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Abstract

This paper summarizes our experience with IF, an open validation environment
for distributed software systems. Indeed, face to the increasing complexity of such
systems, none of the existing tools can cover by itself the whole validation process.
The IF environment was built upon an expressive intermediate language and al-
lows to connect several validation tools, providing most of the advanced techniques
currently available. The results obtained on several large case-studies, including
telecommunication protocols and embedded software systems, confirm the practical
interest of this approach.

1 Introduction

Automated validation of distributed software is a desirable objective to im-
prove the industrial production of correct systems like communication proto-
cols or embedded systems. In spite of the numerous ongoing researches and
tool developments carried out in this area, this activity remains difficult in
practice: on the one hand the initial software description is usually provided
in a high-level formalism (either a programming language or a formal design
notation like Lotos [23], Sdl [25] or Uml [30]), and, on the other hand, a wide
range of tools are necessary to cover the whole development process, operat-
ing at different levels of program descriptions. Even if several interesting tools
are currently available, either commercial or academic ones, none of them can
fulfill in itself all the practical needs.

Commercial tools (such as ObjectGeode [32], Tau [1], StateMate [22],
Rational Rose [31], etc.) provide several development facilities, like editing,
code generation and testing. However, they are usually restricted to basic
verification techniques (exhaustive simulation, deadlock detection, etc) and
are “closed” in the sense that there are only limited possibilities to interface
them with others. On the other hand, there exist numerous academic tools
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(like Smv [28], Hytech [19], Kronos [34], Uppaal [27], Spin [20], InVeSt [2], etc.)
offering a broad spectrum of quite efficient verification facilities (symbolic
verification, on-the-fly verification, abstraction techniques, etc.), but often
supporting only low-level input languages. This may restrict their use at an
industrial scale.

This situation motivated the development of IF, an intermediate represen-
tation for distributed software together with an open validation environment.
This environment fulfills several requirements. First of all, it is able to sup-
port different validation techniques, from interactive simulation to automatic
property checking, together with test case and executable code generation.
Indeed, all these functionalities cannot be embodied in a single tool and only
tool integration facilities can provide all of them. For a sake of efficiency, this
environment supports several levels of program representations. For instance
it is well-known that model-checking verification of real life case studies usu-
ally needs to combine different optimization techniques to overcome the state
explosion problem. In particular, some of these techniques rely on a syntac-
tic level representation (like static analysis and computations of abstractions)
whereas others techniques operate on the underlying semantic level. Another
important feature is to keep this environment open and evolutive. There-
fore, tool connections are performed by sharing either input/output formats,
or libraries of components. For this purpose several well-defined application
programming interfaces (apis) are provided.

The IF validation environment is quite similar in its philosophy to the
one proposed in the Bandera project [12], which also relies on a dedicated
intermediate format to translate (abstract) Java source code into the input
language of existing model-checkers (like Spin or Smv). However, currently we
mainly address with IF distributed software validation from design formalisms
(like Sdl or Uml) which are widely used in the application area we consider
(communication protocols and embedded systems).

2 Architecture

The IF validation environment relies on three levels of program representation:
the specification level, the IF intermediate level, and the Lts semantic model
level. Figure 1 describes the overall architecture and the connections between
the toolbox components.

The specification level is the initial program description, expressed for
instance using an existing language. To be processed, this description is (auto-
matically) translated into its IF representation. The main input specification
formalism is Sdl, but connections with other languages such as Uml, Lotos

and Promela are envisaged.

The intermediate level corresponds to the IF representation [8]. In IF,
a system is expressed by a set of parallel processes communicating either
asynchronously through a set of buffers, or synchronously through a set of
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Fig. 1. An open validation environment for IF

gates. Processes are based on timed automata with deadlines [3], extended
with discrete variables. Process transitions are guarded commands consisting
of synchronous/asynchronous inputs and outputs, variable assignments, and
clock settings. Buffers have various queuing policies (fifo, stack, bag, etc.),
can be bounded or unbounded, and reliable or lossy.

A well-defined api allows to consult and modify the abstract tree of the IF

representation. Since all the variables, clocks, buffers and the communication
structure are still explicit, high-level transformations based on static analysis
(such as live variables computation) or program abstraction can be applied.
Moreover, this api is also well suited to implement translators from IF to other
specification formalisms.

The semantic model level gives access to the Lts representing the be-
haviour of the IF program. Depending on the application considered, three
kinds of api are proposed:

• The implicit enumerative representation consists in a set of C functions and
data structures allowing to compute on demand the successors of a given
state (following the Open/Cæsar [16] philosophy). This piece of C code
is generated by the if2c compiler, and it can be linked with a “generic”
exploration program performing on-the-fly analysis.

• In the symbolic representation sets of states and transitions of the Lts are
expressed by their characteristic predicates over a set of finite variables.
These predicates are implemented using decision diagrams (Bdds). Existing
applications based on this api are symbolic model-checking and minimal
model generation.

• Finally, the explicit enumerative representation simply consists in an Lts file
with an associated access library. Although such an explicit representation
is not suitable for handling large systems globally, it is very useful in practice
to compute abstractions with respect to bisimulation based relations.
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3 Components description

We briefly present here the main components of the environment, together
with some external tools for which a strong connection exists.

The specification level components. ObjectGeode [32] is a commercial
toolset developed by Telelogic supporting Sdl, Msc and Omt. In particular,
this toolset provides an api to access the abstract tree generated from an Sdl

specification. We have used this api to implement the sdl2if translator, which
generates operationally equivalent IF specifications from Sdl ones. Given the
static nature of the current version of IF, this translation does not cover yet
the dynamical features of Sdl (e.g., process instances creation).

The intermediate level components. if2if [6] implements several al-
gorithms based on static analysis to transform an IF specification. A first
transformation concerns dead variable resetting (a variable is dead at some
control point if its value is not used before being redefined). This optimisa-
tion can be also applied to buffer contents (a message parameter is dead if its
value is not used when the message is consumed). Although very simple, such
optimisation is particularly efficient for state space generation (reductions up
to a factor 100 were frequently observed), while preserving the exact behaviour
of the original specification. A second transformation is based on the slicing
technique [33]. It allows to automatically abstract a given specification by
eliminating some irrelevant parts w.r.t. a given property or test purpose [7].

if2pml [4] is a tool developed at Eindhoven TU to translate IF specifications
into Promela.

The semantic model level components. Cadp [14] is a toolset for
the verification of Lotos specifications. It is developed by the Vasy team of
Inria Rhône-Alpes and Verimag. Two of its model-checkers are connected
to the IF environment: Aldebaran (bisimulation based), and Evaluator

(alternating-free µ-calculus). For both tools, diagnostic sequences are com-
puted on the Lts level and they can be translated back into Msc to be observed
at the specification level.

Kronos [34] is a model-checker for symbolic verification of Tctl formulae
on communicating timed automata. The current connection with the IF envi-
ronment is as follows: control states and discrete variables are expressed using
the implicit enumerative representation, whereas clocks are expressed using a
symbolic representation (particular polyhedra).

Tgv [15] is a test sequence generator for conformance testing of distributed
systems (joint work between Verimag and the Pampa project of Irisa). Test
cases are computed during the exploration of the model and they are selected
by means of test purposes.
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4 Case studies

The IF environment was used in several case studies, including as well telecom-
munication protocols and embedded software. The most relevant ones, from
the complexity point of view, and the results obtained are summarized below.

4.1 SSCOP Protocol

The Sscop (Service Specific Connection Oriented) protocol is standardized un-
der reference itu-t q2110 [24]. Originally, it was conceived to reliably transfer
data between two high bandwidth network entities. Although its design makes
it ready to treat significant volumes of data, currently its use is confined in
ones of the underlayers of the aal layer (Atm Adaptation Layer). The services
it provides are connection control (establishment, flow-control, release), data
transfer, and error detection.

The Sscop standardization document contains an Sdl description of the
protocol. This description has been coded by France Telecom R&D using
ObjectGeode. It consists in approximately 2000 lines of Sdl textual code
which describes the protocol as one single process with 10 control states, 134
variables, and 4 timers. The description was centered on signaling and some
simplifications have been made according to Sscop implementations available
in France Telecom R&D. Our main goals were the formal validation of the
specification and, in addition, automatic test-case generation starting from it.

Clearly, the size and complexity of this specification made any brute force
validation approach not applicable. In particular the data part was very large,
and each state of the underlying model could not be stored in less than 2kB.
Therefore only a small part of the state space could be explored from this
initial specification, not sufficient to verify interesting properties.

Consequently, we adopted a more incremental verification strategy. A first
step was to apply a very rough abstraction by (automatically) eliminating
all the variables in the specification. Thus, it was possible to compare this
very abstract specification with the one supplied by the standard to model
the interactions between adjacent layers of Sscop, to check if the abstract
specification provides at least the expected behaviour. This comparison was
performed using Aldebaran, with respect to the so-called safety preorder [5].
Some subtle errors, such as omission of timers setting, were found using this
method.

After this debugging phase, the second step was to “prepare” the initial
Sdl specification for a more accurate state space analysis. It consisted in
basic static analysis techniques like dead code elimination and live variable
detection using if2if. The benefits were really spectacular on this example,
and, in particular, the amount of memory required to store a model state fell
to 0.2 kB.

Finally, these optimisations made possible the use of exhaustive simulation
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techniques. More precisely we considered a system consisting in a pair of enti-
ties, communicating through a bounded fifo channel, and we concentrated our
validation effort to a set of representative distinct scenarios (connection estab-
lishment, disconnection, data transfer, . . . ). Using specific slicing criteria, it
was therefore possible to (automatically) simplify even more the specification,
depending on the property under verification or the test purpose. The under-
lying models obtained were about 20 000 states large, and errors were found
in the data transfer phase of the specification. The complete experiment is
reported in [9].

4.2 Mascara Protocol

The Mascara(Mobile Access Scheme based on Contention And Reservation for
Atm) protocol is a special medium access control protocol designed for wire-
less Atm communication and developed by the wand(Wireless Atm Network
Demonstrator) consortium [13]. A wireless Atm network extends transparently
services to mobile terminals (mt) via a number of geographically distributed
access points (ap). The task of the Mascara protocol is to mediate between
aps and mts via a wireless link. The protocol has a layered structure, where
we consider only the highest layer, the Mascara control layer.

The overall description of the Mascara protocol which we got is 300 pages
of Sdl textual code. We concentrate on the verification of the Mascara con-
trol layer, for which the Sdl description could be made reasonably complete.
Here we briefly present the verification of the dynamic control. For complete
information, we refer the reader to [17] which reports the complete experiment
on the dynamic part. In addition, another verification experiment has been
carried out on static control[4].

Verification should be carried out under a general environment with real-
istic restrictions. As we have not obtained information on the Mascara upper
layer, we considered initially an open system with an unconstrained upper
layer, which would allow us to obtain the most general verification results.
But communication via unbounded channels, leads to infinitely growing chan-
nel contents and thus an infinite state model in case that the environment
sends requests too often. This is typically the case in reactive systems always
ready to treat requests from the environment. The approach we have chosen
to provide a more restricted, but still realistic environment consists in limiting
the number of requests it can make per time unit. We assume that within
one time unit, no more than N requests can be sent by the environment. The
system has never to deal with more than N requests simultaneously which
leads, in the Mascara protocol, to bounded channel contents. The success of
the method depends on the use of a realistic bound. We use N=4.

Unfortunately, even with such a restricted environment, it was impossible
to generate the state graph of the global system as a whole. However, we
have applied two different types of compositional verification: the first one is
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based on property decomposition [26], and the second one is based on com-
positional generation of a state graph minimized with respect to a behavioral
equivalence [18]. In particular, using in addition both live analysis and partial
order reduction for the generation of the subsystems, we were able to compo-
sitionally generate a reduced model of the global system using compositional
generation.

ap mt ap + mt

generation model time model time model

strategy size size size

- live reduction 7308400 st. 207′35′′ 4388765 st. 171′58′′

- partial order 30689244 tr. 12811961 tr.

+ live reduction 351202 st. 12′22′′ 63628 st. 1′03′′

- partial order 1536699 tr. 325312 tr.

+ live reduction 28069 st. 1′53′′ 6580 st. 7′′ 218130 st.

+ partial order 52983 tr. 20913 tr. 1142215 tr.

+ live reduction 1630 st. 9′′ 977 st. 3′′

+ partial order 2885 tr. 2845 tr.

+ slicing

Table 1
Mascara verification results

Table 1 gives an overview of a subset of the models we have generated using
different reduction techniques and allows to compare their sizes and generation
times. Finally, several properties ranging for generic ones such as deadlocks
and livelocks to more specific such as association establishment, connection,
disconnection, were verified on the generated models.

4.3 Ariane-5 Flight Program

The work on this experiment was initiated by Eads Launch Vehicles to bet-
ter evaluate the applicability of formal validation techniques on an existing
software, the Ariane-5 2 Flight Program. This is the embedded software
which solely controls the Ariane-5 launcher during its flight, from the ground,
through the atmosphere and up to the final orbit.

The verification experiment is reported in [11]. First, this software has
been formally specified in Sdl by reverse engineering from the existing code.
Then, following a set of general methodological guidelines, the specification

2 Ariane-5 is an European Space Agency Project delegated to CNES France.
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has been continuously improved and all the initial requirements were verified
on the final version. In particular, the combination of different optimisation
techniques, operating either at the source level (like static analysis or slicing)
or at the semantic level (like partial-order reductions) happened to be partic-
ularly useful in order to deal with large size state spaces. For example, the
initial Sdl version of the flight program used no less than 130 timers. Using
our static analysis tool we were able to reduce them to only 55 timers, func-
tionally independent ones. Afterward, the whole specification was rewritten
taking into account the redundancies discovered by the analyzer.

The main difficulty of this case-study comes from the combination of vari-
ous kind of time constraints. On one hand, the functionality of the flight pro-
gram strongly depends on an absolute time: coordination dates are frequently
exchanged between components in order to synchronise their behaviour dur-
ing the whole flight. On the other hand, this system has to be verified within
a partially constrained environment, reacting with some degree of temporal
uncertainty. In this experiment, this expressivity problem was solved at the
IF level thanks to explicit urgency attributes. Clearly, such features should
be made available at specification level. In particular, ongoing work address
the introduction of high-level time and performance annotations in Sdl [10].

time time

deterministic non-deterministic

- live reduction na na

- partial order

model + live reduction 2201760 st. na

generation - partial order 18706871 tr.

+ live reduction 1604 st. 195718 st.

+ partial order 1642 tr. 278263 tr.

model

model minimisation ∼ 1′′ ∼ 20′′

verification model

checking ∼ 15′′ ∼ 2′00′′

Table 2
Ariane-5 Flight Program verification results.

In practice, we have considered two different situations regarding the en-
vironment. The first one is time-deterministic, which means that all environ-
ment actions (in particular the control part) take place at precise moments in
time. The second one is time-nondeterministic which means that environment
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actions take place with some degree of time uncertainty (within a predefined
time interval). From the environment point of view, the later situation corre-
sponds to a whole set of scenarios, whereas the former situation focus only on
a single one. Table 2 presents the sizes of both models generated according
to different generation strategies. It gives also the average time required for
verifying each kind of property (by temporal logic model checking and model
minimisation respectively).

5 Conclusion and Perspectives

The IF environment has already been used to analyze some representative
Sdl specifications such as Sscop, an Atm signalisation protocol, Mascara, an
Atm wireless transport protocol and Ariane-5 flight program, a part of the
embedded software of Ariane-5 launchers. It is currently used in several on
going industrial case-studies, including respectively real-time multicast proto-
cols Pgm and Rmtp-ii, and the session initiation protocol Sip. The benefits of
combining several techniques, working at different program level, were clearly
demonstrated. In particular, traditional model-checking techniques were not
sufficient to complete on these large size examples.

Several directions can be investigated to improve this environment. The
first direction of improvement concerns the IF language. As currently defined,
it allows only the description of static systems, were the number of compo-
nents (processes and buffers) as well as their interactions are fixed throughout
the execution. This strongly limits our ability to handle complex dynamic
specifications. We work on a less restrictive definition, where both parameter-
ized descriptions (containing some fixed number of replicated components) as
well as general dynamic creation and destruction of components are allowed.
Furthermore, some improvements will be made regarding the description of
components itself, such as the possibility to express structured control using
composed states (like in statecharts).

A second direction of improvement concerns the IF simulator, the core com-
ponent allowing to construct and to explore the underlying semantic model
of IF specifications. Currently, this model is labeled transition systems, and
its construction and exploration are quite restricted: first, only pure asyn-
chronous execution (by interleaving) is possible and second, no access is pro-
vided to the state of the system (e.g, current values of variables, current states
of processes). We envisage to improve these points, by implementing a flexible
simulator able, for instance, to deal with both synchronous and asynchronous
components, or more generally, to take into account some scheduling policy
over components during the simulation. In addition, this simulator will inter-
act with running components through a well-defined abstract interface, thus
allowing to integrate also external components (for example, directly expressed
as executable code).

A third direction of improvement concerns the validation methods. Clearly,
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we will continue to adapt and to improve our static analysers as well as our
model checkers to handle the extended IF descriptions. Also, some work must
be done to reduce the manual overhead, yet important, needed by sophisti-
cated techniques such as compositional verification. Finally, another impor-
tant issue concerns the validation of non-functional requirements. In partic-
ular, performance evaluation becomes crucial for an important part of inter-
net protocols (such as Pgm or Rmtp-ii) which are not necessarily designed to
achieve full reliability, but only an average correct behaviour with respect to
probabilistic assumptions on their execution environment (e.g, propagation
delays, message loss, network elements speed, etc). At middle term, we plan
to connect the IF environment to simulation environments like Opnet [29] and
Ses/Workbench [21].
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1994.

[25] ITU-T. Recommendation Z.100. Specification and Description Language
(SDL). Technical Report Z-100, International Telecommunication Union –
Standardization Sector, Genève, November 1999.
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