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1 Introduction

Our aim is to provide a contract-based veri�cation framework. A system is a
hierarchically structured set of components � which we call Heterogeneous Rich
Components or HRC. We extend the component framework BIP [GS05,BBS06]
and in particular it instance based on hierarchical connectors [BS07] to a frame-
work for hierarchical components enriched with contracts.

In the BIP framework, components interact through ports typed by trig or
sync and are connected via hierarchical n-ary connectors which are typed in the
same way as ports. In BIP only connectors are hierarchical but we consider here
also a hierarchical organisation of the components. Like in BIP, only leaf compo-
nents represent models and have a behaviour explicitly de�ned by a transition
system. Originally, in BIP atomic components have a sequential behaviour, but
here, atomic components are not di�erent from hirarchically de�ned components,
at least frome outside, therfore we eliminate this restriction. Here, we represent
component behaviour by an asynchronous transitions system, but we may choose
other more convenient representations in the future.

The behaviour of hierarchically de�ned components is obtained naturally as
a composition of the behaviours of its leaf components depending on its internal
connectors.

An HRC K has in addition contracts, in the form of an assumption A and
a guarantee G, represented by transition systems. A de�nes a property of the
environment of K and G de�nes a property of K in the case that K runs in an
environment guaranteeing A.

The purpose of our work is to de�ne a framework for validating

� that the behaviour of a component satis�es its contracts
� that the contracts associated with components that are higher in the contract
hierarchy dominate the contracts associated with its inner components

We want to do the validation compositionally and e�ciently. Presently the veri�-
cation condition that we provide involves a component and all its subcomponents
which may not be alsways feasible. Many heuristics have been proposed for de-
composing the veri�cation condition that we obtain, but when non functional
properties are involved, these heuristics tend to be useless.
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As building a set of contracts allowing such a strictly compositional approach
is generally very di�cult, we also consider a more �exible approach where the
strictly contract based veri�cation approach may be replaced by more global
but abstract veri�cation and by providing methods for obtaining from local er-
ror traces global error traces and su�cient conditions to conclude global error
freedom from local one.

In Section 2, we de�ne the syntactic framework of hierarchical components
and connectors. We de�ne the semantics in two steps. First, we say how to obtain
a transition system de�ning the behaviour of a hierarchical component from the
transition systems of its subcomponents and the connectors between them.

The BIP framework allows both for asynchronous and for synchronous inter-
action and execution. In particular, blocking rendez-vous is possible means that
badly designed systems may have deadlocks or interlocks. Veri�cation of absence
of deadlock is an important issue both for guaranteeing absence of deadlocks in
system speci�cations and as a means for property veri�cation. In the conext of
embedded real-time systems is interaction freedom between transactions. Here
we de�ne the building blocks for addressing this problem in an e�cient manner,
but the de�nition of specialised framework for this purpose is forthcoming work.
Interactions as they are de�ned in BIP can be seen as basic transactions which
can then be composed to larger transactions. Our framework allows guarantee by
construction absence of interaction, but we have to verify absence of deadlocks.

Then, as we are interested in linear safety properties mainly, and as dead-
lock is issue, we de�ne the properder relation on component behaviours and the
satisfaction relation in terms of traces and refusals of properties and components.

In Section 3 we describe how we intend to verify the consistency of an hier-
archy of contracts.

We propose an approach to contract veri�cation exploiting the fact that
assumptions are parallel compositions (conjunctions). In order to show that a
contract (A,G) dominates a composition of contracts {Ai, Gi)} � representing
a set of contracts associated with the subcomponents of C � it is su�cient to
show that

� A‖G1‖....‖Gn |= G; this shows that every component Ki ensuring the in-
dividual guarantees, guarantees also G at least if the environment behaves
according to A

� in addition, we have to show veri�cation conditions of the form A‖G1‖...‖Gn |=
Ai; this shows that each of the assumptions Ai can be discharged by the en-
vironment of Ki, so as to guarantee that the restriction imposed by Ai is
not too strong

This proof rule is correct in our framework as A and G constrain di�erent
components

Finally, in Section 4 we give a �rst idea on how we intend to achieve an
e�cient and scalable handling of contracts.



2 Speci�cations and their semantics

De�nition 1 (Interaction set). Let Σ be a set and <,# ⊆ Σ × Σ be a pre-
order and a con�ict relation. Then (Σ,<,#), sometimes simply denoted Σ is
an interaction set if the following conditions hold:

� < is a partial order relation;
� # is a non re�exive and symmetric con�ict relation such that a#b and a < c

implies c#b.

For a ∈ Σ, we denote by ↑a = {b ∈ Σ | a < b} the upwards closure of a and by
↓a = {b ∈ Σ | b < a} the downwards closure of a and we extend these notions to
sets.

Denote a t b the c ∈ Σ representing a least upper bound of a and b, if it
exists. De�ne the closure of Σ, cl(Σ) the interaction set obtained by recursively
adding an element denoted a t b, whenever a, b ∈ Σ, not a#b and not yet exists
an element c representing the upper bound of a and b.

Note that it is not excluded that both a#b even if a t b exists. Interactions
for which at b exists can be connected, but only interactions for which not a#b
can be executed concurrently.

De�nition 2 (Interaction model). An interaction set (Σ,<,#) is an inter-
action model if whenever a and b are not in con�ict, that is not a#b, then there
exists an action c ∈ Σ that is a least upper bound of a and b.

Property 1. For every interaction set Σ, the closure cl(Σ) is an interaction
model.

Here, an interaction set can can alsways be made an interaction model by
either adding by adding a con�ict a#b or the element of the closure atb whenever
there is no least upper bound of a and b in Σ. In particular, a union of interaction
models is an interaction set. The product of interaction models, denoted Σ1·Σ2 3
a1 · a2 or ΠiΣi 3 (a1, ..., an), is already an interaction model.

The interaction models as they are de�ned in [GS05] are interaction models
when de�ning a#b whenever a t b is not de�ned. Here, we allow avoiding the
de�nition of an explicit interaction a · b when a and b are independent, that
is when not a#b; indeed, such interactions are implicitly captured by a t b in
(cl(Σ), <, #).

De�nition 3 (Ports and component interfaces). A port is de�ned as in
[BS07] by a name and a type either trigger or synchron.

Let P be a set of (typed) ports. A (external) component interface Int is
de�ned by a set of typed ports P and two relations < and # on P such that P
is an interaction set and consequently cl(P) an interaction model.

De�nition 4 (Component). An component K is de�ned by K = ((P, <, #), TS)
where TS = (Q, q0, cl(P),→) is a transition system de�ned on the interaction
model cl(P), such that



� Q is a set of states and q0 ⊆ Q an initial state (or a set of initial states).
� →⊆ Q× cl(P)×Q is a transition relation. We de�ne en(a) for each a ∈ Σ

as the set of states in which a is enabled, that is ∃q′ ∈ Q . q
a→ q′. →, and

we extend the transition relation in the usual way to a transition relation on
sequences of labels. → must then satisfy the following conditions:

• if a, b ∈ cl(P), then q ∈ en(a) ∩ en(b) implies (q
a;b→ q′′ i� q

b;a→ q′′) and

whenever q
b→ q′′ then also q ∈ en(a) ∩ en(b) or q ∈ en(a t b);

• if a, b, c = a t b ∈ P then, en(a) ∧ en(b) = en(c) and a < b implies
en(a) ⊆ en(b)

• for interactions a, b ∈ cl(IS), a < b but ∃p ∈ P . a = tact(p), then
en(b) ⊆ en(a).

We call (P, <, #) = Int(K) the (external) interface of K and TS = beh(K) the
behaviour of K

That means that whenever ports are independent (not in con�ict), then in a

state in which both a and b are enabled, the transition sequence
a;b→ is semantically

equivalent to
b;a→ and to

atb→ , where the latter may or may not explicitly exist in
TS independently of the fact that a port dominating a and b exists or not. In
fact, the allowed labels of → are those in cl(P). This means that a; b and a t b
are in such states semantically equivalent and TS represents an asynchronous
transition as de�ned in [WN95].

We now de�ne hierarchical components as compositions of components and
we de�ne 2 views of hierarchical compositions:

� an external view which represents an hierarchical component to the envi-
ronment exactly as an atomic component, de�ned by its external interface,
that is its set of ports and a behaviour represented by transitions labelled
by elements of of the interaction model cl(P).

� an internal view which makes visible the internal structure of the component,
consisting of a set of components Ki and a composed interaction model IM
which is a subset of

⋃
i∈I Pi

⋃
j∈J⊆I Πj∈J,kPk

j and which will be de�ned by
a set of hierarchical connectors as in [BS07].

� the internal and external view are linked via a relation a associating subsets
of IM to an interaction set Int = (P, <, #) such that a is a structure
preserving relation from the interaction model IM to the one de�ned by
Int, that is (cl(P), <, #).

� that means that the behaviour of a hierarchical component is de�ned in the
internal view in terms of transitions labelled by IM and in the external view
by transitions labelled in cl(P) such that in the behaviour of K, each internal

view transition q
σ→ q′ corresponds to a set of transitions q

p→ q′ for each p
such that σ a p

We �rst de�ne the internal view of a hierarchical component by de�ning the
notion of typed hierarchical connector which then allow to de�ne the internal
view of a hierarchical component.



De�nition 5 (Connector). Let {Inti = (Pi, <i,#i)} be a set of (external)
component interfaces. A typed connector con on {Inti} consists of:

� a subset con ∈
⋃

i Pi such that ∀i,∀pm, pn ∈ con . pm ti pn is de�ned in the
union interaction model induced by {Inti} but pm ti pn 6∈ Pi. (meaning that
either interactions of pn and pm are independent, or if pm#ipn, then pmtipn

has been already de�ned somewhere �inside� the hierarchical component Ki

exposing the external interface {Inti}, but the connector corresponding to
pm ti pn does not appear in the interface Inti).

� a type sync or trig.

con de�nes an interaction set Σcon as a subset of
⋃

i∈I Pi

⋃
j∈J⊆I Πj∈J,kPk

j

where Σcon contains

� p ∈ Pi for any i
� p1 · ... · pn such that con =

⋃
l=1..n pi and ∀pl ∈ con, type(pl) = sync(that is

all ports must synchronise)
� if con contains ports of type trig then, p1 · ... · pm such that

⋃
l=1..m pi ⊆ con

and ∃pl . type(pl) = trig(that is the interaction p1 · ... · pm is complete)

The preorder relation < is derived from <i and p < p · q. The con�ict re-
lation is de�ned

⋃
i #i and σ#σ′ if there de�nitions involve con�icting ports.

That means in particular that in a hierarchical de�nition σ#σ′ if they do not
�hierachically contain� a common or con�icting atomic ports.

De�nition 6 (Mapping of an interaction model on a component inter-
face). Let (Σ,<,#) be an interaction set de�ned upon a set of atomic ports and
Int = (P, <, #) a component interface.

A relation a⊆ Σ × P (or as well a function act(p) = {a ∈ Σ.a a p}) de�nes
an interaction port association between Σ and P if:

� for each p ∈ P, act(p) is an interaction model such that act(p) =↓a for some
element in Σ; sometimes we identify p by this maximal element of act(p)

� p < r i� act(p) ⊆ act(r)
� p#r i� ∃a ∈ act(p)∃b ∈ act(r) such that a#b
� if a a p and a is an atomic port, then type(a) = type(p)

That means, an interface Int = (P, <, #) is an interaction set derived from
an interaction set Σ by exposing some downwards-closed subsets of Σ as an
interaction p to the environment. In fact, such a downwards closed set repre-
sents exactly the interaction model of a BIP connector, and also here, a port
representats either an atomic port or a connector on a set of components.

De�nition 7 (Internal interface or composition model). Let {Inti =
(Pi, <i,#i)} be a set of (external) component interfaces, let be CON a set of
connectors de�ned on {Inti} and IS the interaction set de�ned by {Inti} and
CON as in de�nition 5. Then.

The internal interface or composition model of a hierachical component de-
�ned by {Inti} and CON is CM = ((P, <, #), IS,a) if



� P =
⋃

i Pi ∪ {pcon, con ∈ CON}
� a is an interaction port association between IS and P de�ned by a a p if

a ∈ Pi and a = p or a a p if p = pcon and a ∈ Σcon as de�ned in de�nition 5.

Now we provide the possibility to de�ne connectors hierarchically and thus
de�ne more complex component compositions. Note that hierarchical connectors
are needed to be able to express any interaction set IS on a set {Inti} as a
composed components (this is proved in [BS07]).

De�nition 8 (Hierarchical connectors). Let be CM = ((P, <, #), IS,a)
the composition model de�ned by the set {Inti = (Pi, <i,#i)} of component
interfaces and the set CON of (hierarchical) connectors. A (typed) hierarchical
connector con is de�ned in the same way as a connector by:

� a subset of P such that ∀i,∀pm, pn ∈ con pmtpn is de�ned but not pmtpn ∈
P;

� a type sync or trig.

con de�nes an interaction set Σ on
⋃

i Pi which is de�ned analogously to that
of a connector, only that ports that are connectors in CON are instantiated by
their interaction set in IS. That is the hierarchical de�nition of elements in Pi

is hidden but the one of elements in CON is not.

Thus, Σcon is de�ned by :

� if ∀p ∈ con, type(p) = sync (that is all ports must synchronise), then a1 ·...·an

such that con =
⋃

l=1..n pi and either ai = pi ∈ Pi or ai a pi and pi ∈ CON

� if con contains ports of type trig then, a1 · ... ·am such that
⋃

l=1..m pi ⊆ con,
∃pl . type(pl) = trig(that is the interaction p1 · ... · pm is complete) and again
either ai = pi ∈ Pi or ai a pi and pi ∈ CON

The preorder relation < and the con�ict relation # are de�ned exactly in the
same way as for a connector in de�nition 5.

Also the internal interface CM ′ = ((P ∪ {pcon}, <, #), IS ∪Σcon,a ∪ acon)
is de�ned in the same way as before

Thus the componosition model CM = ((P, <, #), IS,a) de�ned by a set of
hierarchical connectors adds all the connectors as new ports and expresses all
interactions as set of the ports of the connected interfaces. Now, we enclose such
a composition model into a component by (1) choosing any subset of P to be
exposed for connection with the environment and (2) by de�ning an external
interface that hides the interactions in IS by substituting them by interactions
in the subset of externally visible ports.

In a constructive approach one may choose to keep all ports and connectors
available for further composition, whereas in a projective approach, for a given
a global system architecture, it is enough to expose only those ports which are
indeed used in some connection at some level of hierarchy.



De�nition 9 (Hierarchical and atomic component). Let Ki be a set of
components Inti = (Pi, <i,#i) be a set of component interfaces and CM =
((P, <, #), IS,a) a composition model for the set {Inti}. Then, for a ny choice of
a set P ′ ⊆ Ports, a hierarchical component K is de�ned by K = (Ki, CM, Int)

� its subcomponents Ki

� its internal interface CM , where ({Ki}, CM) is sometimes referred to as the
internal structure of K

� an external interface Int = (Ports′, <, #) which is derived from CM in a
straightforward manner. We sometimes call str(K) = (str(Ki), CM, Int,a)
the structure of K

� The behaviour of K, beh(K) is de�ned from the beh(Ki) by composing them
according to CM . the behaviour expressed in terms of actions in IS of CM
is the internal view of the behaviour and the one obtained by transforming
labels in IS by labels in P is the external view of the behaviour. We de�ne
next how the behaviour of K is de�ned as a composition of behaviours of Ki.

� (Int, beh(K)) is the component de�ned by K

A component K is an atomic component if it has no subcomponents or if its
internal structure is not known.

Note that we do not require that K provides an explicit transition system
corresponding to this behaviour. It is enough to provide the transition systems of
the leave components and obtain the composed transitions hierarchical composi-
tion using the composition models CMi of the component hierarchy. The hiding
mechanism provided by the external interfaces may or may not be used. Not us-
ing it for a given component means splitting a components into its constituents
of a lower level.

2.1 Semantics of components

Now we de�ne the transition system representing the behaviour of components
and hierarchical components. They have transitions labelled by interactions,
such that interactions for which a t b but no explicit interaction c = a.b is
de�ned are independent. Moreover, we require the transition system to respect
the maximal progress requirement of BIP which says that larger interactions
should be preferred over smaller ones; nevertheless transitions whose interactions
are maximal in some port cannot be eliminated from TS, because they are part
of a bigger interaction in the composed system.

De�nition 10 (Component Semantics). Let K be a component with an in-
ternal interface or composition model CM = ((PCM , <, #), IS,a) and the asyn-
chronous transition system TS = (Q, q0, cl(IS),→) de�ning the internal view of
the behaviour of K as de�ned in De�nition 4.

The internal view of the semanticsof K, is the transition system TS′ which
has a smaller transition relation →′ such that



� for interactions a, b ∈ cl(IS), a < b and 6 ∃p ∈ P . a = tact(p), then en(a) ∩
en(b) = ∅.

The external view of the behaviour of K is a transition system TS′′ =
(Q, q0, cl(P),→) obtained from TS′ by

� renaming interactions in σ ∈ IS to port names in p ∈ P such that every
transition of the form q

σ→′ q′ of TS′ is replaced by a set of transitions of

the form q
p→∗ q′ for each p such that σ ∈ act(p). q

σ→′ q′ is replaced by a

transition q
τ→ q′ if σ is an interaction not corresponding to a port in P.

� and then by eliminating internal τ transitions by de�ning → as the small-
est transition relation such that q

w→ q′ if w = w1;w′ and ∃q′′ such that

q
τ∗;w1;τ

∗

→ q′′ and q′′
w′

→ q′, where we extend transition relations to sequences
of interactions as usually

This constraint on the transition relation is on of BIP. Whenever an action
a � which is not a maximal interaction of some components � is dominated
by an action b which is enabled, then a transition with a should not be enabled
and if one exists, it is eliminated.

Such a maximal proegress rule can only be applied in a subsystem because
we suppose that only the interaction set de�ned by ports are connected and
therefore able to form new global interactions together with the environment.

The external view of a component forgets about the actual interactions con-
necting components inside K and replaces such an interaction σ by a port names
p whenever σ is a complete interaction that can be �red without any interaction
of the environment or if σ represents the t of the set act(p) for a port p even
if this p is of type sync. In any case, the connection with the environment does
not need to know the precise interaction that has been taken on p but only that
it is a complete or maximal one for p.

We must now de�ne how to infer the behaviour of a hierarchical component
from the ones of its subcomponents. For that, we need to express the interaction
model of a hierarchical component with respect to all the possible interactions
within its subcomponents.

De�nition 11 (Behaviour of a composition). Consider a hierarchical com-
ponent K whose structure is de�ned on a set of components {Ki} with CM =
((P, <, #), IS,a) and Int(Ki) = (Pi, <i,#i), the external view of the behaviour
of the components Ki is de�ned by TSi = (Qi, qi0, cl(Portsi),→i).

Then, the behaviour of K is de�ned by a transition system of the form TS =
(Q, q0, cl(IS),→), where

� Q = Πi=1..nQi where we write q = (q1, ...qn) for q ∈ Q;
� q0 = (q10, ...qn0);
� the transition relation → de�ning the internal view of the behaviour of K is

the smallest transition relation such as:

• if σ = (xi1 ..xiJ
) ∈ IS and qij

xij→j q′ij
for j ∈ J , then (q1, ...qn) σ→

(q′′1 , ...q′′n) where q′′i = qi for i ∈ J and q′′i = qi for i 6∈ J .



• if qi
a→i q′i and internal transition of TSi then (q1, ..qi..qn) a→ (q1, ..q

′
i..qn)

TS is transformed into a transition system TS′ satisfying also the maximal
progress rule as de�ned in De�nition 10 and then into TS′′ de�ning the external
view of the behaviour of K.

If the composition model CM is clear from the context, we denote the result-
ing TS′ or the external view TS′′ by ‖CMTSi or simply by TS1‖...‖TSn

As already stated TS needs not to be provided explicitly for de�ning the
component K. In the sequel, when we denote the behaviour of a component by
TS, we do not require this to stand for an explicit representation.

Property 2. The transition system TS′′ = (Q, q0, Σ,→′) de�ning the external
view of the behaviour of K as de�ned before satis�es all the requirements of
De�nitions 4 and 10, that is, it is an asynchronous transition system. Moreover,
the transition systems TS′′ and TS′ are bisimilar.

We de�ne also some derived semantic sets that will be used for the de�nition
of the partial order relation between components and for the satisfaction relation.

De�nition 12 (Semantic sets). Let be a component K whose structure is de-
�ned on a set of components {Ki} with CM = ((P, <, #), IS,a) and Int(Ki) =
(Pi, <i,#i) such that TS′ = (Q, q0, IS,→′) represents the internal and TS′′ =
(Q, q0,P,→) satis�es the external view of this behaviour.

In the following, we de�ne semantic notions always with respect to some
interaction model IM = (Σ, <,#), such that the external version is obtained by
choosing IM to be the set of ports, and the internal one by choosing IS as the
interaction set

� traces(K) =traces(TS,Σ) ⊆ Σ∗ : {w =∈ Σ∗ | ∃q′ ∈ Q . q0
w→ q′} these are

the possible traces of K in terms of external interactions
� acc(K) ⊆ traces(K) × 2Σ : {(w,B) ∈ Σ∗ × 2Σ∗ | ∃q′ ∈ Q . q0

w→ q′ ∧ B =
{σ|q′ σ→}} for each trace w, this de�nes the set of maximal sets of interaction
that may be enabled in K after some execution of an observable trace w.
This means, we consider internal transitions to be under the control of the
component that cannot be forbidden by an non cooperative environment.

� ref (K) = ref(TS,Σ) = {(w,B′)\ ↓B) |B′ ⊆ Σ,∃(w,B) ∈acc ∧B′ ⊆ Σ\ ↓
B} is a downwards closed set that de�nes all interaction sets that may be
refused by K after w.

� REF (K) = REF(TS,Σ) is the set of refused traces; they are traces w; b,
where w is a trace of K and b potentially refused interaction in B such that
(w,B) is a refusal of K.

� dead (K) ⊆ Σ∗ : {w|(w, ∅) ⊆acc(K). These are deadlocks of K, which can
only be avoided by environments that avoid w.

� deadpot (K) ⊆ Σ∗ : {w|(w, ∅) ⊆ acc\inc(K) where B contains interactions
which are not complete in K, that is which de�ne a sync port of K and are
not part of any other set act(p). These are potential deadlocks that may occur
in non cooperative environments.



For each trace w, exists a refusal set B if there exist an execution for w in
TS to a state q in which a superset of B is refused. We consider a local version
of acceptance/refusal sets where acceptance sets contain any actions that are
accepted in S after w, that means all those that may be accepted in global
context of K.

De�nition 13 (Deadlock freedom of a speci�cation). Let K be a compo-
nent. Then,

� K is internally deadlock free if dead(K) = ∅ that is K has no deadlocks in
TS.

� K is deadlock free deadlock if deadpot(K) = ∅, that is K has no potential
deadlocks.

Property 3. Let K be a component as above. Then, we have:

� traces(K);Σ ∩ traces(K) ⊆REF(K)
� deadpot(K) ⊆ dead(K)
� K is (internally) deadlock free for the internal semantics if and only if it is
for the external semantics where the second is de�ned on a much smaller
action set

2.2 Preorder and Satisfaction Relations

We de�ne �rst a preorder relation that is adequate for the intended property
veri�cation, in the sense that smaller models satisfy more properties and smaller
properties are satis�ed by more models. A stronger preorder whose equivalence
is also a congruence will be considered later.

We de�ne a preorder that compares transition systems with respect to a
given interface only. The reason is that we consider the problem of comparing
components for a given hierarchical de�nition of interfaces. In the following, we
always provide the de�nitions based on the external semantics. We can do this
without loss of generality as we have shown the internal and the external view
of the semantics to be bisimilar.

De�nition 14 (Preorder and Equivalence on behaviours). Let K be a
component with IM = (Σ, <,#) its internal or external interaction model. Let
TS, TS′ be transition systems on Σ.

We de�ne the following preorder relation between transitions system with
respect to IM :

� TS �IM TS′, i�

1. traces(TS,Σ) ⊆ traces(TS′, Σ) and
2. ref(Σ,TS) ⊇ ref(Σ,TS′)|traces(Σ,TS) where

ref(Σ,TS′)|traces(Σ,TS) = {(w,B) ∈ref(Σ,TS′) |w ∈traces(TS,Σ)}
� TS ≈IM TS′ i� TS �IM TS′ and TS′ �IM TS



� we extend the preorder and equivalence to components K and K ′ for the
interaction model IM such that the behaviour of K is TS and the one of K ′

is TS′.
K � K ′ i� TS �IM TS′ and
K ≈ K ′ i� TS ≈IM TS′.

Property 4 (Minimal and Maximal behaviours for an interface). The following
properties hold

� For a given interaction model IM , the smallest component, called deadIM is
de�ned by any transition system TS which has {ε}, as its set of traces and
refuses everything after ε. This means dead is internally deadlocking

� For any interaction model IM , the largest component, called trueIM is de-
�ned by any transition system TS which has Σ∗ as its set of traces and
refuses never anything. Thus, true has no internal deadlock but if no inter-
action in Σ is complete, then true may deadlock in an adversary environment

� For any component K with external interface Int and behaviour TS
• deadIM � K
• K � trueIM

We de�ne now the satisfaction relation expressing that a component K for the
interaction model IM = (Σ,<,#) and behaviour TSK satis�es some property,
where a property is expressed by a transition system TS on Σ′ ⊆ Σ.

De�nition 15 (Property for an interaction model). Let IM = (Σ, <,#)
be an interaction model and let TS be a transition system on Σ′. where Σ′ is a
subset of Σ that is downwards closed in Σ. That is IM ′ = (Σ′, <, #) is a sub
interaction model of IM . Then, TS represents a property for IM .

In order to de�ne the satisfaction relation, we compare a behaviour TS de-
�end on IM of a component K with a property TS′ on IM ′ which is a sub
interaction model of IM . In order to do so, we project TS on IM ′.

De�nition 16 (Projection of a Transition Systems to smaller inter-
face). Let IM = (Σ,<,#) be an interaction model and IM ′ = (Σ,<,#) is a
sub interaction model of IM . Let TS = (Q, q0, Σ,→) be a transition system.
Then, de�ne TS′ = (Q, q0, Σ

′,→∗) by

� if q
σ→ q′ and σ′ = t{x ∈ Σ′ . x < σ}, then q

σ′

→∗ q′

� if q
σ→ q′ and t{x ∈ Σ′ . x < σ} = ∅, then q

τ→∗ q′

We call TS′ the projection proj(TS,Σ′) of TS to Σ′.

that is the reachable states of TS are not changed, only the transition labels
are simpli�ed.

De�nition 17 (Satisfaction Relation). Let TS on IM = (Σ, <,#) be a
behaviour of a component K and TSP a property for the subinteraction model
IM ′ = (Σ′, <, #) of IM . Then,

K |= P i� traces(proj(TS,Σ′)) ∩ REF(TSP , Σ′) = ∅



That is K |= P if no trace w of K projected to Σ′ may be refused by P .

Property 5. Let TS and TS1 TS2 be behaviours on the interaction model IM =
(Σ,<,#) de�ne components K, K1,K2 and TSP , TSP ′ de�ne properties P and
P ′ de�ned on IM ′ = (Σ,<,#). Then,

� K |= P implies traces(proj(TS,Σ′))⊆ traces(P ) and ref(P )⊆ref(proj(TS,Σ′)),
more precisely, everything that may be refused by P must be refused by K

� Call a component K deterministic if for each w ∈traces(K) , w 6∈REF(K),
which means that K has a deterministic transition relation.
If TSP is deterministic, then K |= P if and only if traces(proj(TS,Σ′)) ⊆
traces(P ) .

� if P �IM ′ P ′ and K |= P , then K |= P ′

� if K ′ �IM K and K |= P , then K ′ |= P ′

� if K1 � K2 then K1‖K � K2‖K, that is, � is preserved by composition.
� K |= P , then K‖K2 |= P .
� K |= P and K |= P ′ i� K |= P‖P ′ (as for a common sequence of P and P ′,

P‖P ′ may refuse what at least one of P or P ′ may refuse)
� When K1 |= P , then K2 � K1 implies K2 |= P
� When K1 |= P , then P � P ′ implies K1 |= P ′

� K |= P implies K � P

That is, the satisfaction relation implies trace inclusion in all cases and is
identical to trace inclusion for deterministic speci�cations and the preorder <
on speci�cations is adequate for the satisfaction relation.

2.3 Decompositions and recompositions of components

An interaction model does not uniquely de�ne a maximal interface. As it is shown
in [BS07], there are generally alternative ways of de�ning connectors on a set of
ports for obtaining a given interaction set IS. can be mapped to many di�erent
interfaces; this is due to the fact that E.g., if the interaction a is dominated by
more than one port, then one can only say that a must be part of the action sets
of at least one of these ports (otherwise a wouldn't be in Σ).

We have de�ned the notion of interaction model as in BIP, as it is simple and
provides enough information for deriving several useful properties. In particular,
components are de�ned by an interaction model and a behaviour, where the
behaviour is de�ned by a transition system on the set of interactions of the
component. The ports are only needed for de�ning the way the component may
be composed.

[BS07] provides the following useful theorem which allows to decompose a
component into its set of components Ki and then to compose it in such a way
that it is a component obtained as a composition of one of the components Ki

with a component K ′ grouping all the other subcomponents.
This allows us to obtain for any component the composition model relating

Ki to its environment and for a closed system, this allows us also represent the
environment of Ki by a set of ports connected to the ports of Ki via some typed
connectors.



Theorem 1 (Decomposition of a connector). Given an arbitrary connector
x and a port p it is always possible to construct a connector x̃ such that x de�nes
the same interaction model as x̃ and x̃ is of the form (p, con1, ....conk) and p does
not appear in con2, ...conn.

The same transformation can be done for a set of ports

Then, we are interested in the interface for SK de�ned by the sets of ports
P ∪ PE and the interaction model de�ned by Con.

De�nition 18 (A component and its environment). Let Int(K) = (P, <
,#) be the external interface of a component K.

Then consider a component KE with interface Int(KE) = (PE , <E ,#E)
and no internal structure such that each port of PE is connected to ports in P
via a set of connectors, de�ning the the composition model between K and its
environment.

Then, the internal structure of the component SK obtained by composing
K with its environment KE is de�ned as ({K, KE}, CMEK) where CMEK =
(Ports ∪ PE ∪ Con, IS,<, #) such that Con is a set of connectors on P ∪ PE

and IS, <,#,a are as de�ned by de�nition 7.

We can now also de�ne a composition model relating any subcomponent Ki

of K to its environment KE
i which is de�ned by the peer Kj and KE and their

composition models.

({str(Ki)}, CM,P,a) de�ne the structure of K, where P is a subset of⋃
i Pi ∪ PCON corresponding to the hierarchical connectors CON de�ning the

internal composition model CM of K with CM = ((
⋃

i Pi∪PCON , <, #), IS a).
Then, due to the theorem above for any given i ∈ I one can de�ne a com-

position model CM ′ for form {Ki, i ∈ I} ∪ {KE} where CM ′ = ((PCM ′ , <′

,#′), IS′,a′) is de�ned as

� the set of ports PCM ′ is a set of ports de�ned by a union of 3 sets of connec-
tors: Pi, CONEi ⊇

⋃
j 6=i Pj ∪PE a hierarchical set of connectors connecting

only ports not in Pi, and �nally a hierarchical set of connectors CONi−Ei

connecting ports in Portsi with ports in CONEi

� the interaction set IS′ which is obtained according to de�nition 7 is IS

� the de�nitions of <′, #′ and a′ are straightforward

We de�ne then an external interface of a component KEi, Int(KEi) = (PEi, <
,#) representing the elements of CONEi used by some connector of CONi−Ei

and < and # are derived straightforwardly.

Then, the component SK can also be de�ned by composing Ki with its envi-
ronment KEi and the corresponding composition model is de�ned as ({Ki,KEi}, CMKi)
where CMKi = (Portsi ∪ PEi ∪ CONi−Ei, ISEi, <Ei,#Ei) such that ISEi is
obtained by renaiming interactions of IS in terms of PortsEi and also <Ei

,#Ei,aEi are as de�ned by de�nition 7.



3 Components enriched with contracts and compositional

veri�cation

3.1 HRC: hierarchical components enriched with contracts

First, we introduce the notion of Rich Component (HRC), similar to the one
introduced in [BCSM07,BBB+07] but adapted to our hierarchical BIP compo-
nents: the structure of an HRC K is the structure of a component, enriched with
a composition model with its environment KE as de�ned in De�nition 18 and a
set of contracts.

A contract is a pair of transition systems (A,G), de�ned on PK , respectively
PE . A expresses an assumption of the behaviour of the environment and G
de�nes a property that K must � or is assumed to � satisfy under the condition
that the environment behaves according to A.

A rich component has, exactly as a component, a behaviour that is either
explicitly given for a leave component or implicitly de�ned by the set of leave
components. In the context of contract based reasoning, we want to be able to do
some reasoning without having already de�ned all the leave components and/or
their behaviour.

De�nition 19 (Assumption, Guarantee, Contract). Let be Int = (P, <
,#) an interface. A contract for K is given by a pair (A,G) where A and G are
transition systems with labels in P; A is called the assumption and G is called
the guarantee.

De�nition 20 (Rich component and their interfaces (HRC)). The struc-
ture of a rich component or HRC is of the form ((str(Ki), CM, (PK , <, #),a
), (PE , CMEK), CONTR) or ((PK , <, #), (PE , CMEK), CONTR) where

� (PE , CMEK) is a set of ports representing the environment and a set of
connectors connecting K to its environment as de�ned in De�nition 18; if
K is de�ned as a part of a larger system then the second construction of this
de�nition is used, whereas if K is a unique outermost component described,
then the �rst construction of De�nition 18 is used.

� {Ki} are HRC and ({str(Ki)}, CM,P,a) is de�ned like a structure of a
hierarchical component or alternatively, ((P, <, #), TS) de�nes an atomic
component without a de�ned substructure.

� CONTR a set of contracts of the form (Ai, Gi) where Ai is de�ned on the
alphabet PE and Gi is de�ned on the alphabet P .

A rich component K is de�ned by a structure str(K) and by beh(K) de�ning a
transition system on the external interface (PK , <, #) of K.

Notice that for assume guarantee reasoning, we are mainly interested in the
structure of the component K, whereas the behaviour of K may not always be
given or computed.

Given the structure of an HRC K we are now able to consider the environ-
ment KE of K like any other component. How to obtain a valid KE is de�ned
in section 2.3.



3.2 Compositional veri�cation of HRC

For being able to de�ne compositional veri�cation, we need to de�ne a satisfac-
tion relation, de�ning what it means for a contract (A,G) to be satis�ed by K,
and a dominance relation such that (A,G) dominates (A′, G′) if all components
satisfying (A′, G′) satisfy also (A,G). We use the dominance relation for showing
that a contract (A,G) associated with a hierarchical component dominates the
implicitly de�ned contract de�ned by a set of contracts (Ai, Gi) associated with
the subcomponents of K.

Intuitively, K satis�es a contract (A,G) if in the system de�ned by the envi-
ronment of EK and K, where the environment behaves like A, this guarantees
that K satis�es the property G.

We �rst consider the slightly simpler case where each component has a single
contract. The extension to multiple contracts is more complicated to formulate
but not very di�cult to do.

De�nition 21 (Satisfaction of contracts). Let K be a rich component with
an external interface IntK = (P, <, #) and KE an environment with IntE =
(PE , <, #) de�ned by (PE , CMEK) and a behaviour representing a transition
system TS on P. Then, K satis�es its contract (A,G), denoted K |= (A,G) if

SK |= G

For SK de�ned as the composition via CMEK of the components K and KE

de�ned by the external interface IntE and behaviour A.

According to the satisfaction relation of de�nition 17, as G is de�ned as a
property on the alphabet of K, and the behaviour of SK is of the form A‖CONTS
on the composition of the alphabets of K and EK , A‖CONTS |= G means that
the projection of A‖CONTS onto the alphabet of K satis�es G.

Theorem 2. Let K be a rich component with an external interface IntK =
(P, <, #) and KE an environment with IntE = (PE , <, #) de�ned by (PE , CMEK)
and a behaviour representing a transition system TS on P.

If K satis�es its contract (A,G), then

A‖TS � A‖G

where the parallel composition on transition systems is on both sides the one
induced by the composition model of SK .

In the particular case that G is deterministic, we have for TS = G that
K |= (A,G)

proof sketch: Noting that the behaviour of SK is equal A‖TS, we have A‖TS |=
G implies A‖TS � G by property 5; together with SK � A which is due to
monotonicity, this allows to derive the �rst property. The second is straightfor-
ward using the property saying that G |= G for deterministic G and the fact that
A‖TS � G



This important property expresses the fact that G de�nes an upper bound on
all components that satisfy G in the environment de�ned by A; and this allows
the de�nition of a simple proof rule for contract dominance.

De�nition 22. Let K be a hierarchical rich component with a structure of the
form ((str(Ki), CM, (PK , <, #),a), (PE , CMEK), (A,G)) such that str(Ki) de-
�ne a contract (Ai, Gi). Then (A,G) dominates the set of contracts {(Ai, Gi)}
i�

beh(Ki) |= (Ai, Gi) implies beh(K) |= (A,G)

Note that the behaviour of K is de�ned as the composition of the transition
systems de�ning the behaviour of the Ki according to the composition model
CM and renaming the resulting interactions to port names in P according to a.

In [BBB+07] an explicit contract (A′, G′) is associated with the set {(Ai, Gi)}
and dominance is then de�ned as a relationship between the contracts (A′, G′)
and (A,G) which are de�ned on the same alphabets. But there, the semantics
is de�ned as a set of pre�xes and the contract (A′, G′) is de�ned in terms of
negations (complements of pre�x sets), whereas in our framework negation is
not a de�ned operation on behaviours. But also in our case, one can charac-
terise contract dominance. We do this without constructing a contract (A′, G′)
explicitly.

Theorem 3. Let K be a hierarchical rich component with a structure of the
form ((str(Ki), CM, (PK , <, #),a), (PE , CMEK), (A,G)) such that str(Ki) has
a contract (Ai, Gi).

Then (A,G) dominates the set of contracts {(Ai, Gi)} if the following condi-
tions hold

� for the component K obtained by choosing beh(Ki) = Gi, we have K |=
(A,G)

� for all indices i, the component SK de�ned as a composition of Ki with KEi

obtained from PEi and De�nition 18, and by choosing A for the behaviour
of EK and Gj for the behaviours of the Kj, for j 6= i, we have

SK |= Ai

meaning that the assumption Ai is not more restrictive than the one de�ned
by the environment of Ki as de�ned by the guarantees of the pairs and the
assumption A of K.

Proof sketch: the fact that the Ki satisfying (Ai, Gi) are smaller than Gi in
an environment granting Ai (Theorem 2), guarantees by the �rst veri�cation con-
dition that that for Ki having as behaviour the projection of Ai‖Gi as previously
de�ned, one has K |= (A,G).

The second condition guarantees that the restriction Ai can be eliminated as
it is already guaranteed by A and the peer Gj; indeed, A‖(A1‖G1)p‖...‖(An‖Gn)p

is equivalent to A‖G1‖...‖Gn, where the parallel composition is the one respecting
the interaction model and (Ai‖Gi)p represents the projection onto Ki



4 Handling veri�cation conditions contructively

We have de�ned a framework for architecture and system modelling based on
BIP and we have adapted it for the use in the context of compositional veri�-
cation, where components are annotated with contracts specifying assumptions
on the environment and derived a set of veri�cation conditions for showing the
correctness of a contract hierarchy.

Contracts state properties on a speci�c component under some condition on
its environment. We have de�ned veri�cation conditions which are small if each
component has only a small number of subcomponents. In general, this is un-
likel to happen as component must on the other hand be units which are not
too tightly coupled with their environment in order to make compositional ver-
i�cation feasible.

The veri�cation conditions involve the veri�cation of properties on compo-
sitions of component behaviours. K |= P holds if the traces of K cannot be
refused by P which means that K 6|= P if for an approapiate composition model,
the composition K‖P can reach a deadlock state.

Together with the fact that we want to guarantee deadlock freedom of in-
dividual components and globally of the system, this means that methods for
showing absence of deadlock are an important issue.

In [GS03,GGMC+07b,GGMC+07a] we have started to study speci�c meth-
ods for showing deadlock freedom without building products for the BIP frame-
work which are currently being implemented and experimented.

Even if these methods avoid the exploration of the global state graph, they
are global and they compute approximative results. Combining such methods or
slightly more costly and more precise methods with a compositional approach
may lead to interesting results.

We have de�ned components which have in there interface not only the pos-
sible interactiona and a set of contracts, but we de�ne a notion of con�ict and
dependence on the set of ports of the components themselves de�ning corre-
sponding properties of the transition system which can be exploited for obtaining
e�cient partial order reductions

The abstraction de�ned by the use of typed connectors is particularly inter-
sting if we succeed to construct on-the-�y reductions. But we may also envisage
an approach based on incremantal contruction and abstraction.
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