣ ⊇ Σ1 is implicit in this case).

Trace equivalence: A concurrent alphabet is a pair
(Σ, D) whereΣ is a finite alphabet andD ⊆ Σ × Σ is
a reflexive and symmetric relation, called the dependence
relation. D induces the irreflexive and symmetric relation
I = (Σ × Σ) − D, called the independence relation.D
also induces the equivalence≡, called the trace equivalence,
defined as the reflexive and transitive closure of the rela-
tion ≡1⊆ Σ∗ × Σ∗, whereπ ≡1 ρ iff there exist words
σ1, σ2 ∈ Σ∗ and (a, b) ∈ I, such thatπ = σ1abσ2 and
ρ = σ1baσ2. That is,π ≡ ρ iff π can be obtained fromρ by
repeatedly swapping adjacent independent letters.L ⊆ Σ∗

is said to be a trace language over(Σ, D) if it is closed un-
der≡, that is,∀ρ, ρ′ ∈ Σ∗, ρ ≡ ρ′ ⇒ (ρ ∈ L ⇔ ρ′ ∈ L).
Alternatively, a trace languageL can be viewed as a sub-
set of thequotientmonoid of Σ∗ with respect to≡, de-
notedM(Σ∗, D). Thus, an element ofM(Σ∗, D) is an
equivalence class of words related by≡. For ρ ∈ Σ∗,
[ρ] = {ρ′ ∈ Σ∗ | ρ ≡ ρ′} is the equivalence class ofρ,
[ρ] ∈ M(Σ∗, D).

Consider a finite alphabetΣ and subalphabets
Σ1, ...,Σn ⊆ Σ. Let Σo =

⋃
i=1,...,n Σi andΣu = Σ−Σo.

We define the following dependence relation:

DΣ1,...,Σn
= (

⋃
i=1,...,n

Σi × Σi) ∪ {(u, u) | u ∈ Σu}. (1)

In other words, two distinct letters are dependent iff there is
a subalphabetΣi containing both. Notice that theΣi’s are
not necessarily disjoint neither do they coverΣ.

The following lemma states an important property relat-
ing projections and trace equivalence. Similar results can
be found in [10, 13].

Lemma 2 Let Σ be a finite alphabet andΣi ⊆ Σ, for
i = 1, ..., n. Let ≡ be the trace equivalence induced by
DΣ1,...,Σn

defined as above. Then, for anyρ, ρ′ ∈ Σ∗,
ρ ≡ ρ′ iff ∀i ∈ {1, ..., n} . Pi(ρ) = Pi(ρ′) andPΣu(ρ) ≡
PΣu(ρ′).

3 Distributed Observation Problems

Unless otherwise stated, in the rest of the paper, we as-
sume thatΣ is a finite alphabet and consider subalphabets
Σi ⊆ Σ, for i = 1, ..., n. Σo =

⋃
i=1,...,n Σi is the set of all

observableevents. Notice thatΣi need not be disjoint and
Σo need not be equal toΣ.

Definition 1 (Distr. observation with unbounded memory)
Let K ⊆ L ⊆ Σ∗. We say thatK is observable with re-
spect to L and (Σ1, ...,Σn) iff there exists a function

f : Σ∗
1 × · · · × Σ∗

n → {0, 1}, such that

∀ρ ∈ L .
(
ρ ∈ K ⇔ f

(
PΣ1(ρ), · · · , PΣn

(ρ)
)

= 1
)
.

According to Definition 1,K is observable iff functionf
can decide whether a behaviorρ of L was inK based solely
on then observations, that is, the projections ofρ onto
Σ1, ...,Σn. 1 The observers here are trivial. They merely
record the entire sequence they observe. Since this se-
quence is a-priori unbounded in length, the observers need
unbounded memory. It is interesting to consider also the
case where the observers are required to have finite mem-
ory.

Definition 2 (Distr. observation with bounded memory)
Let K ⊆ L ⊆ Σ∗. We say thatK is finitely observable
with respect toL and(Σ1, ...,Σn) iff there exist finite-state
machinesAi overΣi, Ai = (Si, s

0
i , ti), i = 1, ..., n, and a

functiong : S1 × · · · × Sn → {0, 1}, such that

∀ρ ∈ L .
(
ρ ∈ K ⇔ g

(
t1(PΣ1(ρ)), · · · , tn(PΣn(ρ))

)
= 1

)
.

According to Definition 2, in the finite-memory case, ob-
serveri does not record the entire observationPΣi(ρ), but
only a statesi = ti(PΣi

(ρ)) among a finite set of states
Si. The decision function has access to the state of each
observer in order to make its decision.

It should be noted thatK is finitely observable in a triv-
ial way whenK = ∅ or K = L. Also, if an observer
cannot observe anything, i.e.,Σi = ∅, then this observer
can be ignored, since it does not bring any information. On
the other hand, if there exists an observer which can ob-
serve all events that all other observers can observe, i.e.,
∃i, ∀j, Σj ⊆ Σi, then the problem degenerates to a central-
ized observation problem, since all observers except thei-th
are redundant.

Obviously, finite observability implies observability.
The converse is not generally true. This is illustrated be-
low, in Example 1.

The following lemma states some closure properties of
observability with respect to union, intersection and relative
complement.

Lemma 3 If K1 andK2 are observable (resp. finitely ob-
servable) w.r.t.L and(Σ1, ...,Σn) thenK1 ∪K2, K1 ∩K2

andL−K1 are also observable (resp. finitely observable)
w.r.t. L and(Σ1, ...,Σn).

1More generally, we could associate amaskfunctionMi : Σ → Oi ∪
{τ} to each observer [9], with the meaning that eventa ∈ Σ is either
totally unobservable to observeri (whenMi(a) = τ ) or is perceived as
o ∈ Oi (whenMi(a) = o). This would not affect the results of this paper
in an essential way.

4



4 Necessary and sufficient conditions

We begin by a necessary and sufficient condition for
unbounded-memory observability. Intuitively, the condition
states thatK is observable w.r.t.L iff there exist no two be-
haviors inL which yield the same observations, yet one is
in K and the other is not.

Lemma 4 K is observable with respect toL and
(Σ1, ...,Σn) iff

∀ρ ∈ K . ∀ρ′ ∈ L−K . ∃i ∈ {1, ..., n} . PΣi
(ρ) 6= PΣi

(ρ′).
(2)

Although the above condition characterizes observabil-
ity, it cannot be verified algorithmically. Indeed, as we shall
see in Section 6, checking observability is undecidable for
n ≥ 2. Thus, we provide some conditions which are decid-
able.

Lemma 5 If K is observable w.r.t.L and(Σ1, ...,Σn) then

PΣo
(K) ∩ PΣo

(L−K) = ∅. (3)

Condition (3) essentially states thatK is observable in a
centralized manner. This is clearly a necessary, but not suf-
ficient, condition for distributed observability. Notice that
the above condition is necessary also for finite observabil-
ity, since the latter implies observability.

Lemma 6 If

∃i ∈ {1, ..., n} . PΣi
(K) ∩ PΣi

(L−K) = ∅. (4)

thenK is finitely observable w.r.t.L and(Σ1, ...,Σn).

Condition (4) essentially states that all observers except the
i-th one are redundant. Thus, this is a degenerate case where
the problem is reduced to a centralized observation prob-
lem. It is well-known that in the centralized case observ-
ability and finite observability are equivalent: the finite ob-
server is simply obtained by a determinization procedure
(subset construction).

Condition (4) is not necessary, as we now show with an
example. LetΣ = {a, b, c}, Σ1 = {a, b}, Σ2 = {b, c}.
Let ρ = abc, ρ1 = ab, ρ2 = bc. Let L = {ρ, ρ1, ρ2},
K = {ρ1, ρ2}. We havePΣ1(ρ) = PΣ1(ρ1) = ab,
PΣ2(ρ) = PΣ2(ρ2) = bc andPΣ2(ρ1) = PΣ1(ρ2) = b.
Then,PΣ1(K) ∩ PΣ1(L−K) = {ab, b} ∩ {ab} = {ab}
andPΣ2(K)∩PΣ2(L−K) = {b, bc}∩{bc} = {bc}. Thus,
Condition (4) does not hold. However, Condition (2) holds.
Indeed, observer 2 can distinguish betweenρ andρ1, be-
causePΣ2(ρ) = bc 6= b = PΣ2(ρ1). Also, observer 1 can
distinguish betweenρ andρ2, becausePΣ1(ρ) = ab 6= b =
PΣ1(ρ2).

When L and K are regular languages, conditions (3)
and (4) can be checked algorithmically, since regular lan-
guages are closed under intersection, complementation and
projection, and checking regular language emptiness is de-
cidable. Forn = 1, Conditions (2-4) are equivalent, which
implies that checking centralized observability is decidable.

The following lemma provides another necessary condi-
tion for observability.

Lemma 7 If K is observable (resp. finitely observable)
w.r.t. L and(Σ1, ...,Σn) thenPΣo

(K) is observable (resp.
finitely observable) w.r.t.PΣo

(L) and(Σ1, ...,Σn).

Proof SupposeK is observable and letf be the decision
function. We claim thatf is a valid decision function for
observability ofPΣo

(K) w.r.t. PΣo
(L) and (Σ1, ...,Σn).

Let π ∈ PΣo(L). There existsρ ∈ L such thatπ = PΣo(ρ).
For all i = 1, ..., n, sinceΣi ⊆ Σo, PΣi(ρ) = PΣi(π) = πi

(Lemma 1). Supposef(π1, ..., πn) = 1. Then,ρ ∈ K,
thus, π ∈ PΣo

(K). Supposef(π1, ..., πn) = 0. Then,
ρ ∈ L − K. We claim thatπ 6∈ PΣo

(K). Otherwise,
π ∈ PΣo

(K) ∩ PΣo
(L−K), thus, by Lemma 5,K is not

observable, which contradicts the hypothesis. The proof is
similar in the finite observability case.

5 A special case: L trace language over
(Σ, DΣ1,...,Σn)

In this section we examine a special case of the obser-
vation problems, namely, whenL is a trace language over
(Σ, DΣ1,...,Σn). This is an important case in practice. For
instance, whenL is obtained from the asynchronous prod-
uct of a set of automata overΣ1, ...,Σn then it is guaranteed
to be trace-closed. This is also the case whenL = Σ∗, that
is, when we have no model of the system under observa-
tion (although we do have a model of the requirements,K).
WhenL is trace-closed, we call the observation problems
simple.

The main results of this section are two. First, we show
that unbounded-memory simple observability is “almost”
equivalent to trace-closure and decidable for regular lan-
guages. Second, we show finite-memory simple observabil-
ity is equivalent to unbounded-memory simple observabil-
ity, in the case where the subalphabetsΣi are disjoint. In a
sense this is the best we can do, since there is an example
of a system which is observable but not finitely observable,
whereΣi are not disjoint (Example 1).

Theorem 1 LetΣ be a finite alphabet andΣi ⊆ Σ, for i =
1, ..., n. Let K ⊆ L ⊆ Σ∗. AssumeL is a trace language
over (Σ, DΣ1,...,Σn). Then,K is observable w.r.t.L and
(Σ1, ...,Σn) iff K is a trace language over(Σ, DΣ1,...,Σn)
and Condition (3) holds.

5



Proof Only if: SupposeK is observable. Letρ ∈ K and
considerρ′ ∈ Σ∗ such thatρ ≡ ρ′, where≡ is the trace
equivalence induced byDΣ1,...,Σn

. Sinceρ ∈ L andL is
trace-closed,ρ′ ∈ L. By the “only if” part of Lemma 2,
∀i ∈ {1, ..., n}, Pi(ρ) = Pi(ρ′). By Lemma 4,ρ′ must be
in K, otherwiseK would not be observable w.r.t.L and
(Σ1, ...,Σn). Thus,K is a trace language. By Lemma 5,
Condition (3) holds.

If: SupposeK is not observable. By Lemma 4, there
exist ρ ∈ K, ρ′ ∈ L − K, such that∀i ∈ {1, ..., n},
Pi(ρ) = Pi(ρ′). Without loss of generality, we can as-
sume thatρ = σ · u andρ′ = σ′ · u′, whereσ = PΣo(ρ),
σ′ = PΣo

(ρ′) andu, u′ ∈ (Σ − Σo)∗. This is because we
can “push” unobservable letters to the end ofρ andρ′, ob-
taining trace-equivalent words (recall that unobservable let-
ters are independent from observable letters). Transforming
ρ into a new, trace-equivalent word does not affect the as-
sumptionρ ∈ K (becauseK is trace-closed) neither the
assumption∀i ∈ {1, ..., n}, Pi(ρ) = Pi(ρ′) (by the “only
if” part of Lemma 2). Similarly forρ′. Thus, we still have
ρ andρ′ contradicting the observability ofK. We will next
show thatσ ≡ σ′. This impliesσ · u ≡ σ′ · u, thus, by
trace-closure ofK, σ′ · u ∈ K. Sinceσ′ = PΣo(σ

′ · u) and
σ′ = PΣo

(ρ′), we havePΣo
(K)∩PΣo

(L−K) 6= ∅, which
contradicts our hypothesis. Thus,K must be observable.

We complete the proof by showingσ ≡ σ′. To see this,
observe that the “if” part of Lemma 2 applies toσ andσ′

by takingΣ to beΣo.

We can therefore conclude that simple observability for
regular languages is decidable:

Corollary 1 WhenK andL are regular languages andL
is trace-closed, checking observability is decidable.

Proof By Lemma 5 and Theorem 1, Condition (3)
and trace-closure ofK is a necessary and sufficient
condition for simple observability ofK. Checking trace-
closure of regular languages is decidable. So is checking
Condition (3), since regular languages are closed under
intersection, complementation and projection, and checking
emptiness for regular languages is decidable.

Obviously, simple finite observability implies simple ob-
servability. The converse is not always true, as the following
example shows. (Similar examples can be found in [21, 8].)

Example 1 (Observability 6⇒ finite observability) Let
Σ1 = {a1, b}, Σ2 = {a2, b} and Σ = {a1, a2, b}. Let
K = ((a1 + a2)(a1 + a2 + b))∗. It can be checked thatK
is observable w.r.t.Σ∗ and(Σ1,Σ2). Intuitively, it suffices
for the decision function to check that between every two
consecutiveb’s (or from the beginning of the computation
until the firstb observed) the sum ofa1’s and a2’s is odd.

However,K is not finitely observable. Intuitively, this is
because the number ofb’s can be arbitrary, and observeri
needs to record the parity of the number ofai’s it observes
betweeneverytwo consecutiveb’s.

Observe that, in the example above,Σ1 ∩ Σ2 6= ∅. It
turns out that whenΣi are pairwise disjoint, andK is reg-
ular, finite simple observability is equivalent to simple ob-
servability, as we show below. Disjointness ofΣi means the
observers do not share any observable event. This is not an
unusual situation in practice: often in a distributed system
the observers are placed separately so that one observer has
no access to information transferred through the interfaces
of the others.

Theorem 2 Let Σ be a finite alphabet andΣi ⊆ Σ, for
i = 1, ..., n, so that∀1 ≤ i < j ≤ n, Σi ∩ Σj = ∅ (i.e.,Σi

are pairwise disjoint). LetK ⊆ L ⊆ Σ∗. Assume thatK is
regular and thatL is a trace language over(Σ, DΣ1,...,Σn

).
Then,K is finitely observable w.r.t.L and (Σ1, ...,Σn) iff
K is observable w.r.t.L and(Σ1, ...,Σn).

Proof Finite observability clearly implies observability, so
we only need to prove the converse. By Part 1 of Theo-
rem 1,K is a trace language over(Σ, DΣ1,...,Σn

) and Con-
dition (3) holds. Let us viewK as a subset of the quotient
monoidM(Σ∗, DΣ1,...,Σn

). Let Σu = {u1, ..., um}. By
the fact thatΣi are pairwise disjoint and disjoint withΣu,
it can be easily shown thatM(Σ∗, DΣ1,...,Σn) is isomor-
phic to Σ∗

1 × · · ·Σ∗
n × {u1}∗ × · · · × {um}∗: it suffices

to map [ρ] to (PΣ1(ρ), ..., PΣn
(ρ), P{u1}(ρ), ..., P{um}(ρ)

and vice-versa. By Mezei’s theorem [6], there existsq ≥ 0
and regular languagesKi,j ⊆ Σ∗

i andUl,j ⊆ {ul}∗, for
i = 1, ..., n , l = 1, ...,m , j = 1, ..., q, such that

K =
q⋃

j=1

K1,j × · · · ×Kn,j × U1,j × · · · × Um,j .

We claim that we can assume, without loss of generality,
thatUl,j = {ul}∗, for any l = 1, ...,m , j = 1, ..., q. In-
deed, suppose there is somel, j such thatUl,j 6= {ul}∗, that
is, there is somek such thatuk

l 6∈ Ul,j . Now, considerρ =
(ρ1, ..., ρn, σ1, ..., σm) ∈ K1,j × · · · ×Kn,j ×U1,j × · · · ×
Um,j = Kj (notice that thisj is the same as forUl,j fixed
above). Also considerρ′ = (ρ1, ..., ρn, σ1, ..., u

k
l , ..., σm).

SinceK is observable and for alli = 1, ..., n, PΣi
(ρ) =

ρi = PΣi
(ρ′), it must be thatρ′ ∈ K. This means that

by addinguk
l to Ul,j we do not add any extra words inK.

Proceeding like this for any word “missing” fromUl,j , we
reach our claim. The result of the claim is that we can ig-
nore allUl,j when we build the observers.

Indeed, letAi,j be the finite-state deterministic automa-
ton recognizingKi,j , for i = 1, ..., n , j = 1, ..., q. For

6



i = 1, ..., n, we build a finite-state deterministic machine
Ai, defined as thesynchronous productof Ai,1, ..., Ai,q:
that is, the set of states ofAi is the cartesian product of
the sets ofAi,1, ..., Ai,q, and a move ofAi corresponds to a
move of each ofAi,1, ..., Ai,q by the same letter. The ma-
chinesA1, ..., An correspond to then finite-state observers.
The decision functiong is defined as follows:

g((s1,1, ..., s1,q), ..., (sn,1, ..., sn,q)) ={
1, if ∃j ∈ {1, ..., q} .∀i ∈ {1, ..., n} . si,j ∈ Fi,j

0, otherwise

whereFi,j is the set of accepting states ofAi,j . It can be
checked thatρ ∈ K iff g

(
t1(PΣ1(ρ)), · · · , tn(PΣn

(ρ))
)

=
1. Thus,K is finitely observable w.r.t.L and(Σ1, ...,Σn).
It is interesting to note that the above construction does not
depend onL.

6 The general case

We now consider the general case, i.e., whereL is not
trace-closed. The main result is that checking unbounded-
memory observability is undecidable, even whenK andL
are regular languages. This was first shown in [26], using
a direct reduction of Post’s Correspondence Problem. In
this paper, we provide an alternative proof using a reduc-
tion from the problem of checking whether the intersection
of two rational relations is empty, which is known to be
undecidable (see, for instance, [6]). In the process, we pro-
vide some links between the distributed observation prob-
lems and the theory of rational relations.

For this section, let us assume thatΣ1, ...,Σn are pair-
wise disjoint alphabets and letΣ = ∪i=1,...,nΣi. Given
L ⊆ Σ∗, we define

PΣ1,...,Σn
(L) = {(PΣ1(ρ), ..., PΣn

(ρ)) | ρ ∈ L}.

Thus,PΣ1,...,Σn
(L) is a subset ofΣ∗

1 × · · · × Σ∗
n. If L is

regular (i.e., a rational subset ofΣ∗) thenPΣ1,...,Σn
(L) is a

rational subset ofΣ∗
1 × · · · × Σ∗

n. On the other hand, given
R ∈ Rat(Σ∗

1 × · · · × Σ∗
n), there exists a regular language

L ⊆ Σ∗ such thatR = PΣ1,...,Σn(L) [6].

Lemma 8 For anyR ∈ Rat(Σ∗
1 × · · · × Σ∗

n) we can build
L ∈ Rec(Σ∗) such thatR = PΣ1,...,Σn(L).

We can now restate Condition (2) in the context of ratio-
nal relations.

Lemma 9 K is observable w.r.t.L and(Σ1, ...,Σn) iff

PΣ1,...,Σn(K) ∩ PΣ1,...,Σn(L−K) = ∅. (5)

Theorem 3 Checking unbounded-memory distributed ob-
servability for regular languages is undecidable.

Proof We reduce the intersection problem of ratio-
nal relations to checking observability. LetΣ1,Σ2 be
disjoint alphabets and letΣ = Σ1 ∪ Σ2. Consider
R1, R2 ∈ Rat(Σ∗

1 × Σ∗
2). CheckingR1 ∩ R2 = ∅ is unde-

cidable [6]. By Lemma 8, we can build regular languages
Li ⊆ Σ∗ such thatRi = PΣ1,Σ2(Li), for i = 1, 2. If
L1 ∩ L2 6= ∅ then PΣ1,Σ2(L1) ∩ PΣ1,Σ2(L2) 6= ∅, i.e.,
R1 ∩ R2 6= ∅. If L1 ∩ L2 = ∅ then(L1 ∪ L2)− L1 = L2.
Thus,R1 ∩ R2 = ∅ iff PΣ1,Σ2(L1) ∩ PΣ1,Σ2(L2) = ∅ iff
PΣ1,Σ2(L1)∩ PΣ1,Σ2((L2 ∪L1)−L1) = ∅. By Lemma 9,
the last equation holds iffL1 is observable w.r.t.L1 ∪ L2

and(Σ1,Σ2).

7 Synthesis

In the cases where checking observability or finite ob-
servability is decidable, we can synthesize observers and
decision function that solve the problem. Let us outline how
this can be done.

First, consider the unbounded-memory case and suppose
L is trace-closed (otherwise, checking observability is un-
decidable). The first step is to ensure Condition (3) and
trace-closure ofK hold. Then, we just need to synthesize
the decision functionf , since the observers are trivial (they
record the entire sequence they observe). Letπi ∈ Σ∗

i , for
i = 1, ..., n. We definef as follows:

f(π1, ..., πn) =
{

1, if K ∩
⋂

i=1,...,n P−1
Σi

(πi) 6= ∅
0, otherwise

(6)
That is,f should return 1 iff there is a word inK which
produces the observations(π1, ..., πn). Clearly,f is com-
putable. It is also correct. Indeed, letρ ∈ L such
that Pi(ρ) = πi, for i = 1, ..., n. If ρ ∈ K then
f(π1, ..., πn) = 1 by definition of f . If ρ 6∈ K then
f(π1, ..., πn) must be equal to 0. Otherwise, there exists
ρ′ ∈ K ∩

⋂
i=1,...,n P−1

Σi
(πi), which impliesPi(ρ′) = πi,

for i = 1, ..., n. This contradicts observability ofK.
Second, consider the bounded-memory case whereL is

trace-closed andΣi are pairwise disjoint (otherwise, we
do not know whether checking finite observability is de-
cidable). Again, the first step is to check trace-closure of
K. If K is not trace-closed, then it is not (finitely) ob-
servable. Otherwise, by Theorem 2,K is finitely observ-
able. In fact, the proof of the theorem provides an algo-
rithm to construct the observer machines and decision func-
tion g necessary for bounded-memory observation. The
algorithm is based on the construction of a deterministic
asynchronous automaton recognizingK, using existing al-
gorithms (e.g. [29, 12]). Due to the assumption thatΣi

are pairwise disjoint, the asynchronous automaton is a set
of non-communicating finite-state machines, as observed in

7



Bounded-memory observation Unbounded-memory observation
L trace Equivalent to unbounded-memory Equivalent to Condition (3) andK trace,

observation whenΣi pairwise disjoint. decidable.
Otherwise ?

L not trace ? Undecidable.

Table 1. Summary of results and open questions.

the proof of Theorem 2. The (global) accepting states of the
automaton characterize the decision functiong.

8 Summary of results and open questions

The main contributions of this paper are two. First, we
introduced a set of simple, yet fundamental, problems of
distributed observation. Second, we studied decidability
of these problems and related them to existing concurrency
theory, in particular, trace languages and rational relations.
Open questions remain, and they appear quite challenging.

The results of the paper and the open questions are sum-
marized in Table 1.

References

[1] R. Alur, K. Etessami, and M. Yannakakis. Realizability and
verification of MSC graphs. InICALP’01, volume 2076 of
LNCS, 2001.

[2] A. Arnold, A. Vincent, and I. Walukiewicz. Games for syn-
thesis of controllers with partial observation.Theoretical
Computer Science, 303:7–34, 2003.

[3] E. Badouel, B. Caillaud, and P. Darondeau. Distributing fi-
nite automata through petri net synthesis.Formal Aspects of
Computing, 13(6):447–470, Sept. 2002.

[4] E. Badouel and P. Darondeau. Theory of regions. InLectures
on Petri Nets I: Basic Models, volume 1491 ofLNCS, pages
529–586. Springer-Verlag, 1998.

[5] A. Benveniste, E. Fabre, S. Haar, and C. Jard. Diagnosis
of asynchronous discrete event systems, a net unfolding ap-
proach.IEEE Trans. Aut. Control, 48(5), 2003.

[6] J. Berstel.Transductions and context-free languages. Teub-
ner, 1979.

[7] J. Berstel, L. Boasson, and M. Latteux. Mixed languages.
Theoret. Comput. Sci. (to appear).

[8] I. Castellani, M. Mukund, and P. Thiagarajan. Synthesizing
distributed transition systems from global specifications. In
FSTTCS’99, volume 1738 ofLNCS. Springer, 1999.

[9] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Super-
visory control of discrete-event processes with partial obser-
vations. IEEE Transactions on Automatic Control, 33:249–
260, 1988.

[10] P. Cori and D. Perrin. Automates et commutations partielles.
RAIRO - Informatique Th́eorique et Applications, 19:21–32,
1985.

[11] V. Diekert and G. R. (eds.).The Book of Traces. World
Scientific, 1995.

[12] V. Diekert and A. Muscholl. Construction of asynchronous
automata. In [11].

[13] C. Duboc. Mixed product and asynchronous automata.The-
oretical Computer Science, 48:183–199, 1986.

[14] P. Gastin, B. Lerman, and M. Zeitoun. Distributed games
and distributed control for asynchronous systems. In
LATIN’04, volume 2976 ofLNCS. Springer, 2004.

[15] A. Giua. Pn state estimators based on event observation. In
CDC’97, 1997.

[16] O. Kupferman and M. Vardi. Synthesizing distributed sys-
tems. InLogic in Computer Science, 2001.

[17] H. Lamouchi and J. Thistle. Effective control synthesis for
DES under partial observations. InIEEE Conference on De-
cision and Control, 2000.

[18] P. Madhusudan and P. Thiagarajan. Distributed controller
synthesis for local specifications. In28th ICALP, Crete,
Greece, LNCS 2076, 2001.

[19] P. Madhusudan and P. Thiagarajan. A decidable class
of asynchronous distributed controllers. InCONCUR’02,
LNCS 2421, 2002.

[20] S. Mohalik and I. Walukiewicz. Distributed games. In
FSTTCS’03, volume 2914 ofLNCS. Springer, 2003.

[21] R. Morin. Decompositions of asynchronous systems. In
CONCUR’98, volume 1466 ofLNCS. Springer, 1998.

[22] M. Mukund, K. N. Kumar, and M. Sohoni. Synthesizing dis-
tributed finite-state systems from MSCs. InCONCUR’00,
volume 1877 ofLNCS. Springer, 2000.

[23] A. Pnueli and R. Rosner. Distributed reactive systems are
hard to synthesize. InProc. of the 31th FOCS, pages 746–
757, 1990.

[24] K. Rudie and W. Wonham. Think globally, act locally: De-
centralized supervisory control.IEEE Transactions on Au-
tomatic Control, 37, 1992.

[25] A. Stefanescu, J. Esparza, and A. Muscholl. Synthesis of
distributed algorithms using asynchronous automata. In
CONCUR’03, volume 2761 ofLNCS. Springer, 2003.

[26] S. Tripakis. Undecidable problems of decentralized obser-
vation and control. InIEEE Conference on Decision and
Control (CDC’01), 2001.

[27] S. Tripakis. Decentralized control of discrete event systems
with bounded or unbounded delay communication.IEEE
Transactions on Automatic Control, 49(9), Sept. 2004.

[28] J. Tsitsiklis and M. Athans. On the complexity of decentral-
ized decision making and detection problems.IEEE Trans-
actions on Automatic Control, 30(5), 1985.

[29] W. Zielonka. Notes on finite asynchronous automata.
RAIRO - Informatique Th́eorique et Applications, 21:99–
135, 1987.

8


