
DECIDABILITY OF OPACITY WITH NON-
ATOMIC KEYS

Laurent Mazaré
VERIMAG
Centre Équation, 2 av de Vignates
38610 GIÈRES FRANCE
laurent.mazare@imag.fr

Abstract The most studied property, secrecy, is not always sufficient to prove
the security of a protocol. Other properties such as anonymity, privacy
or opacity could be useful. Here, we use a simple definition of opacity
which works by looking at the possible traces of the protocol using a new
property over messages called similarity. The opacity property becomes
a logical constraint involving both similarities and syntactic equalities.
The main theorem proves that satisfiability of these constraints and thus
opacity are decidable without having to make the hypothesis of atomic
keys. Moreover, we use syntactic equalities to model some deductions an
intruder could make by performing bit-to-bit comparisons (i.e. known-
ciphertext attack).

Keywords: Opacity, Security, Formal Verification, Dolev-Yao Constraints, Rewrit-
ing Systems, Decidability.

1. Introduction
During the last decade, verification of security protocols has been

widely investigated. The majority of the studies focussed on demonstrat-
ing secrecy properties using formal methods (see for example [Clarke
et al., 1998], [Comon-Lundh and Cortier, 2003], [Comon-Lundh. and
Cortier, 2002] or [Goubault-Larrecq, 2000]). These methods have lead
to effective algorithms and so to concrete tools for verifying secrecy such
as these proposed by the EVA project [Bozga et al., 2002] or the Avispa
project [Avispa, 1999]. However, checking security protocols requires
studying other properties such as anonymity or opacity: hiding a piece
of information from an intruder. For example, in a voting protocol,
whereas the intruder is able to infer the possible values of the vote (yes
or no), it should be impossible for him to guess which vote was ex-

2

pressed, only by observing a session of this protocol. Checking a protocol
should include a way of formalizing the informations that were leaked
and that the intruder can guess. In the last few years, attempts have
been made to properly define opacity properties, to prove their decid-
ability in certain cases and to propose some verification algorithms. As
far as we know, other versions of opacity ([Boisseau, 2003], [Hughes and
Shmatikov, 2004]) have been given in the literature but none of these
criterion were implemented. Our notion of opacity is very close to the
one introduced in [Hughes and Shmatikov, 2004] except that we use a
formalism dedicated to protocols studies when they use a more general
functional approach.

In this paper, we adopt a simple definition for opacity. The intruder
C has a passive view of a protocol session involving two agents A and
B. He is able to read any exchanged messages but he cannot modify,
block or create a message. A property will be called opaque if there
are two possible sessions of the protocol such that: in one of these, the
property is true whereas it is not in the other, and it is impossible for
the intruder to differentiate the messages from these two sessions from
the messages exchanged in the original session. The starting point is
the notion of similarity. This binary relation noted ∼ is an equivalence
relation between messages. Two messages are similar if it is not feasible
for the intruder to differentiate them. A typical example is two different
messages encoded by a key that the intruder cannot infer. From the
point of view of the intruder, these messages will be said similar. This
notion is of course dependent of the knowledge of the intruder given
by Dolev-Yao theory [Dolev and Yao, 1983]: if the intruder is able to
infer any of the used keys, then similarity will be equivalent to syntac-
tic equality. This notion of similarity will allow us to express opacity
properties as constraints. These constraints will also include syntactic
equality. Equalities are used to show that the intruder can perform bit-
to-bit comparisons between some messages (this is best known in the
literature as known-ciphertext attacks). Let us give a simple example
that will be useful throughout this paper. A simple electronic voting
protocol is given by the transmission between A (the voter) and S (the
authority counting votes). Variable v is the expressed vote chosen among
the possible values yes or no.

A→ S : {v}pub(S)

If the intruder intercepts the value of {v}pub(S), then as he can compare
it to {yes}pub(S) and {no}pub(S), the intruder is able to deduce the value
of v. We will say that the intruder performed a bit-to-bit comparison
between {v}pub(S) and {yes}pub(S) (or {no}pub(S)).

Decidability Of Opacity With Non-Atomic Keys 3

The aim of this paper is to formalize opacity as two constraints in-
volving similarities and equalities taking into account possible bit-to-bit
comparisons. The main result is decidability of satisfiability for such
constraints using a finite-model property.

The remainder of this paper is organized as follows. In section 2, we
recall usual definition for messages and protocols. Similarity over mes-
sages is introduced in section 3 and some useful properties are given.
This section also formalizes the opacity property and translates it to
a constraint. Both section 2 and 3 are very close to sections appearing
in [Mazaré, 2004], they give the necessary basis to formalize the following
sections. Then, section 4 proves that satisfiability for such constraints
is decidable. Section 5 introduces the bit-to-bit comparisons in our con-
straints. Eventually, section 6 shows how to use this technique on a
simple example, and section 7 concludes this paper.

2. Cryptographic Protocols
Let Atoms and X be two infinite countable disjoint sets. Atoms is the

set of atomic messages a, b,... Set X contains variables called “protocol
variables” x, y,...

Definition 1 (Message) Let Σ be the signature Atoms∪{pair, encrypt}
where pair and encrypt are two binary functions. The atomic messages
are considered constant functions. Then a message is a first order term
over Σ and the set of variables X, namely an element of T (Σ, X). A
message is said to be closed if it is a closed term of T (Σ, X), i.e. a term
of T (Σ).

In the rest of this paper, we will use the following notations:

〈m1,m2〉 = pair(m1,m2)

{m1}m2 = encrypt(m1,m2)

Height of message m can be easily defined recursively and will be noted
|m|. Substitutions σ from X to T (Σ, X) are defined as usual. Applica-
tion of substitution σ to message m will be noted mσ. If σ is defined
by xσ = n and yσ = y for any other variable y, then we could write
m[x\n] instead of mσ. The domain of a substitution σ is the set dom(σ)
of variables x such that xσ 6= x.

The set of variables used in a messagem is noted var(m) (or free(m)).

Definition 2 (Protocol) Let Actors be a finite set of participants
called actors. The set of programs Progs is given by the following

4

syntax where B is in Actors, m1, m2 and m are messages.

G ::= ε

| !Bm.G
| ?m.G
| if m1 = m2 then G else G fi

A protocol over the set of actors Actors is a function from Actors to
Progs associating a program to each actor.

The intuitive semantic of programs is the usual one: signification of !Bm
is to send the message m to agent B, signification of ?m is to receive
a message and using pattern matching, to replace the variables learnt
from m in the rest of the program.

For the following, the set of actors is fixed to Actors. Let free be
the function giving free variables of a program. It is easy to define free
in the usual recursive way. Then, free can be extended over protocols.
An instance of the protocol P is a protocol Pσ where σ instantiates
exactly the free variables of P with closed messages. For that purpose,
it is possible to rename every bound variable with a fresh variable such
that bound variables are distinct and not in the free variables set. The
substitution σ is called a session of the protocol P . When there is no
risk of confusion on the protocol, its name will be omitted. Thus, we
will talk about a session σ.

Definition 3 (Protocol Semantic) The semantic of a protocol is
the transition system over protocols defined by the following rules:

If m is a closed message and σ is the most general unifier of m
and m′ (m′ is called the proto-message of m),

Prog(A) =!Bm.PA Prog(B) =?m′.PB

Prog
m−→ Prog[A→ PA;B → PB]σ

Note that, if σ does not exist, the protocol can be blocked. The
transition is from the protocol Prog to the protocol Prog[A →
PA;B → PB], i.e. the protocol linking A to program PA, B to
program PB and other actors D to program Prog(D).

If m1 and m2 are the same closed message,

Prog(A) = if m1 = m2 then PA else G fi

Prog → Prog[A→ PA]

Decidability Of Opacity With Non-Atomic Keys 5

If m1 and m2 are two distinct closed messages,

Prog(A) = if m1 = m2 then G else PA fi

Prog → Prog[A→ PA]

A protocol P terminates iff for any Q such that P →∗ Q, it is possible
to reach the state ε: Q →∗ ε. Note that only closed protocols could
terminate. A run of a session σ for a protocol P is an ordered set of
messages r = r1.r2...rn such that

Pσ
r1−→ ...

rn−→ ε

A protocol session is deterministic if it has exactly only one possible run.
This run will be noted run(Pσ). In the following sections, protocols
will always be considered deterministic, i.e. each of their sessions is
deterministic.

Eventually, to simplify notations, instead of writing:

Prog(A) =!S{v}pub(S)

Prog(S) =?{v}pub(S)

We will shorten this to:

A→ S : {v}pub(S)

This paper will make an extensive use of Dolev-Yao theory [Dolev and
Yao, 1983]. Let E be a set of messages and m be a message, then we
will note E ` m if m is deducible from E using Dolev-Yao inferences.

3. Similarity and Opacity

3.1 Similarity
The intuitive definition of opacity is that an intruder is not able to

distinguish a run where the property is satisfied from a run where it is
not. To distinguish two messages, the intruder can decompose them, ac-
cording to his knowledge but if he does not know the key k for example,
he will not be able to make the difference between two different mes-
sages encoded by this key k. Two such messages will be called similar
messages. This definition will be formalized using inference rules.

An environment is a finite set of closed messages. Usually, it will
denote the set of messages known by the intruder. This definition will
suppose that we only use symmetric key cryptography. However, all the
following results can easily be generalized to public key cryptography.

6

Definition 4 (Similar Messages) Two closed messages m1 and m2

are said to be similar for the environment env iff env ` m1 ∼ m2 where
∼ is the smallest (w.r.t set inclusion) binary relation satisfying:

a ∈ Atoms
a ∼ a

u1 ∼ u2 v1 ∼ v2
〈u1, v1〉 ∼ 〈u2, v2〉
env ` k u ∼ v

{u}k ∼ {v}k

¬env ` k ¬env ` k′

{u}k ∼ {v}k′

Intuitively, this means that an intruder with the knowledge env will not
be able to distinguish two similar messages. The environment name
will be omitted as soon as it is not relevant for comprehension. Our
definition of ∼ is very closed to the ≡ operator introduced by Abadi and
Rogaway in [Abadi and Rogaway, 2000], except that we have an explicit
environment to tell which keys are compromised instead of using directly
the messages linked by the ≡ operator.

Moreover, the definition of ∼ could easily be extended to non-closed
environments and messages by adding this inference:

x ∈ X
x ∼ x

This can also be achieved by defining m ∼ n for non-closed messages as
mσ ∼ nσ for each σ such that mσ and nσ are closed.

Property 1 The binary relation ∼ is an equivalence relation: let m1,
m2 and m3 be three messages.

m1 ∼ m1

m1 ∼ m2 ⇒ m2 ∼ m1

m1 ∼ m2 ∧m2 ∼ m3 ⇒ m1 ∼ m3

Proof 1 These three properties can easily be proved using an induction
on the structure of message m1.

To prove that the ∼ relation is compatible with the context operation, we
will have to suppose that only atomic keys are allowed. This hypothesis
is only required for the following property.

Decidability Of Opacity With Non-Atomic Keys 7

Property 2 (Context) Let m1, m2, m3 and m4 be four messages. If
m3 and m4 have only one free variable x,

m1 ∼ m2 ∧m3 ∼ m4 ⇒ m3[x\m1] ∼ m4[x\m2]

And in particular,

m1 ∼ m2 ⇒ m3[x\m1] ∼ m3[x\m2]

Let m and n be two messages and x a variable. Let σ be a substitution
such that xσ ∼ nσ. Then

mσ ∼ m[x\n]σ

Proof 2 An induction on m3 allows to deduce the first formulae. Then,
using reflexivity of ∼, the second formulae is true. Eventually, the third
formulae could be proved quickly with an induction on message m.

When considering similarity, an important problem is: given an envi-
ronment env and a closed message m, what is the set of closed message
n such that

env ` n and env ` m ∼ n

Note that the main difficulty is that we do not necesseraly have env ` m.
For that purpose, the fresh function will be introduced. It is induc-

tively defined over messages by the following equalities where all the
variables y have to be instantiated with different fresh variables (i.e.
variables that do not appear anywhere else).

fresh(a) = a

fresh(x) = x

fresh(〈m,m′〉) = 〈fresh(m), fresh(m′)〉
fresh({m}k) = {fresh(m)}k if env ` k
fresh({m}k) = {y}k if env 0 k, y is a fresh variable

Property 3 For every substitution σ, we have

mσ ∼ fresh(m)σ

Proof 3 This can be proved using an induction on the structure of m.

If m is an atom or a variable then mσ = fresh(m)σ.

8

If m is a pair 〈m1,m2〉, then we have m1σ ∼ fresh(m1)σ and
m2σ ∼ fresh(m2)σ. So, we have:

mσ = 〈m1σ,m2σ〉
∼ 〈fresh(m1)σ, fresh(m2)σ〉
∼ fresh(m)σ

If m is an encoding {m1}k and env ` kσ, then m1σ ∼ fresh(m1)σ.
So mσ ∼ {fresh(m1)}kσ ∼ fresh(m)σ.

If m is an encoding {m1}k and env 0 kσ, then mσ ∼ {yσ}kσ ∼
fresh(m)σ.

The reciprocal of this property is that if m is similar to n, then n is
an instance of fresh(m), i.e. fresh(m) where all free variables are
instantiated by closed messages.

Property 4 Let m and n be two closed messages. If m ∼ n, then there
exists a substitution σ that acts over the free variables of fresh(m) such
that n = fresh(m)σ.

Proof 4 This proof can also be achieved using a simple induction on
the structure of m.

3.2 The Opacity Problem
Let us consider a protocol PR and one of its session σ. We will

be interested in predicates over σ, namely properties ψ that act over
variables instantiated by σ. Such properties may express the identity
of an agent, or the value of a vote, for instance. The opacity problem
considered here relies on several hypothesis:

The intruder C has a passive view of protocol session σ involving
two agents A and B. Passive means that the intruder can intercept
and view any messages exchanged by A and B but is not able to
block, modify nor to send any message.

The intruder knows the protocol used PR.

The intruder has an initial knowledge c0, which is a predicate (for
example, c0 = (k1 = k2) means that C knows that the keys that
will instantiate k1 and k2 are the same).

If we consider the witness run run(Pσ) = m1.m2...mn, property ψ will
be opaque if there exist two possible sessions σ1 and σ2 of the protocol

Decidability Of Opacity With Non-Atomic Keys 9

giving messages similar to the witness messages (m1 to mn) where for
example, ψσ1 is true and ψσ2 is false. In this case, the intruder will not
be able to deduce any knowledge on ψσ. Of course, there is no need
to find both σ1 and σ2: if ψσ is true, then we could use σ instead of
σ1, as exchanged messages are the same, they are similar. But we will
keep this notation with three substitutions to show the symmetry of this
problem.

Definition 5 (Opacity) A property ψ is said to be opaque for a pro-
tocol session σ of P iff there exist two sessions of the protocol σ1 and σ2

such that
c0σ1 ∧ p1 ∼ m1 ∧ ... ∧ pn ∼ mn ∧ ψσ1

c0σ2 ∧ q1 ∼ m1 ∧ ... ∧ qn ∼ mn ∧ ¬ψσ2

Where p1.p2...pn is the run of the protocol P related to σ1, q1.q2...qn is
related to σ2 and m1.m2...mn is related to σ. Note that the three runs
must have the same length n.

The environment env used in the previous conjunctions is {m1, ...,mn, p1, ..., pn, q1, ..., qn}
and could be augmented with an initial knowledge of the intruder env0.

We defined opacity for a protocol session, this can be extended to
protocols by saying that a property is opaque in a protocol if it is opaque
for all its session. The problem is that the number of possible sessions
(and their size) is unbounded. This leads to an unbounded number of
possible behaviors for a protocol. In the following, we give a method to
check opacity for a given session but we lack the method to extend it to
a whole protocol.

For instance, let us consider the simple electronic voting protocol.
Suppose that the session observed by the intruder is σ = [v\yes]. Then,
the environment will be env = {yes, no, pub(S), {yes}pub(S)}. The pred-
icates expressing the opacity of the vote value will be:

{v}pub(S) ∼ {yes}pub(S) ∧ v = yes

{v}pub(S) ∼ {yes}pub(S) ∧ ¬v = yes

As both predicates are satisfiable, the vote value is opaque in this case.
Our property of opacity can also be used to check anonymity. For

example, if we take a definition of anonymity closed to the one given
in [Schneider and Sidiropoulos, 1996], we just have to add a “restricted
view” for the intruder, i.e. the intruder only intercepts some of the
exchanged messages (for example, when considering a system with both
secure and insecure channels). Then, opacity for property “identity of
such actor” will be similar to what is defined as anonymity.

10

4. Initial Predicates and Satisfiability
In this section, the environment env is a finite set of closed messages.

We will first define a class of predicates called initial predicates. Then,
we will show that satisfiability for such predicates is decidable.

Definition 6 (Initial Predicates) The set IP of initial predicates
is given by the following formulas:

P ::= PA|P ∧ P

PA ::= m ∼ n|m = n|⊥|>

Where m and n are two messages.

It is easy to extend initial predicates with the logical or operator ∨. This
can be done by adding to the previous grammar the line:

P ::= P ∨ P

Then, using usual rules on boolean operations, every predicate is equiv-
alent to a predicate P ′ of the form:

P ′ =
∨

(
∧
PA)

If satisfiability for these predicates is decidable, then satisfiability over
initial predicates is, of course, decidable too. Reciprocally, let us suppose
that satisfiability over initial predicates is decidable, then satisfiability
of any

∧
PA in P ′ is decidable and so is satisfiability of P ′. Thus, adding

the ∨ operator is cost-less and will not be done here.
The atomic predicate ¬ ` m can be added as syntactic sugar for

{a}m ∼ {b}m where a and b are two distinct atoms. Indeed, these two
messages could only be similar if message m is not deducible.

In order to prove satisfiability, we will first need the notion of model,
that will be introduced in a very classical way.

Definition 7 (Model) A substitution σ such that Pσ is closed is a
model of P iff σ |= P where |= is defined by:

σ|=>
σ|=P1 σ|=P2

σ|=P1∧P2

mσ∼nσ
σ|=m∼n

mσ=nσ
σ|=m=n

The satisfiability problem is the usual one: given a predicate, we want
to know wether there exists a model of this predicate or not. To study
satisfiability, we will prove a finite model property: if a predicate is

Decidability Of Opacity With Non-Atomic Keys 11

satisfiable, then there exists a valid model whose size is lower than a
constant. If this holds, then to check satisfiability of a predicate, it is
possible to try any models with a size lower than the constant: this
gives us an immediate satisfiability checking algorithm (made of a finite
number of checking steps which can all be achieved in finite time).

For that purpose, we will fix the notations. Let P be an initial predi-
cate that is satisfiable and σ be a model of P . The set of messages keys
is defined as the set of keys that appear in P : a message m is in keys
iff there exists a message n such that {n}m is a sub-term of P . The
set keys is of course finite and does not depend on the chosen model σ.
Eventually, the set keys will be separated in two sets keys+ and keys−

defined by:
k ∈ keys+ ⇔ env ` kσ

Note that there only exists a finite number of possibilities for keys+ and
keys− independently of σ. A substitution σ′ will be said adapted to
keys+, keys− if the two following assertions are true:

k ∈ keys+ ⇒ env ` kσ′

k ∈ keys− ⇒ ¬env ` kσ′

The set of substitutions adapted to keys+, keys− will be noted ad(keys+, keys−).
The idea is now to use these two sets of keys in order to formulate a
rewriting system that will be correct for adapted models. Then, this
rewriting system will terminate, giving us a simple normal form. With
this normal form, we will be able to describe the set of models of the
initial predicate. Eventually, we will show that there exists a model that
is adapted (to keys+ and keys−) and whose size can be bounded. Model
σ is supposed fixed and is, of course, a valid model of P .

Definition 8 (Rewriting System) The rewriting system RI is de-
fined over the set of initial predicates by the following rules:

Dec∼{}1 : If there exist m′
2, n

′
2 ∈ keys− such that m2σ = m′

2σ
and n2σ = n′2σ ,

{m1}m2 ∼ {n1}n2 → >

Dec∼{}2 : Else, if there exist m′
2, n

′
2 ∈ keys+ such that m2σ =

m′
2σ and n2σ = n′2σ ,

{m1}m2 ∼ {n1}n2 → m1 ∼ n1 ∧m2 = n2

Dec∼{}3 : Else,
{m1}m2 ∼ {n1}n2 → ⊥

12

Dec∼〈〉 :

〈m1,m2〉 ∼ 〈n1, n2〉 → m1 ∼ n1 ∧m2 ∼ n2

Single : If x is not in var(m1) nor in var(m2) and |m1| ≤ |m2|,

x ∼ m1 ∧ x ∼ m2 → x ∼ m1 ∧m1 ∼ m2

Atom∼ : For atomic messages,

a ∼ a→ >

Type∼1 to Type∼4 : If a and b are two distinct atoms,

a ∼ b→ ⊥

a ∼ 〈m1,m2〉 → ⊥
a ∼ {m1}m2 → ⊥

{m1}m2 ∼ 〈n1, n2〉 → ⊥

For the syntactic equality part, we will use classical unification rules
noted Dec={}, Dec=〈〉, Atom= and Type=i. The resolution rules will
be noted Res1 and Res2. Res1 occurs if x does not appear in m and
does appear in P :

x = m ∧ P → x = m ∧ P [x\m]

Res2 occurs in the case where x appears in m (and m 6= x):

x = m ∧ P → ⊥

We do not have a resolution-like rule for similarity, because that kind of
rule would not be correct. Consider three messages m, n and p. Having
m similar to n does not imply that p[x\m] is similar to p[x\n]. In fact,
using messages m = {a}k, n = {b}k and p = {c}x with environment
{m,n} will prove that the former proposition is false when using non-
atomic keys.

Now, we will state some basic results over RI in the following prop-
erties.

Property 5 The rewriting system RI terminates. Moreover, RI is cor-
rect and complete for models in ad(keys+, keys−).

Proof 5 To prove termination, we will define some measure related to
an initial predicate Q. Let nbr be the number of variables that are not

Decidability Of Opacity With Non-Atomic Keys 13

solved in Q. The definition of solved used here is the standard one used in
unification. For details, see for example [Kirchner and Kirchner, 1999].
Let sd be the quantity defined by:

sd =
∑

m1∼m2

max(3|m1|, 3|m2|) +
∑

m1=m2

max(3|m1|, 3|m2|)

Where m1 ∼ m2 and m1 = m2 range over the atomic predicates (PA)
composing Q. And let nbv be the number of occurrences in Q of similar-
ities that have the form x ∼ m.

Then, the order < will be defined over initial predicates as the lexico-
graphic order over (nbr, sd, nbv). This order will decrease strictly when
applying → as shown in this array :

Rule nbr sd nbv

Res1 <
Res2 <

Dec={} = <
Dec=〈〉 = <
Atom= = <
Type=i ≤ <

Dec∼{} = <
Dec∼〈〉 = <
Atom∼ = <
Type∼i ≤ <
Single = = <

And so, this proves that RI terminates.
Correctness and completeness are trivial for rewriting rules borrowed

to unification. For the Single rule, transitivity of similarity ensures cor-
rectness and completeness. For the Dec∼{} rules, this comes directly
from the definition of ∼ and these rules are the reason why this is only
correct for adapted models.

Now that RI does terminate, we can focus on the normal forms ob-
tained using RI on a predicate Q such that Q is adapted to keys, i.e.
the set of keys related to Q is included in keys (of course, we will usually
take Q = P). It is easy to view that the normal form could be:

>, then Q is satisfied by any model (for example, Q was a ∼ a).

⊥, then Q cannot be satisfied by any model (for example, Q was
a ∼ b).

x1 ∼ m1∧ ...∧xa ∼ ma∧y1 = n1∧ ...∧yb = nb where the variables
xi and yj are distinct, and the yj do not appear in any mi nor in
any nk.

14

Let us consider the third case. The length of messages in the normal
form can be majored independently from σ. The only rule that could
make the maximal length of messages in Q grow is Res. In that case, the
maximal length could be multiplied by two. But this rule can only occur
one time for each variable in Q. So, if n is the number of variables in P ,
m is the maximal length of messages in Q, then the maximal length of
messages in the normal form is lower than m.2n. The worst case is to
produce a message by piling up all the initial messages.

To compute the set of models satisfying Q, we will proceed in three
steps. These steps are close to those used in the key quantification
method proposed in [Mazaré, 2004].

Replace mi by fresh(mi) using keys+ and keys−.

If there is a loop xi1 ∼ mi1 ,...,xiα ∼ miα and xi2 occurs in mi1 ,...
xi1 occurs in miα , then there are no models satisfying Q.

Else, there exists xi ∼ mi such that no variable xj (for j 6= i) occurs
in mi. The possible values for xi are given by instantiating the free
variables ofmi with any possible messages. Like in unification, this
can be done recursively for every xj and then for every yj .

Property 6 There exists a message fx for each variable x that is free
in Q such that σ′ models Q iff there exists a message vi for each free
variable zi in fx such that:

xσ′ = fx[z1\v1, ..., zc\vc]

The substitution [z1\v1, ..., zc\vc] related to a given σ′ will be noted σ′e.

Proof 6 This is a direct consequence of the structure of the normal
forms.

An important thing to notice is that the length of each fx can be bounded
by a constant that only depends on P andQ. This comes from the bound
over the length of messages appearing in the normal form. For the rest
of this paper, we will consider Q = P and this bound will be noted
Cf (P).

We now have given all the definition needed to formulate the finite
model property.

Definition 9 The potential complexity of a predicate P , C(P), is de-
fined by:

C(P) = Cf (P) +max(|m|/m ∈ env).c

Of course, the potential complexity depends only on P .

Decidability Of Opacity With Non-Atomic Keys 15

Theorem 1 (Finite Model) If a predicate P is satisfiable, then it ad-
mits a model σ′ such that∑

x∈var(P)

|xσ′| ≤ C(P).card(var(P))

Corollary 2 Satisfiability of predicates in IP is decidable.

The finite model property is not enough to prove the corollary: the
model is finite but there are an infinite number of possibilities for the
atoms. This is not really a problem because we can restrict the possible
atoms to those used in P as long as there are enough distinct fresh atoms
such that all the leaf in any xσ can be distinct (as the length of xσ is
small, this is possible).

5. Syntactic Equality
The addition of syntactic equality in predicates will be used to model

the intruder performing bit-to-bit comparison between two deducible
messages. For example, if the intruder has intercepted {v}pub(S) and
has a bit-to-bit value equal to {yes}pub(S), then he can deduce that
the value of v is yes. Two such messages will be called identifiable
messages. We will show in this section that the knowledge brought by
identifiable messages is computable. A kind of attack close to this one
has already been studied with different techniques under the name of
guessing attacks in [Lowe, 2002], [Gong et al., 1993] or [Delaune, 2003].
But these studies do not precisely link the values to the proto-messages
as will be done here. In the previous section, we used the Dolev-Yao
model: the only way to obtain some information from a ciphertext was
to find the right key and to decode it. Here, we use a model where
the intruder has stronger deduction capacities. This hypothesis holds
for some encryption schemes but most of them use random bits so that
these attacks are impossible to perform.

Definition 10 Let M = {m1, ...,mn} be a finite set of messages and σ
be a substitution such that Mσ is closed. We define `σ as follows.

M`σmi
(1) M`σm M`σn

M`σ〈m,n〉 (2) M`σm M`σn
M`σ{m}n

(3)

M`σ〈m,n〉
M`σm

(4) M`σ〈m,n〉
M`σn

(5) M`σ{m}n Mσ`nσ
M`σm

(6)

The meaning of M `σ m is that an intruder knowing M and looking at
Mσ can link the prototype m to its value mσ. The intruder can add to
its knowledge m = mσ but is not allowed to discompose m and mσ as
soon as some keys could be not deducible. But, if the intruder can find

16

two times the same message linked to two different prototypes m and n,
then he will be able to deduce the syntactic equality m = n.

Note that M `σ m implies Mσ ` mσ. The inverse is of course false
(take for example m = x, M = {y} and xσ = yσ = a). First, we will
prove a general property on our new theory: its locality.

Property 7 (Locality) The theory `σ is local: if M `σ m, then
there exists a proof of M `σ m such that for any intermediate occurrence
of M `σ m′ in the proof, m′ is either a sub-message of m, or a sub-
message of a message present in M .

Proof 7 Let us consider a minimal proof of M `σ m. The idea is to
use an induction on the structure of the proof in order to demonstrate
the property as long as another one: if the last rule is among (1), (4),
(5) or (6), then any intermediate occurrence of M `σ m

′ in the proof,
m′ is a sub-message of a message present in M .

A direct application of this property is that if the last rule used in a
minimal proof of M `σ m is a decomposition, then m is a sub-message
of a message of M .

Definition 11 (Identifiable Messages) Two messages m and n are
said to be identifiable for σ and M iff

m 6= n

M `σ m and M `σ n

mσ = nσ

m and n are minimal iff there does not exist a non initial position p
such that m|p and n|p are identifiable (m|p is the sub-term of m occuring
at position p).

If two messages m and n are identifiable, then the intruder can add m =
n to its knowledge. Now, we want to be able to add all the knowledge
that can be inferred to the intruder’s knowledge without testing any
possible couple of messages. We want to show that this knowledge is
computable in a finite time. For that purpose, we will state two distinct
properties.

Property 8 The set of minimal identifiable messages is computable.

To prove this property, we will have to use the locality of our theory.
This property will lead us to a decision algorithm capable of producing
every possible pair of minimal identifiable messages. Let m and n be two

Decidability Of Opacity With Non-Atomic Keys 17

minimal identifiable messages. Consider minimal proofs for M `σ m and
M `σ n, using the symmetry between m and n, only three combinations
of final rules for M `σ m and M `σ n are possible.

These rules are both 2 or 3: then either m = 〈m1,m2〉 and n =
〈n1, n2〉, either m = {m1}m2 and n = {n1}n2 . Let us consider the
case of pairs. As we have m 6= n, we have m1 6= n1 or m2 6= n2.
To fix the idea, we will consider m1 6= n1. We have, of course,
m1σ = n1σ and M `σ m1 and M `σ n1. So m1 and n1 are
identifiable, there is a contradiction with the minimality of the
pair m,n. That is why, these rules cannot occur at the end of
minimal proofs.

If both rules are in 1, 4, 5 and 6. Then m and n are sub-messages
from M . These messages are only in finite number.

If the rule concerning m is in 1, 4, 5 and 6 and the rule concerning
n is in 2 and 3. Then m is a sub-message of M . As mσ = nσ, we
have nσ in SM(Mσ) (sub-messages, i.e. sub-terms of Mσ). So we
have

|nσ| ≤ max(|p|, p ∈ SM(Mσ))

And we obtain a bound of the length of n:

|n| ≤ max(|p|, p ∈ SM(Mσ))

The atoms occurring in n have to occur in M and the variables
occurring in n have to be instantiated by σ. So there are only a
finite number of possible messages for n.

To find all the minimal similar messages, we have to test all the mes-
sages whose lengths are below max(|p|, p ∈ SM(Mσ)). Messages from
SM(M) are in that set. These messages can only use atoms used in M
and variables instantiated by σ. That is why the set of messages to be
tested is finite. Moreover, checking that two messages are identifiable
and minimal can be done in a finite time too, and so all the minimal
identifiable messages can be found in a finite time.

Property 9 If m and n are identifiable and p1,...,pk are the positions
such that m|pi

and n|pi
are identifiable and minimal, then for any model

σ,
σ |= (m = n⇔ m|p1

= n|p1
∧ ... ∧m|pk

= n|pk
)

Using properties stated in this section, we now have a method to
model what an intruder can guess using bit-to-bit comparisons. Our
method is easy to apply but inefficient as it tests any couple of message

18

whose lengths are below a fixed bound. It produces constraints of the
form m = n, they can be added to the opacity predicates. As we show in
the previous section, satisfiability of the resulting predicates will remain
decidable. More formally, M will be the awaited trace of the protocol
in terms of proto-messages augmented with the initial knowledge of the
intruder and env will be the set of intercepted messages as long as the
initial knowledge, so we will usually take env = Mσ. Then, opacity of
a property P will be checked as satisfiability of to predicates S ∧ P and
S∧¬P where S contains similarities that occur in the opacity constraint.
We will have to compute the set of minimal identifiable messages m1, n1

to mk, nk. This gives use another predicate E defined by:

E = (m1 = n1 ∧ ... ∧mk = nk)

And so, we will study satisfiability of two predicates: E ∧ S ∧ P and
E ∧S ∧¬P . This will be applied in the next section on two very simple
electronic voting protocols.

6. Example: A Simple Electronic Vote Protocol

6.1 Simple Does Not Mean Secure
Let us consider the most simple electronic voting protocol. A is the

voter and S the authority that will count the different votes. The pos-
sible votes are yes and no. Of course, one of the objective is that the
expressed vote remains opaque. In a first version, the vote will just be
sent from A to S encoded using the public key of S. The protocols is
written:

A→ S : {v}pub(S)

Where v is chosen among the values yes and no. Let us suppose that the
expressed vote is yes, so the substitution σ is defined by σ = [v\yes].
Then M is the set {{v}pub(S), yes, no, pub(S)}. The environment env
is the set Mσ. The value of max(|p|, p ∈ SM(Mσ)) is 2 (pub(S) is
considered as an atomic message). We easily obtain the set of minimal
identifiable messages:

{({v}pub(S), {yes}pub(S))}

So E = ({v}pub(S) = {yes}pub(S)), the constraints of opacity related to
the value of v are:

{v}pub(S) = {yes}pub(S) ∧ {v}pub(S) ∼ {yes}pub(S) ∧ v = yes

{v}pub(S) = {yes}pub(S) ∧ {v}pub(S) ∼ {yes}pub(S) ∧ v = no

Decidability Of Opacity With Non-Atomic Keys 19

By using our rewriting system on the second predicate, we have

v = yes ∧ {v}pub(S) ∼ {yes}pub(S) ∧ v = no

And so this constraint can be rewrited to ⊥, the second constraint is
not satisfiable. The value of v is not opaque: the intruder can guess the
vote. Intuitively, we already shew how the intruder could guess the vote
in the introduction. Now, we want to fix this opacity flaw by modifying
the protocol.

6.2 Adding Complexity
The technique used by the intruder is to guess which message can be

encrypted and to compare the result with the intercepted message. As
we do not want the intruder to guess which message can be encrypted,
we add a nonce in the protocol:

A→ S : {〈v, n〉}pub(S)

As in the previous example, let us suppose that the expressed vote is yes
and the nonce is instantiated by a fresh atom N , so the substitution σ is
defined by σ = [v\yes, n\N]. ThenM is the set {{〈v, n〉}pub(S), yes, no, pub(S)}.
The environment env is the setMσ. The value ofmax(|p|, p ∈ SM(Mσ))
is 3. But now, the set of minimal identifiable messages is empty, so the
constraints of opacity concerning the value of v are:

{〈v, n〉}pub(S) ∼ {〈yes,N〉}pub(S) ∧ v = yes

{〈v, n〉}pub(S) ∼ {〈yes,N〉}pub(S) ∧ v = no

It is easy to see that both constraints are satisfiable, so we now have
that the expressed vote is opaque. This protocol can be used without
fearing that an intruder can guess the value of the vote using bit-to-bit
comparisons.

7. Conclusion
In this paper, we extended the notions presented in [Mazaré, 2004]:

opacity is also defined as satisfiability of two constraints, but we do not
need the hypothesis that keys are atomic anymore. However, the method
introduced in [Mazaré, 2004] can be applicated to real case whereas our
new method to decide satisfiability of constraints is far more complex.
The set of predicates which satisfiability is decidable has been extended
to predicates using syntactic equalities and non-atomic keys. Moreover,
we introduced a new technique to determine what an intruder can guess
using bit-to-bit comparisons. Now, we have two distinct theories: on

20

one side Dolev-Yao ` and on the other side `σ. Even if the two theories
are closely linked, an idea for future work would be to produce a single
theory modeling both kind of attacks. Another interesting extension
would be to make the intruder active. If C can intercept and modify
the messages, could he find the right messages to alter such that the
property is not opaque any more ?

Acknowledgements
The author wishes to thank the anonymous reviewers for their very

helpful and constructive comments.

References
Abadi, M. and Rogaway, P. (2000). Reconciling two views of cryptography (the com-

putational soundness of formal encryption). In IFIP International Conference on
Theoretical Computer Science (IFIP TCS2000), Sendai, Japan. Springer-Verlag,
Berlin Germany.

Avispa (1999). The Avispa Project. http://www.avispa-project.org/.

Boisseau, A. (2003). Abstractions pour la vérification de propriétés de sécurité de
protocoles cryptographiques. PhD thesis, Laboratoire Spécification et Vérification
(LSV), ENS de Cachan.

Bozga, L., Lakhnech, Y., and Périn, M. (2002). Abstract interpretation for secrecy
using patterns. Technical report, EVA : http://www-eva.imag.fr/.

Clarke, E., Jha, S., and Marrero, W. (1998). Using state space exploration and a
natural deduction style message derivation engine to verify security protocols. In
IFIP Working Conference on Programming Concepts and Methods.

Comon-Lundh., H. and Cortier, V. (2002). Security properties: Two agents are suffi-
cient. Technical report, LSV.

Comon-Lundh, H. and Cortier, V. (2003). New decidability results for fragments of
first-order logic and application to cryptographic protocols. In 14th Int. Conf.
Rewriting Techniques and Applications (RTA’2003), volume 2706 of LNCS.

Delaune, S. (2003). Intruder deduction problem in presence of guessing attacks. Work-
shop on Security Protocols Verification (SPV’03), co-located with the 14th Inter-
national Conference on Concurrency Theory (CONCUR’03).

Dolev, D. and Yao, A. C. (1983). On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208.

Gong, L., Lomas, M. A., Needham, R. M., and Saltzer, J. H. (1993). Protecting
poorly chosen secrets from guessing attacks. IEEE Journal on Selected Areas in
Communications, 11(5):648–656.

Goubault-Larrecq, J. (2000). A method for automatic cryptographic protocol verifi-
cation. In International Workshop on Formal Methods for Parallel Programming:
Theory and Applications, volume 1800 of LNCS.

Hughes, D. and Shmatikov, V. (2004). Information hiding, anonymity and privacy: A
modular approach. Journal of Computer Security, 12(1):3–36.

Kirchner, C. and Kirchner, H. (1999). Rewriting, solving, proving. A preliminary
version of a book available at http://www.loria.fr/~ckirchne/rsp.ps.gz.

Decidability Of Opacity With Non-Atomic Keys 21

Lowe, G. (2002). Analysing protocols subject to guessing attacks. In Proc. of the
Workshop on Issues in the Theory of Security (WITS’02).

Mazaré, L. (2004). Using unification for opacity properties. In Proc. of the Workshop
on Issues in the Theory of Security (WITS’04). To appear.

Schneider, S. and Sidiropoulos, A. (1996). CSP and anonymity. In ESORICS, pages
198–218.

