
Tools and Applications II: The IF Toolset?

Marius Bozga, Susanne Graf, Ileana Ober, Iulian Ober, and Joseph Sifakis

VERIMAG, 2 avenue de Vignate, F-38610 Gières

Abstract. This paper presents an overview on the IF toolset which is
an environment for modelling and validation of heterogeneous real-time
systems. The toolset is built upon a rich formalism, the IF notation,
allowing structured automata-based system representations. Moreover,
the IF notation is expressive enough to support real-time primitives and
extensions of high-level modelling languages such as SDL and UML by
means of structure preserving mappings.
The core part of the IF toolset consists of a syntactic transformation
component and an open exploration platform. The syntactic transfor-
mation component provides language level access to IF descriptions and
has been used to implement static analysis and optimisation techniques.
The exploration platform gives access to the graph of possible execu-
tions. It has been connected to different state-of-the-art model-checking
and test-case generation tools.
A methodology for the use of the toolset is presented at hand of a case
study concerning the Ariane-5 Flight Program for which both an SDL
and a UML model have been validated.

1 Introduction

Modelling plays a central role in systems engineering. The use of models can prof-
itably replace experimentation on actual systems with incomparable advantages
such as:

– ease of construction by integration of heterogeneous components,
– generality by using genericity, abstraction, behavioural non determinism
– enhanced observability and controllability, especially avoidance of probe ef-

fect and of disturbances due to experimentation
– finally, possibility of analysis and predictability by application of formal

methods.

Building models which faithfully represent complex systems is a non trivial
problem and a prerequisite to the application of formal analysis techniques.
Usually, modelling techniques are applied at early phases of system development
and at high abstraction level. Nevertheless, the need of a unified view of the
various life-cycle activities and of their interdependencies, motivated recently,
the so called model-based development [OMG03a,Sif01,STY03] which heavily

? This work was supported in part by the European Commission through the projects
IST-1999-29082 ADVANCE, IST-1999-20218 AGEDIS and IST-2001-33522 OMEGA

relies on the use of modelling methods and tools to provide support and guidance
for system design and validation.

Currently, validation of real-time systems is done by experimentation and
measurement on specific platforms in order to adjust design parameters and
hopefully achieve conformity to QoS requirements. Model based development
intends to replace experimentation on real prototypes by validation on virtual
prototypes (models). Furthermore, a key idea is the use of successive model
transformations in design methodologies to derive from some initial high level
description low level descriptions close to implementations. Achieving such am-
bitious goals raises hard and not yet completely resolved problems discussed in
this section.

Heterogeneity. A real-time system is a layered system consisting of an applica-
tion software implemented as a set of interacting tasks, and of the underlying
execution platform. It continuously interacts with an external environment to
provide a service satisfying QoS requirements characterising the dynamics of the
interaction. Models of real-time systems should represent faithfully interactive
behaviour taking into account implementation choices related to resource man-
agement and scheduling as well as execution speed of the underlying hardware

The models of real-time systems involve heterogeneous components with dif-
ferent execution speeds and interaction modes. There exist two main sources of
heterogeneity: interaction and execution.

Heterogeneity of interaction results from the combination of different kinds
of interaction.

Interactions can be atomic or non atomic. The result of atomic interactions
cannot be altered through interference with other interactions. Process algebras
and synchronous languages assume atomic interactions. Asynchronous commu-
nication (SDL, UML) or method call are generally non atomic interactions. Their
initiation and their completion can be separated by other events.

Interactions can involve strict or non strict synchronisation. For instance,
rendez-vous and method calls require strict interactions. On the contrary, broad-
cast of synchronous languages and asynchronous communication do not need
strict synchronisation. A process (sender) can initiate an interaction indepen-
dently of the possibility of completion by its environment.

Heterogeneity of execution results from the combination of two execution
paradigms.

Synchronous execution is typically adopted in hardware, in synchronous lan-
guages, and in time triggered architectures and protocols. It considers that a
system execution is a sequence of steps. It assumes synchrony, meaning that the
system’s environment does not change during a step, or equivalently “that the
system is infinitely faster than its environment”. The synchronous paradigm has
a built-in strong assumption of fairness: in a step all the system components
execute a quantum computation defined by using either quantitative or logical
time.

The asynchronous paradigm does not adopt any notion of global execution
step. It is used in languages for the description of distributed systems such as SDL

and UML, and programming languages such as Ada and Java. The lack of built-
in mechanisms for sharing resources between components can be compensated
through scheduling. This paradigm is also common to all execution platforms
supporting multiple threads, tasks, etc.

Modelling time. Models for real-time systems should allow modelling progress
of time in order to express various kinds of timing information e.g., execution
times of actions, arrival times of events, deadlines, latency.

Timed models can be defined as extensions of untimed models by adding
time variables used to measure the time elapsed since their initialisation. They
can be represented as machines that can perform two kinds of state changes:
actions and time steps. Actions are timeless state changes of the untimed system;
their execution may depend on and modify time variables. In a time step, all
time variables increase uniformly. There exists a variety of timed formalisms
extensions of Petri nets [Sif77], process algebras [NS91] and timed automata
[AD94]. Any executable untimed description e.g., application software, can be
extended into a timed one by adding explicitly time variables or other timing
constraints.

Timed models use a notion of logical time. Contrary to physical time, logical
time progress can block, especially as a result of inconsistency of timing con-
straints. The behaviour of a timed model is characterised by the set of its runs,
that is the set of maximal sequences of consecutive states reached by perform-
ing transitions or time steps. The time elapsed between two states of a run is
computed by summing up the durations of all the time steps between them. For
a timed model to represent a system, it is necessary that it is well-timed in the
sense that in all its runs time diverges.

As a rule, in timed models there may exist states from which time cannot
progress. If time can progress from any state of a timed model, then it is always
possible to wait and postpone the execution of actions which means that it is
not possible to model action urgency. Action urgency at a state is modelled by
disallowing time progress. This possibility of stopping time progress goes against
our intuition about physical time and constitutes a basic difference between the
notions of physical and logical time. It has deep consequences on timed systems
modelling by composition of timed components.

Often timed extensions of untimed systems are built in an ad hoc manner
at the risk of producing over-constrained or incomplete descriptions. It is essen-
tial to develop a methodology for adding compositionally timing information to
untimed models to get a corresponding timed model.

The IF toolset is an environment for modelling and validation of heteroge-
neous real-time systems. It is characterised by the following features:

– Support for high level modelling with formalisms such as SDL, UML used by
users in some CASE tool. This is essential to ease usability by practitioners
and to allow the use of state-of-the-art modelling technology. Furthermore,
the use of high level formalisms allows validating realistic models which can
be simplified if necessary by using automated tools. This avoids starting with

simplified models constructed in an ad hoc manner as it is the case for other
tools using low level description languages e.g., automata.

– Translation of high level models into an intermediate representation, the IF
notation, that serves as a semantic model. This representation is rich and
expressive enough to describe the main concepts and constructs of source
languages. It combines composition of extended timed automata and dy-
namic priorities to encompass heterogeneous interaction. Priorities play an
important role for the description of scheduling policies as well as the restric-
tion of asynchronous behaviour to model run-to-completion execution. We
consider a class of timed automata which are by construction well-timed.
The developed translation methods for SDL and UML preserve the overall
structure of the source model and the size of the generated IF description
increases linearly with the size of the source model. IF is used as a basis for
model simplification by means of static analysis techniques and the applica-
tion of light structural analysis techniques e.g., checking sufficient conditions
for deadlock-freedom of processes. It is also used for the generation of lower
level models e.g., labelled transitions systems used for verification purposes.

– Combined use of various validation techniques including model-checking,
static analysis on the intermediate representation and simulation. A method-
ology has been studied at Verimag for complex real-time applications.

– Expression of requirements to be validated on models by using observers.
These can be considered as a special class of models equipped with primitives
for monitoring and checking for divergence from some nominal behaviour.
Our choice for monitors rather than declarative formalisms such as temporal
logic or Live Sequence charts [DH99] is motivated by our concern to be
close to industrial practice and to avoid as much as possible inconsistency
in requirements.

The paper is organised as follows. Section 2 presents the overall architecture
of the IF toolset. Section 3 is the main section of the paper. It starts with a pre-
sentation of IF including its main concepts and constructs and their semantics.
Then the overall architecture of the toolset and its features for simulation, anal-
ysis and validation are described. Finally the translation principle from UML to
IF is explained by showing how the main UML concepts and constructs can be
mapped into IF.

Section 4 presents an example illustrating the application of the toolset to
the modelling and validation of the Ariane-5 Flight Program. For this non trivial
case study, we provide a validation methodology and results. Section 5 presents
concluding remarks about the toolset and the underlying modelling and valida-
tion methodology.

2 Setting the context - the overall architecture

Figure 1 describes the overall architecture of the toolset, the most important
components as well as their inter-connections. We distinguish three different de-

UML tools

IF tools

IF
LTS level tools

EXPLORATION PLATFORM

simulator LTS generator

test generator

IF static

analysis

live variable

analysis

SDL-UML-IF frontend

UML2IF &

SDL2IF

translators

UML

validation

driver

dead-code

elimination

variable

abstraction

evaluator

Other LTS verification tools (CADP)

minimization, comparison, composition...

SDL TOOLS

ObjectGEODE, TAU

UML TOOLS

Rose,

Rhapsody, Argo

IF

exporters LTS

Fig. 1. IF toolset architecture.

scription levels: the specification level (UML, SDL), the intermediate description
level (IF), and the Labelled Transition Systems (LTS) level.

Specification level. This corresponds to the description provided by the user in
some existing specification language. To be processed, descriptions are automati-
cally translated into their IF descriptions. Currently, the main input specification
formalisms are UML and SDL.

Regarding UML, any UML tool can be used as long as it can export the model
in XMI [OMG01], the standard XML format. The IF toolset includes a translator
from UML which produces IF descriptions. The translator accepts specifications
produced by Rational Rose [IBM], Rhapsody [Ilo] or Argo Uml [RVR+].

Intermediate description level (IF). IF descriptions are generated from specifi-
cations. IF is an intermediate representation based on timed automata extended
with discrete data variables, communication primitives, dynamic process cre-
ation and destruction. This representation is expressive enough to describe the
basic concepts of modelling and programming languages for distributed real-time
systems.

The abstract syntax tree of an IF description can be accessed through an
API. Since all the data (variables, clocks) and the communication structure
are still explicit, high-level transformations based on static analysis [Muc97] or

program slicing [Wei84,Tip94] can be applied. All these techniques can be used
to transform the initial IF description into a “simpler” one while preserving
safety properties. Moreover, this API is well-suited to implement exporters from
IF to other specification formalisms.

LTS level. The LTS are transition graphs describing the executions of IF de-
scriptions. An exploration API allows to represent and store states as well as to
compute on demand the successors of a given state. This API can be linked with
“generic” exploration programs performing any kind of on-the-fly analysis.

Using the exploration API, several validation tools have been developed and
connected to work on IF descriptions. They cover a broad range of features: in-
teractive/random/guide simulation, on-the-fly model checking using observers,
on-the-fly temporal logic model checking, exhaustive state space generation,
scheduling analysis, test case generation. Moreover, through this API are con-
nected the Cadp toolbox [FGK+96] for the validation of finite models as well
as Tgv [FJJV96,JM99] for test case generation using on-the-fly techniques.

3 Description of the formalism/technique/system/tool

3.1 The IF notation

IF is a notation for systems of components (called processes), running in par-
allel and interacting either through shared variables or asynchronous signals.
Processes describe sequential behaviours including data transformations, com-
munications and process creation. Furthermore, the behaviour of a process may
be subject to timing constraints. The number of processes may change over time:
they may be created and deleted dynamically.

The semantics of a system is the LTS obtained by interleaving the behaviour
of its processes. To enforce scheduling policies, the set of runs of the LTS can be
further restricted using dynamic priorities.

Processes. The behaviour of a process is described as a timed automaton,
extended with data. A process has a unique process identifier (pid) and local
memory consisting of variables (including clocks), control states and a queue of
pending messages (received and not yet consumed).

A process can move from one control state to another by executing some
transition. As for state charts [Har87,HP98], control states can be hierarchically
structured to factorize common behaviour. Control states can be stable or un-
stable. A sequence of transitions between two stable states defines a step. The
execution of a step is atomic, meaning that it corresponds to a single transition
in the LTS representing the semantics. Notice that several transitions may be
enabled at the same time, in which case the choice is made non-deterministically.

Transitions can be either triggered by signals in the input queue or be sponta-
neous. Transitions can also be guarded by predicates on variables, where a guard
is the conjunction of a data guard and a time guard. A transition is enabled in
a state if its trigger signal is present and its guard evaluates to true. Signals in

the input queue are a priori consumed in a fifo fashion, but one can specify in
transitions which signals should be “saved” in the queue for later use.

Transition bodies are sequential programs consisting of elementary actions
(variable or clock assignments, message sending, process creation/destruction,
resource requirement/release, etc) and structured using elementary control-flow
statements (like if-then-else, while-do, etc). In addition, transition bodies can
use external functions/procedures, written in an external programming language
(C/C++).

Signals and signalroutes. Signals are typed and can have data parameters.
Signals can be addressed directly to a process (using its pid) and/or to a signal
route which will deliver it to one or more processes. The destination process
stores received signals in a fifo buffer.

Signalroutes represent specialised communication media transporting signals
between processes. The behaviour of a signalroute is defined by its delivery policy
(FIFO or multi-set), its connection policy (peer to peer, unicast or multicast),
its delaying policy (“zero delay”, “delay” or “rate”) and finally its reliability
(“reliable” or “lossy”). More complex communication media can be specified
explicitly as IF processes.

In particular, signalroutes can be connected at one end with an implicitly
defined “environment process” env. In transitions triggered by signals from the
environment, the trigger signal is considered as present whenever the transition
guard evaluates to true.

Data. The IF notation provides the predefined basic types bool, integer, real, pid
and clock, where clock is used for variables measuring time progress. Structured
data types are built using the type constructors enumeration, range, array, record
and abstract. Abstract data types can be used for manipulating external types
and code.

idle

init

creates

[thc < N]

?request

!!thread

thc:=thc+1

[done]

cs(1)

[request]

?done

thc:=thc-1

”work”

!done

stop

server(1) thread(0)

Fig. 2. Illustration of the multi-threaded server example.

Example 1. The IF description below describes a system consisting of a server

process creating up to N thread processes for handling request signals. A
graphical representation of the system is given in Figure 2.

system Server;

signal request(); // signals with parameter types
signal done(pid);

signalroute entry(1) // signalroutes and their signals
from env to server

with request;

signalroute cs(1) #delay[1,2]

from thread to server

with done;

// definition of process types
process thread(0); // and initial number of instances

fpar parent pid, route pid; // formal parameters received at creation

state init #start ; // 1 state + 1 outgoing transition
informal "work"; // informal action labelled “work”
output done() // sending of the done signal
via route to parent; // received by parent

stop; // terminate process, destroy instance
endstate;

endprocess;

process server(1);

var thc integer; // local variables
state idle #start ; // 1 state + 2 outgoing transitions

provided thc < N; // first transition: guard
input request(); // trigger

fork thread(self, {cs}0); // create thread process and passing
// own pid and signalroute cs as params

task thc := thc + 1;

nextstate -; // end of transition - back to idle

input done(); // second transition
task thc := thc - 1;

nextstate -;

endstate;
endprocess;
endsystem;

Composition (System). The semantics associates with a system a global LTS.
At any point of time, its state is defined as the tuple of the states of its living
components: the states of a process are the possible evaluations of its attributes
(control state, variables and signal queue content). The states of a signalroute
are lists of signals “in transit”. The transitions of the global LTS representing

a system are steps of processes and signal deliveries from signalroutes to signal
queues where in any global state there is an outgoing transition for all enabled
transitions of all components (interleaving semantics). The formal definition of
the semantics can be found in [BL02b].

System models may be highly nondeterministic, due to the nondeterminism
of the environment which is considered as open and to the concurrency between
their processes. For the validation of functional properties, leaving this second
type of nondeterminism non resolved is important in order to verify correctness
independently of any particular execution order. Nevertheless, going towards an
implementation means resolving a part of this non determinism and choosing an
execution order satisfying time related and other nonfunctional constraints.

In IF, such additional restrictions can be enforced by dynamic priorities de-
fined by rules specifying that whenever for two process instances some condition
(state predicate) holds, then one has less priority than the other. An example is

p1 ≺ p2 if p1.group = p2.group and p2.counter < p1.counter

which for any process instances which are part of some “group”, gives priority
to those with the smallest values of the variable counter (e.g., the less frequently
served).

Time. The time model of IF is that of timed automata with urgency [BST98],
[BS00] where the execution of a transition is an event defining an instant of state
change, whereas time is progressing in states. Urgency is expressed by means of
an urgency attribute of transitions. This attribute can take the values eager,
lazy or delayable. Eager transitions are executed at the point of time at which
they become enabled - if they are not disabled by another transition. Delayable
transitions cannot be disabled by time progress. Lazy transitions may be disabled
by time progress.

Like in timed automata, time distances between events are measured by
variables of type “clock”. Clocks can be created, set to some value or reset
(deleted) in any transition. They can be used in time guards to restrict the time
points at which transitions can be taken.

Local clocks allow the specification of timing constraints, such as durations of
tasks (modelled by time passing in a state associated with this task, see example
below), deadlines for events in the same process. Global time constraints, such
as end-to-end delays, can be expressed by means of global clocks or by observers
(explained in the next section).

Example 2. A timed version of the thread process of the example 1 is given. An
extra state work introduced for distinguishing the instant at which work starts
and the instant at which it ends and and to constrain the duration between
them. The intention is to model an execution time of “work” of 2 to 4 time
units.

The thread process goes immediately to the work state - the start transition
is eager - and sets the clock wait is set to 0 in order to start measuring time
progress. The transition exiting the work state is delayable with a time guard

expressing the constraint that the time since the clock wait has been set should
be at least 2 but not more than 4.

process thread(0);

fpar parent pid, route pid;
var wait clock;
state init #start ;

urgency eager;

informal "work";

set wait := 0;

nextstate work;

endstate;

state work ;

urgency delayable;

when wait >= 2 and wait <= 4;

output done()

via route to parent;

stop;
endstate;

endprocess;

Resources. In order to express mutual exclusion it is possible to declare shared
resources. These resources can be used through particular actions of the form
“require some-resource” and “release some-resource”.

Observers. Observers express in an operational way safety properties of a sys-
tem by characterising its acceptable execution sequences. They also provide a
simple and flexible mechanism for controlling model generation. They can be
used to select parts of the model to explore and to cut off execution paths that
are irrelevant with respect to given criteria. In particular, observers can be used
to restrict the environment of the system.

Observers are described in the same way as IF processes i.e., as extended
timed automata. They differ from IF processes in that they can react syn-
chronously to events and conditions occurring in the observed system. Observers
are classified into:

– pure observers - which express requirements to be checked on the system.

– cut observers - which in addition to monitoring, guide simulation by selecting
execution paths. For example, they are used to restrict the behaviour of the
environment

– intrusive observers - which may also alter the system’s behaviour by sending
signals and changing variables.

Observation and intrusion mechanisms. For monitoring the system state, ob-
servers can use primitives for retrieving values of variables, the current state of
the processes, the contents of queues, etc.

For monitoring actions performed by a system, observers use constructs for
retrieving events together with data associated with them. Events are generated
whenever the system executes one of the following actions: signal output, signal
delivery, signal input, process creation and destruction and informal statements.

Observers can also monitor time progress, by using their own clocks or by
monitoring the clocks of the system.

Expression of properties. In order to express properties, observer states can be
marked as ordinary, error or success. Error and success are both terminating
states. Reaching a success state (an error state) means satisfaction (non satis-
faction). Cut observers use a cut action which stops exploration.

Example 3. The following example illustrates the use of observers to express a
simple safety property of a protocol with one transmitter and one receiver, such
as the alternating bit protocol. The property is: Whenever a put(m) message is
received by the transmitter process, the transmitter does not return to state
idle before a get(m) with the same m is issued by the receiver process.

pure observer safety1;

var m data;

var n data;

var t pid;

state idle #start ;

match input put(m) by t;

nextstate wait;

endstate;
state wait;

provided ({transmitter}t)
instate idle;

nextstate err;

match output put(n)

nextstate err;

match output get(n);

nextstate decision;

endstate;
state decision #unstable ;

provided n = m;

nextstate idle;

provided n <> m;

nextstate wait;

endstate;
state err #error ;

endstate;
endobserver;

3.2 Simulation, Analysis and Validation

Core components of the IF toolset. The core components of the IF toolset
are shown in Figure 3.

Syntactic Transformations Component. This component deals with syntactic
transformations including the construction of an abstract syntax tree (AST)
from an IF description. The tree is a collection of C++ objects representing all
the syntactic elements present in IF descriptions. The AST reflects precisely the
syntactic structure of IF descriptions: a system includes processes, signalroutes,
types; a process includes states and variables; states include their outgoing tran-
sitions and so on.

This component has an interface giving access to the abstract syntax tree.
Primitives are available to traverse the tree and to consult or to modify its el-
ements. There are primitives allowing to write the tree back as an IF textual
description. The syntactic transformation component has been used to build
several applications. The most important ones are code generators (either sim-
ulation code or application code), static analysis transformations (operating at
syntactic level), translations to other languages (including a translation to the
Promela language of Spin [Hol91]) and pretty printers.

dynamic scheduling

asynchronous execution

(time, channels,...)

code

predefined

state space

representation

process code
specific
application

LTS exploration tools:
- debugging

Exploration platform

- model checking
- test generation

syntactic
transformation tools:
- static analyser
- code generator

reader writer

IF AST

IF
C/C++

Fig. 3. Functional view of the IF Core Components.

Exploration Platform. This component has an API providing access to the LTS
corresponding to IF descriptions. The interface offers primitives for representing
and accessing states and labels as well as basic primitives for traversing LTS:
an init function which gives the initial state, and a successor function which
computes the set of enabled transitions and successor states from a given state.
These are the key primitives for implementing any on-the-fly forward enumera-
tive exploration or validation algorithm.

Figure 3 shows the structure of the exploration platform. The main features of
the platform are simulation of the process execution, non-determinism resolution,
management of time and representation of the state space.

The exploration platform can be seen as an operating system where process
instances are plugged-in and jointly executed. Process instances are either appli-
cation specific (coming from IF descriptions) or generic (such as time or channel
handling processes).

Simulation time is handled by a specialised process managing clock alloca-
tion/deallocation, computing time progress conditions and firing timed transi-
tions. There are two implementations available, one for discrete time and one for
dense time. For discrete time, clock values are explicitly represented by integers.
Time progress is computed with respect to the next enabled deadline. For dense
time, clock valuations are represented using variable-size Difference Bound Ma-
trices (DBMs) as in tools dedicated to timed automata such as Kronos [Yov97]
and Uppaal [LPY98].

The exploration platform composes all active processes and computes global
states and the corresponding system behaviour. The exploration platform con-
sists of two layers sharing a common state representation:

– Asynchronous execution layer. This layer implements the general interleav-
ing execution of processes. The platform asks successively each process to
execute its enabled steps. During a process execution, the platform manages
all inter-process operations: message delivery, time constraints checking, dy-
namic creation and destruction, tracking of events. After a completion of
a step by a process, the platform takes a snapshot of the performed step,
stores it and delivers it to the second layer.

– Dynamic scheduling layer. This layer collects all the enabled steps. It uses a
set of dynamic priority rules to filter them. The remaining ones, which are
maximal with respect to the priorities, are delivered to the user application
via the exploration API.

messages

chunks

contents
queue

zones (DBMs)

state

states

processes

Fig. 4. Internal state representation.

– State representation. Global states are implicitly stored by the platform. The
internal state representation is shown in figure 4. It preserves the structural
information and seeks for maximal sharing. The layered representation in-
volves a unique table of messages. Queues are lists of messages, represented
by suffix sharing. On top of them, there is a table of process states, all of
them sharing queues in the table of queues. Processes are then grouped into
fixed size state chunks, and finally, global states are variable-size lists of
chunks. Tables can be represented either by using hash tables with collision
or by binary trees. This scheme allows to explicitly represent several millions
of structured states.

The exploration platform and its interface has been used as back-ends of
debugging tools (interactive or random simulation), model checking (including
exhaustive model generation, on the fly µ-calculus evaluation, model checking
with observers), test case generation, and optimisation (shortest path computa-
tion).

This architecture provides features for validating heterogeneous systems. Ex-
ploration is not limited to IF descriptions: all kinds of components with an ad-
equate interface can be executed in parallel on the exploration platform. It is
indeed possible to use C/C++ code (either directly, or instrumented accordingly)
of already implemented components.

Another advantage of the architecture is that it can be extended by adding
new interaction primitives and exploration strategies. Presently, the exploration
platform supports asynchronous (interleaved) execution and asynchronous point-
to-point communication between processes. Different execution modes, like syn-
chronous or run-to-completion, or additional interaction mechanisms, such as
broadcast or rendez-vous, are obtained by using dynamic priorities [AGS00].

Concerning the exploration strategies, reduction heuristics such as partial-
order reduction or some form of symmetry reduction are already incorporated
in the exploration platform. More specific heuristics may be added depending
on a particular application domain.

Static Analysis. Practical experience with IF has shown that simplification by
means of static analysis is crucial for dealing successfully with complex specifi-
cations. Even simple analysis such as live variables analysis or dead-code elim-
ination can significantly reduce the size of the state space of the model. The
available static analysis techniques are:

Live variables analysis This technique transforms an IF description into an
equivalent smaller one by removing globally dead variables and signal parameters
and by resetting locally dead variables [Muc97]. Initially, all the local variables of
the processes and signal parameters are considered to be dead, unless otherwise
specified by the user. Shared variables are considered to be always live. The
analysis alternates local (standard) live variables computation on each process
and inter-process liveness attributes propagation through input/output signal
parameters until a global fixpoint is reached.

Dead-code elimination. This technique transforms an IF description by removing
unreachable control states and transitions under some user-given assumptions
about the environment. It solves a simple static reachability problem by comput-
ing, for each process separately, the set of control states and transitions which
can be statically reached starting from the initial control state. The analysis
computes an upper approximation of the set of processes that can be effectively
created.

Variable abstraction. This technique allows to compute abstractions by elimi-
nating variables and their dependencies which are not relevant to the user. The

computation proceeds as for live variables analysis: processes are analysed sep-
arately, and the results obtained are propagated between them by using the
input/output dependencies. Contrary to the previous techniques which are ex-
act, simplification by variable abstraction may introduce additional behaviours.
Nevertheless, it always reduces the size of the state representation.

By using variable abstraction it is possible to extract automatically system
descriptions for symbolic verification tools accepting only specific types of data
e.g., TreX [ABS01] which accepts only counters, clocks and queues. Moreover,
this technique allows to compute finite-state abstractions for model checking.

Validation components.

Model-checking using Evaluator. The Evaluator tool implements an on-the-
fly model checking algorithm for the alternation free µ-calculus [Koz83]. This is a
branching time logic, based upon propositional calculus with fixpoint operators.
The syntax is described by the following grammar:

ϕ ::= T | X | ¬ϕ | ϕ ∧ ϕ | < a > ϕ | µX.ϕ

For a given LTS representing a specification, the semantics of a formula is
defined as the set of states satisfying it, as follows:

– T (true) holds in any state

– ¬ and ∧ are the usual boolean operators

– < a > ϕ is true in a state if there exists a transition labelled by a leading to
a state which satisfies ϕ

– µX.ϕ denotes the usual least fix point operator (where X is a free variable
of ϕ representing a set of states)

This logic can be used to define macros expressing usual requirements such
as: ”there is no deadlock”, ”any action a is eventually followed by an action
b”, ”it is not possible to perform an action a followed by an action b, without
performing an action c in between”, etc.

Comparison or minimisation with Aldebaran. Aldebaran [BFKM97] is a
tool for the comparison of LTS modulo behavioural preorder or equivalence re-
lations. Usually, one LTS represents the system behaviour, and the other its
requirements. Moreover, Aldebaran can also be used to reduce a given LTS
modulo a behavioural equivalence, possibly by taking into account an observa-
tion criterion.

The preorders and equivalences available in Aldebaran include usual sim-
ulation and bisimulation relations such as strong bisimulation [Par81], observa-
tional bisimulation [Mil80], branching bisimulation [vGW89], safety bisimulation
[BFG+91], etc. The choice of the relation depends on the class of properties to
be preserved.

Test case generation using Tgv. Tgv [FJJV96,JM99] is a tool for test genera-
tion developed by Irisa and Verimag. It is used to automatically generate test
cases for conformance testing of distributed reactive systems. It generates test
cases from a formal specification of the system and a test purpose.

3.3 Translating UML to IF

The toolset supports generation of IF descriptions from both SDL [BFG+99]
and UML [OGO04]. We describe the principles of the translation from UML to
IF.

UML modelling. We consider a subset of UML including its object-oriented
features and which is expressive enough for the specification of real-time systems.
The elements of models are classes with structural features and relationships
(associations, inheritance) and behaviour descriptions through state machines
and operations.

The translation tool adopts a particular semantics for concurrency based on
the UML distinction between active and passive objects. Informally, a set of
passive objects form together with an active object an activity group. Activity
groups are executed in run-to-completion fashion, which means that there is no
concurrency between the objects of the same activity group. Requests (asyn-
chronous signals or method calls) coming from outside an activity group are
queued and treated one by one. More details on this semantics can be found in
[DJPV02,HvdZ03].

The tool resolves some choices left open by UML, such as the concrete syntax
of the action language used in state machines and operations.

Additionally, we use a specialisation of the standard UML profile for Schedul-
ing, Performance and Time [OMG03b]. Our profile, formally described in [GOO03],
provides two kinds of mechanisms for timing: imperative mechanisms including
timers, clocks and timed transition guards, and declarative mechanisms includ-
ing linear constraints on time distances between events.

To provide connectivity with existing CASE tools such as Rational Rose
[IBM], Rhapsody [Ilo] or Argo Uml [RVR+], the toolset reads models using
the standard XML representation for UML (XMI [OMG01]).

The principles of the mapping from UML to IF. Runtime UML entities
(objects, call stacks, pending messages, etc.) are identifiable as a part of the sys-
tem state in IF. This allows tracing back to UML specifications from simulation
and verification.

Objects and concurrency model. Every UML class X is mapped to a process
PX with a local variable for each attribute or association of X. As inheritance is
flattened, all inherited attributes and associations are replicated in the processes
corresponding to each subclass. The class state machine is translated into the
process behaviour.

Each activity group is managed at runtime by a special IF process, of type
group manager, which is responsible of sequentialising requests coming from ob-
jects outside the activity group, and of forwarding them to the objects inside
when the group is stable. Run-to-completion is implemented by using the dy-
namic priority rule

y ≺ x if x.leader = y

which means that all objects of a group have higher priorities than their group
manager. For every object x, x.leader points to the manager process of the
object’s activity group. Thus, as long as at least one object inside an activity
group can execute, its group manager will not initiate a new run-to-completion
step. Notice that adopting a different execution mode can be done easily by just
eliminating or adding new priority rules.

Operations and polymorphism. The adopted semantics distinguishes between
primitive operations - described by a method with an associated action - and
triggered operations - described directly in the state machine of their owner
class. Triggered operations are mapped to actions embedded directly in the state
machine of the class.

Each primitive operation is mapped to a handler process whose run-time
instances represent the activations and the stack frames corresponding to calls.

An operation call (either primitive or triggered) is expressed in IF by using
three signals: a call signal carrying the call parameters, a return signal carrying
the return value, and a completion signal indicating completion of computation
of the operation, which may be different from return. Therefore, the action of
invoking an operation is represented in IF by sending a call signal. If the caller
is in the same activity group, then the call is directed to the target object and
is handled immediately. Alternatively, if the caller is in a different group, the
call is directed to the object’s group manager and is handled in a subsequent
run-to-completion step.

The handling of incoming primitive calls by an object is modelled as follows:
in every state of the callee object (process), upon reception of a call signal, the
callee creates a new instance of the operation’s handler. The callee then waits
until completion, before re-entering the same stable state in which it received
the call.

Mapping operation activations into separate processes has several advan-
tages:

– It provides a simple solution for handling polymorphic (dynamically bound)
calls in an inheritance hierarchy. The receiver object knows its own identity,
and can answer any call signal by creating the appropriate version of the
operation handler from the hierarchy.

– It allows for extensions to other types of calls than the ones currently sup-
ported by the semantics (e.g. non-blocking calls). It also preserves modularity
and readability of the generated model.

– It allows to distinguish the relevent instants in the context of timing analysis.

Mapping of UML observers. In order to specify and verify dynamic properties
of UML models, we define a notion of UML observer [OGO04] which is similar
to IF observers (see section 3.1).

Observers are described by classes stereotyped with �observer�. They can
own attributes and methods, and can be created dynamically. We defined in
[OGO04] event types such as operation invocation, operation return, object cre-
ation, etc.

Several examples of observers are provided in section 4.3.

Mapping of real-time concepts. The mapping of UML timers and clocks to IF
is straightforward. Declarative constraints on duration between events are ex-
pressed by means of clocks and time guards or observers [OGO04].

4 An example: the Ariane-5 Flight Program1

We present a real-world case study on the modelling and validation of the Flight
Program of Ariane-5 by using the IF toolset.

This work has been initiated by EADS Launch Vehicles in order to evaluate
the maturity and applicability of formal validation techniques. This evaluation
consisted in formally specifying some parts of an existing software, on a re-
engineering basis, and verifying some critical requirements on this specification.
The Ariane-5 Flight Program is the embedded software which autonomously
controls the Ariane-5 launcher during its flight, from the ground, through the
atmosphere, and up to the final orbit.

The specification and validation have been studied in two different contexts:

– A first study carried out on a re-engineered SDL model has been conducted
in 2001. The SDL model was translated automatically to IF, simplified by
static analysis, simulated and verified using µ-calculus properties as well as
behavioural model minimisation and comparison.

– A second study carried out on a re-engineered UML model, has been con-
ducted more recently in the framework of the IST OMEGA project [Con03].
The goal was to evaluate both the appropriateness of extensions of UML to
model this type of real-time system, and the usability of IF validation tools.
In this study, the UML model has been translated automatically to IF, sim-
plified by static analysis, simulated and verified against properties expressed
as observers.

We summarise the relevant results of both experiments, and we give princi-
ples of a verification methodology that can be used in connection with the IF
toolset. For such large examples, push-button verification is not sufficient and
some iterative combination of analysis and validation is necessary to cope with
complexity.

1 Ariane-5 is an European Space Agency Project delegated to CNES (Centre National
d’Etudes Spatiales).

4.1 Overview of the Ariane-5 Flight Program

The Ariane-5 example has a relatively large UML model: 23 classes, each one
with operations and a state machine. Its translation into IF has 7000 lines of
code.

The launcher flight. An Ariane-5 launch begins with ignition of the main
stage engine (epc - Etage Principal Cryotechnique). Upon confirmation that it
is operating properly, the two solid booster stages (eap - Etage Accélérateur à
Poudre) are ignited to achieve lift-off.

After burn-out, the two solid boosters (eap) are jettisoned and Ariane-5
continues its flight through the upper atmosphere propelled only by the cryogenic
main stage (epc). The fairing is jettisoned too, as soon as the atmosphere is thin
enough for the satellites not to need protection. The main stage is rendered inert
immediately upon shut-down. The launch trajectory is designed to ensure that
the stages fall back safely into the ocean.

The storable propellant stage (eps - Etage à Propergol Stockable) takes over
to place the geostationary satellites in orbit. Payload separation and attitudinal
positioning begin as soon as the launcher’s upper section reaches the correspond-
ing orbit. Ariane-5’s missions ends 40 minutes after the first ignition command.

A final task remains to be performed - that of passivation. This essentially
involves emptying the tanks completely to prevent an explosion that would break
the propellant stage into pieces.

The Flight Program. The Flight Program entirely controls the launcher,
without any human interaction, beginning 6 minutes 30 seconds before lift-off,
and ending 40 minutes later, when the launcher terminates its mission.

The main functions of the Flight Program are the following ones:

– flight control, involves navigation, guidance and control algorithms,
– flight regulation, involves observation and control of various components of

the propulsion stages (engines ignition and extinction, boosters ignition, etc),
– flight configuration, involves management of launcher components (stage sep-

aration, payload separation, etc).

We focused on regulation and configuration functions. The flight control is a
relatively independent synchronous reactive control system.

The environment. In order to obtain a realistic functional model of the Flight
Program restricted to regulation and configuration functionalities, we need to
take into account its environment. This has been modelled by two external
components abstracting the actual behaviour of the flight control part and the
ground:

– the flight control includes several processes describing a nominal behaviour.
They send, with some controlled degree of uncertainty, the right flight com-
mands, with the right parameters at the right moments in time.

– the ground part abstracts the nominal behaviour of the launch protocol on
the ground side. It passes progressively the control of the launcher to the on
board flight program, by providing the launch date and all the confirmations
needed for launching. Furthermore, it remains ready to take back the control,
if some malfunctioning is detected during the launch procedure.

Requirements. With the help of EADS engineers, we identified a set of about
twenty functional safety requirements ensuring the right service of the Flight
Program. The requirements have been classified into three classes:

– general requirements, not necessarily specific to the Flight Program but com-
mon to all critical real-time systems. They include basic untimed properties
such as the absence of deadlocks, livelocks or signal loss, and basic timed
properties such as the absence of timelocks, Zeno behaviours or deadlines
missed;

– overall system requirements, specific to the Flight Program and concerning
its global behaviour. For example, the global sequence of the flight phases is
respected: ground, vulcain ignition, booster ignition, ...;

– local component requirements, specific to the Flight Program and regarding
the functionality of some of its parts. This category includes for example
checking the occurrence of some actions in some component (e.g, payload
separation occurs eventually during an attitudinal positioning phase, or the
stop sequence no. 3 can occur only after lift-off, or the state of engine valves
conforms to the flight phase, etc.)

4.2 UML model

The Ariane-5 Flight Program is modelled in UML as a collection of objects
communicating mostly through asynchronous signals, and whose behaviour is
described by state machines. Operations (with an abstract body) are used to
model the guidance, navigation and control tasks. For the modelling of timed
behaviour and timing properties, we are using the OMEGA real-time UML pro-
file [GOO03], which provides basic primitives such as timers and clocks. The
model shown in figure 5 is composed of:

– a global controller class responsible for flight configuration (Acyclic);
– a model of the regulation components (e.g. EAP, EPC corresponding to the

launcher’s stages);
– a model of the regulated equipment (e.g. Valves, Pyros);
– an abstract model of the cyclic GNC tasks (Cyclics, Thrust monitor, etc.);
– an abstract model of the environment (classes Ground for the external events

and Bus for modelling the communication with synchronous GNC tasks).

The behaviour of the flight regulation components (eap, epc) involves mainly
the execution of the firing/extinction sequence for the corresponding stage of the
launcher (see for example a fragment of the EPC stage controller’s state machine

C
y
c
lic

s

m
in

o
r_

c
y
c
le

 :
 I

n
te

g
e

r

fa
s
v
o

l
:

In
te

g
e

r

in
c
g

 :
 I

n
te

g
e

r

g
u

id
a

n
c
e

_
p

e
ri
o

d
 :

 I
n

te
g

e
r

=
 8

<
<

A
c
ti
v
e

>
>

G
u

id
a

n
c
e

_
T

a
s
k

<
<

A
c
ti
v
e

>
>

1

1

+
G

u
id

a
n

c
e

_
T

a
s
k

1

+
C

y
c
lic

s
 1

T
h

ru
s
t_

M
o

n
it
o

r

n
b

 :
 I

n
te

g
e

r

n
b

_
c
o

n
f

:
In

te
g

e
r

=
 3

T
1

d
e

lh
1

 :
 T

im
e

r

H
0

 :
 T

im
e

r

H
0

_
ti
m

e
 :

 I
n

te
g

e
r

<
<

T
ri
g

g
e

re
d

>
>

 D
e

c
id

e
_

E
A

P
_

S
e

p
a

ra
ti
o

n
()

(f
ro

m
 G

N
C

)

1

1

+
C

y
c
lic

s

1

+
T

h
ru

s
t_

M
o

n
it
o

r

1

V
a

lv
e

s

<
<

T
ri
g

g
e

re
d

>
>

 O
p

e
n

()

<
<

T
ri
g

g
e

re
d

>
>

 C
lo

s
e

()

(f
ro

m
 E

n
v
ir
o

n
m

e
n

t)

<
<

A
c
ti
v
e

>
>

A
c
y
c
lic

fa
s
v
o

l
:

In
te

g
e

r

H
0

_
ti
m

e
 :

 I
n

te
g

e
r

tq
d

p
 :

 T
im

e
r

H
0

 :
 T

im
e

r

T
p

s
to

t_
p

re
p

 :
 T

im
e

r

T
p

s
ta

r_
p

re
p

 :
 T

im
e

r

T
p

s
to

t_
e

a
p

re
l
:

T
im

e
r

T
p

s
ta

r_
e

a
p

re
l
:

T
im

e
r

E
n

d
_

Q
D

P
 :

 B
o

o
le

a
n

E
a

rl
y
_

s
e

p
 :

 T
im

e
r

L
a

te
_

s
e

p
 :

 T
im

e
r

c
lo

c
k
 :

 T
im

e
r

<
<

A
c
ti
v
e

>
>

1

1

+
A

c
y
c
lic

1

+
C

y
c
lic

s

1

1

1

+
A

c
y
c
lic

1
 +

G
u

id
a

n
c
e

_
T

a
s
k

1

1

1

+
T

h
ru

s
t_

M
o

n
it
o

r

1

+
A

c
y
c
lic

 1

E
P

C

c
u

rr
e

n
t_

is
_

o
k
 :

 B
o

o
le

a
n

c
lo

c
k
 :

 T
im

e
r

H
0

 :
 T

im
e

r

H
0

_
ti
m

e
 :

 I
n

te
g

e
r

(f
ro

m
 S

ta
g

e
s
)

<
<

A
c
ti
v
e

>
>

1

1

+
E

P
C

1

+
A

c
y
c
lic

1

1

1

+
C

y
c
lic

s

1

+
E

P
C

1

1

1
+

E
P

C
 1

+
G

u
id

a
n

c
e

_
T

a
s
k

1

1

1

+
T

h
ru

s
t_

M
o

n
it
o

r

1

+
E

P
C

1

1

1

+
E

P
C

_
E

V
B

O

1

+
E

V
B

O

1

1

1

+
E

P
C

_
E

V
V

P

1

+
E

V
V

P

1

1

1

+
E

P
C

_
E

V
V

C
H

1

+
E

V
V

C
H

1

1

1

+
E

P
C

_
E

V
V

C
O

1

+
E

V
V

C
O

1

1

1

+
E

P
C

_
E

V
V

G
H

1

+
E

V
V

G
H

1

1

+
E

P
C

1

E
A

P

H
0

 :
 T

im
e

r

H
0

_
ti
m

e
 :

 I
n

te
g

e
r

<
<

T
ri
g

g
e

re
d

>
>

 E
A

P
_

P
re

p
a

ra
ti
o

n
()

<
<

T
ri
g

g
e

re
d

>
>

 E
A

P
_

R
e

le
a

s
e

()

(f
ro

m
 S

ta
g

e
s
)

<
<

A
c
ti
v
e

>
>

1

1

+
E

A
P

1

+
A

c
y
c
lic

1

1

1

+
E

A
P

1

+
E

P
C

1

P
y
ro

(f
ro

m
 E

n
v
ir
o

n
m

e
n

t)

<
<

A
c
ti
v
e

>
>

1

1

+
E

A
P

_
P

y
ro

1

1

+
P

y
ro

1

1

1

1

+
E

A
P

_
P

y
ro

2

1

+
P

y
ro

2

1

1

1

+
E

A
P

_
P

y
ro

3

1

+
P

y
ro

3

1

Fig. 5. Structure of the UML specification (part).

Wait_Igniti

on_Time

Open_EVB

O

Wait_Start

Abort

timeout(clock) /

current_is_ok:=EVVP.

Open()

Stop1

Stop2

[current_is_ok = false]

[current_is_ok = true]

Wait_Clos

e_EVBO

timeout(clock) / begin current_is_ok:=EVBO.Close();

Cyclics!Anomaly();Acyclic!Anomaly();Guidance_Task!An

omaly(); EAP!Anomaly(); Thrust_Monitor!Anomaly() end

 / clock.set(TimeConstants.MS_100)

Wait_Clos

e_EVVP

 / clock.set(TimeConstants.MS_100)

Start(H0_time) / begin

clock.set(298900);

H0.set(H0_time) end

timeout(clock) / begin

clock.set(TimeConstants.MS_100);

current_is_ok:=EVBO.Open() end

[current_is_ok = false] / clock.reset()[current_is_ok = true]

timeout(clock) / current_is_ok:=EVVP.Close()

Fig. 6. Behaviour of the EPC regulation process (part).

in figure 6). The sequence is time-driven, with the possibility of safe abortion in
case of anomaly.

The flight configuration part implements several tasks: eap separation, epc
separation, payload separation, etc. In their case too, the separation dates are
provided by the control part, depending on the current flight evolution.

4.3 Validation using the IF toolset

Validation is a complex activity, involving the iterated application of verification
and analysis phases as depicted in figure 7.

Translation to IF and basic static analysis provides a first sanity check of
the model. In this step, the user can find simple compile-time errors in the model
(name errors, type errors, etc.) but also more elaborate information (uninitialised
or unused variables, unused signals, dead code).

Basic Static Analysis

Requirements

Model Exploration

Advanced Static Analysis

Model Generation

Model Checking

Environment

Specification

Translation to IF +

Fig. 7. Validation methodology in IF.

Model exploration. The validation process continues with a debugging phase.
Without being exhaustive, the user begins to explore the model in a guided or
random manner. Simulation states do not need to be stored as the complete
model is not explicitly constructed at this moment.

The aim of this phase is to inspect and validate known nominal scenarios of
the specification. Moreover, the user can test simple safety properties, which must
hold on all execution paths. Such properties are generic ones, such as absence of
deadlocks and signal loss, or more specific ones such as local assertions.

Advanced static analysis. The aim is to simplify the IF description. We use
the following static analysis techniques to reduce both the state vector and the
state space, while completely preserving its behaviour:

– A specific analysis technique is the elimination of redundant clocks [DY96].
Two clocks are dependent in a control state if their difference is constant and
can be statically computed at that state.
The initial Sdl version of the Flight Program used no less than 130 timers.
Using our static analysis tool we were able to reduce them to only 55 timers,
functionally independent ones. Afterwards, the whole specification has been
rewritten taking into account the redundancy discovered by the analyser.

– A second optimisation identifies live equivalent states by introducing sys-
tematic resets for dead variables in certain states of the specification.
For this case study, the live reduction has not been particularly effective due
to the reduced number of variables (others than clocks) used in the speci-
fication. Our initial attempts to generate the model without live reduction
failed. Finally, using live reduction we were able to build the model but still,
it was of unmanageable size, about 2 · 106 states and 18 · 106 transitions.

– The last optimisation is dead-code elimination. We used this technique to
automatically eliminate some components which do not perform any relevant
action.

LTS generation. The LTS generation phase aims to build the state graph of
the specification by exhaustive simulation. In order to cope with the complexity,
the user can choose an adequate state representation e.g., discrete or dense
representation of time as well as an exploration strategy e.g., traversal order,
use of partial order reductions, scheduling policies, etc.

The use of partial order reduction has been necessary to construct tractable
models. We applied a simple static partial order reduction which eliminates spu-
rious interleaving between internal steps occurring in different processes at the
same time. Internal steps are those which do not perform visible communication
actions, neither signal emission or access to shared variables. This partial order
reduction imposes a fixed exploration order between internal steps and preserves
all the properties expressed in terms of visible actions.

Example 4. By using partial order reduction on internal steps, we reduced the
size of the model by 3 orders of magnitude i.e, from 2 · 106 states and 18 · 106

transitions to 1.6·103 states and 1.65·103 transitions, which can be easily handled
by the model checker.

We considered two different models of the environment. A time-deterministic
one, where actions take place at precise moments in time and a time-nondeterministic
one where actions take place within predefined time intervals. Table 1 presents in
each case the sizes of the models obtained depending on the generation strategy
used.

time time
deterministic non-deterministic

− live reduction state state
− partial order explosion explosion

model + live reduction 2201760 st. state
generation − partial order 18706871 tr. explosion

+ live reduction 1604 st. 195718 st.
+ partial order 1642 tr. 278263 tr.

model
model minimisation ∼ 1 sec. ∼ 20 sec.

verification model
checking ∼ 15 sec. ∼ 120 sec.

Table 1. Verification Results. The model minimisation and model checking experi-
ments are performed on the smallest available models i.e, obtained with both live and
partial order reduction.

0

2

EPC!Fire_1

3

EPC!Fire_2

1

EPC!Anomaly

EPC!Anomaly 4

EPC!Fire_3

5

EAP!Anomaly

EAP!Fire EPC!Anomaly

Fig. 8. Minimal model.

Model checking. Once the model has been generated, three model checking
techniques have been applied to verify requirements on the specification:

1. Model checking of µ-calculus formulae using Evaluator.

Example 5. The requirement expressing that “the stop sequence no. 3 occurs
only during the flight phase, and never on the ground phase” can be expressed
by the following µ-calculus formula, verified with Evaluator:

¬ µX. < EPC!Stop 3 > T ∨ < EAP !Fire > X

This formula means that the system cannot execute the stop sequence no. 3
without executing the firing of the eap first.

2. Construction of reduced models using Aldebaran. A second approach, usu-
ally much more intuitive for a non expert end-user, consists in computing an
abstract model (with respect to given observation criteria) of the overall be-
haviour of the specification. Possible incorrect behaviours can be detected by
visualising such a model.

Example 6. All safety properties involving the firing actions of the two princi-
pal stages, eap and epc, and the detection of anomalies are preserved on the
LTS in figure 8 generated by Aldebaran. It is the quotient model with re-
spect to safety equivalence [BFG+91] while keeping observable only the actions
above. For instance it is easy to check on this abstract model that, whenever an
anomaly occurs before action EPC!Fire 3 (ignition of the Vulcain engine), then
nor this action nor EAP!Fire action are executed and therefore the entire launch
procedure is aborted.

Table 1 gives the average time required for verifying each kind of property
by temporal logic model checking and model minimisation respectively.

valve_not_abused

t : Timer

<<Observer>>

initial

wait

match invoke ::EADS::Environment::Valves::Close() / t.set(0)

match invoke ::EADS::Environment::Valves::Open() / t.set(0)

KO

<<error>>

match invoke ::EADS::Environment::Valves::Open()

match invoke ::EADS::Environment::Valves::Close()

[t >= 50]

Fig. 9. A timed safety property of the Ariane-5 model.

liftoff_aborted_right

v : Valves

t : Timer

<<Observer>>

ok

aborting

aborted

not_yet

aborted

not_yet

 / t.set(0)

[t >= 2000]

ko

<<error>>

[v.EPC.EAP.Pyro1 @ Ignition_done or

v.EPC.EAP.Pyro2 @ Ignition_done or

v.EPC.EAP.Pyro3 @ Ignition_done]

match send ::EADS::Signals::Request_EAP_Preparation()

match send ::EADS::Signals::Request_EAP_Release()

[(v.EPC.EVBO @ Open or v.EPC.EVBO @ Failed_Open) or

(v.EPC.EVVCH @ Open or v.EPC.EVVCH @ Failed_Open) or

(v.EPC.EVVCO @ Open or v.EPC.EVVCO @ Failed_Open) or

(v.EPC.EVVGH @ Open or v.EPC.EVVGH @ Failed_Open) or

(v.EPC.EVVP @ Open or v.EPC.EVVP @ Failed_Open)]

match accept ::EADS::Environment::Valves::Open() by v

[v @ Open]
[v @ Failed_Open]

Fig. 10. A timed safety property of the Ariane-5 model.

wait_start

wait_ignition_

p1

p1_ignited

ko

<<error>>

okchoice

match send ::EADS::Signals::Start(void) / begin mc :=

g.Acyclic.MissionConstants; tc := g.Acyclic.TimeConstants end

[g.Acyclic.EAP.Pyro1

@ Ignition_done]

[now >= (tc.MN_5 * 2 + mc.Tpstar_prep)]

[g.Acyclic.EAP.Pyro2 @ Ignition_done]

[now >= (tc.MN_5 * 2 + mc.Tpstot_prep)]

[now < (tc.MN_5*2 + mc.Tpstot_prep)]

liftoff_performed_right2

g : Ground

mc : MissionConstants
tc : TimeConstants

<<Observer>>

Fig. 11. A timed safety property of the Ariane-5 model.

3. Model checking with observers. We also used UML observers to express and
check requirements. Observers allow us to express in a much simpler manner
most safety requirements of the Ariane-5 specification. Additionally, they allow
to express quantitative timing properties, something which is difficult to express
with µ-calculus formulas.

Example 7. Figures 9 to 11 show some of the properties that were checked on
the UML model:

Figure 9: between any two commands sent by the flight program to the valves
there should elapse at least 50ms.

Figure 10: if some instance of class Valve fails to open (i.e. enters the state
Failed Open) then

– No instance of the Pyro class reaches the state Ignition done.

– All instances of class Valve shall reach one of the states Failed Close or
Close after at most 2 seconds since the initial valve failure.

– The events EAP Preparation and EAP Release are never emitted.

Figure 11: if the Pyro1 object (of class Pyro) enters the state Ignition done,
then the Pyro2 object shall enter the state Ignition done at a system time be-
tween TimeConstants.MN 5∗2+Tpstot prep and TimeConstants.MN 5∗
2 + Tpstar prep.

5 Conclusion

The IF toolset is the result of a long term research effort for theory, methods and
tools for model-based development. It offers a unique combination of features for
modelling and validation including support for high level modelling, static anal-
ysis, model-checking and simulation. Its has been designed with special care for
openness to modelling languages and validation tools thanks to the definition of
appropriate API’s. For instance, it has been connected to explicit model checking
tools such as Spin [Hol91] and Cadp [FGK+96], to symbolic and regular model
checker tools such as TreX [ABS01], Lash [BL02a], the PVS-based abstraction
tool Invest [BLO98] and to the automatic test generation and execution tools
Tgv [FJJV96], Agatha [LRG01] and Spider [HN04].

The IF notation is expressive and rich enough to map in a structural manner
most of UML concepts and constructs such as classes, state machines with ac-
tions, activity groups with run-to-completion semantics. The mapping flattens
the description only for inheritance and synchronous calls and this is necessary
for validation purposes. It preserves all relevant information about the structure
of the model. This provides a basis for compositional analysis and validation
techniques that should be further investigated.

The IF notation relies on a framework for modelling real-time systems based
on the use of priorities and of types of urgency studied at Verimag [BST98],
[BS00], [AGS02]. The combined use of behaviour and priorities naturally leads
to layered models and allows compositional modelling of real-time systems, in
particular of aspects related to resource sharing and scheduling. Scheduling poli-
cies can be modelled as sets of dynamic priority rules. The framework supports
composition of scheduling policies and provides composability results for dead-
lock freedom of the scheduled system. Priorities are also an elegant mechanism
for restricting non determinism and controlling execution. Run-to-completion
execution and mutual exclusion can be modelled in a straightforward manner.
Finally, priorities prove to be a powerful tool for modelling both heterogeneous
interaction and heterogeneous execution as advocated in [GS03]. The IF toolset
fully supports this framework. It embodies principles for structuring and enrich-
ing descriptions with timing information as well as expertise gained through its
use in several large projects such as the IST projects OMEGA [Con03,GH04],
AGEDIS [Con02] and ADVANCE [Con01].

The combination of different validation techniques enlarges the scope of ap-
plication of the IF toolset. Approaches can differ according to the characteristics
of the model. For data intensive models, static analysis techniques can be used to
simplify the model before verification, while for control intensive models partial
order techniques and observers are very useful to cope with state explosion. In
any case, the combined use of static analysis and model checking by skilled users
proves to be a powerful means to break complexity. Clearly, the use of high level
modelling languages involves some additional cost in complexity with respect to
low level modelling languages e.g., languages based on automata. Nevertheless,
this is a price to pay for validation of real life systems whose faithful modelling
requires dynamically changing models with infinite state space. In our method-

ology, abstraction and simplification can be carried out automatically by static
analysis.

The use of observers for requirements proves to be very convenient and easy
to use compared to logic-based formalisms. They allow a natural description,
especially of real-time properties relating timed occurrences of several events.
The “operational” description style is much more easy to master and understand
by practitioners. The limitation to safety properties is not a serious one for well-
timed systems. In fact, IF descriptions are by construction well-timed - time
can always progress due to the use of urgency types. Liveness properties become
bounded response, that is safety properties.

The IF toolset is unique in that it supports rigorous high level modelling of
real-time systems and their properties as well as a complete validation method-
ology. Compared to commercially available modelling tools, it offers more power-
ful validation features. For graphical editing and version management, it needs a
front end that generates either XMI or SDL. We are currently using Rational Rose
and ObjectGeode. We have also connections from Rhapsody and Argo Uml.

Compared to other validation tools, the IF toolset presents many similarities
with Spin. Both tools offer features such as a high level input language, integra-
tion of external code, use of enumerative model checking techniques as well as
static optimisations. In addition, IF allows the modelling of real-time concepts
and the toolset has an open architecture which eases the connection with other
tools.

References

ABS01. A. Annichini, A. Bouajjani, and M. Sighireanu. TReX: A Tool for Reach-
ability Analysis of Complex Systems. In Proceedings of CAV’01, (Paris,
France), volume 2102 of LNCS. Springer, 2001.

AD94. R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126:183–235, 1994.

AGS00. K. Altisen, G. Gössler, and J. Sifakis. A Methodology for the Construction
of Scheduled Systems. In M. Joseph, editor, proc. FTRTFT 2000, volume
1926 of LNCS, pages 106–120. Springer-Verlag, 2000.

AGS02. K. Altisen, G. Gössler, and J. Sifakis. Scheduler Modeling Based on the
Controller Snthesis Paradigm. Journal of Real-Time Systems, special issue
on ”control-theoretical approaches to real-time computing”, 23(1/2):55–84,
2002.

BFG+91. A. Bouajjani, J.Cl. Fernandez, S. Graf, C. Rodriguez, and J. Sifakis. Safety
for Branching Time Semantics. In Proceedings of ICALP’91, volume 510 of
LNCS. Springer, July 1991.

BFG+99. M. Bozga, J.Cl. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and
J. Sifakis. IF: An Intermediate Representation for SDL and its Applications.
In R. Dssouli, G. Bochmann, and Y. Lahav, editors, Proceedings of SDL
FORUM’99 (Montreal, Canada), pages 423–440. Elsevier, June 1999.

BFKM97. M. Bozga, J.Cl. Fernandez, A. Kerbrat, and L. Mounier. Protocol Verifica-
tion with the Aldebaran Toolset. Software Tools for Technology Transfer,
1(1+2):166–183, December 1997.

BL02a. B. Boigelot and L. Latour. The Liege Automata-based Symbolic Handler
LASH. http://www.montefiore.ulg.ac.be/ boigelot/research/lash, 2002.

BL02b. M. Bozga and Y. Lakhnech. IF-2.0: Common Language Operational Se-
mantics. Technical report, Verimag, 2002.

BLO98. S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of In-
finite State Systems Compositionally and Automatically. In A. Hu and
M. Vardi, editors, Proceedings of CAV’98 (Vancouver, Canada), volume
1427 of LNCS, pages 319–331. Springer, June 1998.

BS00. S. Bornot and J. Sifakis. An Algebraic Framework for Urgency. Information
and Computation, 163:172–202, 2000.

BST98. S. Bornot, J. Sifakis, and S. Tripakis. Modeling Urgency in Timed Systems.
In International Symposium: Compositionality - The Significant Difference,
volume 1536 of LNCS. Springer-Verlag, 1998.

Con01. ADVANCE Consortium. http://www.liafa.jussieu.fr/ advance - website of
the IST ADVANCE project, 2001.

Con02. AGEDIS Consortium. http://www.agedis.de - website of the IST AGEDIS
project, 2002.

Con03. OMEGA Consortium. http://www-omega.imag.fr - website of the IST
OMEGA project., 2003.

DH99. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence
Charts. In P. Ciancarini, A. Fantechi, and R. Gorrieri, editors, FMOODS’99
IFIP TC6/WG6.1 Third International Conference on Formal Methods for
Open Object-Based Distributed Systems. Kluwer Academic Publishers, 1999.
Journal Version to appear in Journal on Formal Methods in System Design,
July 2001.

DJPV02. W. Damm, B. Josko, A. Pnueli, and A. Votintseva. Understanding UML: A
Formal Semantics of Concurrency and Communication in Real-Time UML.
In Proceedings of FMCO’02, LNCS. Springer Verlag, November 2002.

DY96. C. Daws and S. Yovine. Reducing the Number of Clock Variables of Timed
Automata. In Proceedings of RTSS’96 (Washington, DC, USA), pages 73–
82. IEEE Computer Society Press, December 1996.

FGK+96. J.Cl. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and
M. Sighireanu. CADP: A Protocol Validation and Verification Toolbox.
In R. Alur and T.A. Henzinger, editors, Proceedings of CAV’96 (New
Brunswick, USA), volume 1102 of LNCS, pages 437–440. Springer, August
1996.

FJJV96. J.C. Fernandez, C. Jard, T. Jéron, and C. Viho. Using On-the-fly Veri-
fication Techniques for the Generation of Test Suites. In Proceedings of
CAV’96, number 1102 in LNCS. Springer, 1996.

GH04. S. Graf and J. Hooman. Correct development of embedded systems. In
European Workshop on Software Architecture: Languages, Styles, Models,
Tools, and Applications (EWSA 2004), co-located with ICSE 2004, St An-
drews, Scotland, LNCS, May 2004.

GOO03. S. Graf, I. Ober, and I. Ober. Timed Annotations in UML. In Work-
shop SVERTS on Specification and Validation of UML models for Real
Time and Embedded Systems, a satellite event of UML 2003, San Fran-
cisco, October 2003, Verimag technical report 2003/10/22 or http://www-
verimag.imag.fr/EVENTS/2003/SVERTS/, October 2003.

GS03. G. Gössler and J. Sifakis. Composition for Component-Based Modeling. In
proc. FMCO’02, volume 2852 of LNCS. Springer-Verlag, 2003.

Har87. D. Harel. Statecharts: A Visual Formalism for Complex Systems. Sci.
Comput. Programming 8, 231-274, 1987.

HN04. A. Hartman and K. Nagin. The AGEDIS Tools for Model Based Testing.
In Proceedings of ISSTA’2004, 2004.

Hol91. Gerard J. Holzmann. Design and Validation of Computer Protocols. Pren-
tice Hall Software Series, 1991.

HP98. D. Harel and M. Politi. Modeling Reactive Systems with Statecharts: The
STATEMATE Approach. McGraw-Hill, 1998.

HvdZ03. J. Hooman and M.B. van der Zwaag. A Semantics of Communicating Re-
active Objects with Timing. In Proceedings of SVERTS’03 (Specification
and Validation of UML models for Real Time and Embedded Systems), San
Francisco, October 2003.

IBM. IBM. Rational ROSE Development Environment.
Ilo. Ilogix. Rhapsody Development Environment.
JM99. T. Jéron and P. Morel. Test Generation Derived from Model Checking. In

N. Halbwachs and D. Peled, editors, Proceedings of CAV’99 (Trento, Italy),
volume 1633 of LNCS, pages 108–122. Springer, July 1999.

Koz83. D. Kozen. Results on the Propositional µ-Calculus. Theoretical Computer
Science, 1983.

LPY98. K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Journal
on Software Tools for Technology Transfer, 1:134–152, 1998.

LRG01. D. Lugato, N. Rapin, and J.P. Gallois. Verification and tests generation
for SDL industrial specifications with the AGATHA toolset. In Real-Time
Tools Workshop affiliated to CONCUR 2001, Aalborg, Denmark, 2001.

Mil80. R. Milner. A Calculus of Communication Systems, volume 92 of LNCS.
Springer, 1980.

Muc97. S. Muchnick. Advanced Compiler Design Implementation. Morgan Kauf-
mann Publishers, 1997.

NS91. X. Nicollin and J. Sifakis. An Overview and Synthesis on Timed Process
Algebras. In Proc. CAV’91, volume 575 of LNCS. Springer-Verlag, July
1991.

OGO04. I. Ober, S. Graf, and I. Ober. Model Checking of UML Models via a Map-
ping to Communicating Extended Timed Automata. In 11th International
SPIN Workshop on Model Checking of Software, 2004, volume LNCS 2989,
pages 127–145, 2004.

OMG01. OMG. Unified Modeling Language Specification (Action Semantics). OMG
Adopted Specification, December 2001.

OMG03a. OMG. Model Driven Architecture. http://www.omg.org/mda, 2003.
OMG03b. OMG. Standard uml Profile for Schedulability, Performance and Time,

v. 1.0. OMG document formal/2003-09-01, September 2003.
Par81. D. Park. Concurrency and Automata on Infinite Sequences. Theoretical

Computer Science, 104:167–183, March 1981.
RVR+. A. Ramirez, Ph. Vanpeperstraete, A. Rueckert, K. Odutola, J. Bennett, and

L. Tolke. ArgoUML Environment.
Sif77. J. Sifakis. Use of Petri Nets for Performance Evaluation. In Proc. 3rd Intl.

Symposium on Modeling and Evaluation, pages 75–93. IFIP, North Holland,
1977.

Sif01. J. Sifakis. Modeling Real-Time Systems — Challenges and Work Directions.
In T.A. Henzinger and C. M. Kirsch, editors, Proc. EMSOFT’01, volume
2211 of LNCS. Springer-Verlag, 2001.

STY03. J. Sifakis, S. Tripakis, and S. Yovine. Building Models of Real-Time Systems
from Application Software. Proc. IEEE, 91(1):100–111, 2003.

Tip94. F. Tip. A Survey of Program Slicing Techniques. Technical Report CS-
R9438, CWI, Amsterdam, The Netherlands, 1994.

vGW89. R.J. van Glabbeek and W.P. Weijland. Branching-Time and Abstraction
in Bisimulation Semantics. Technical Report CS-R8911, CWI, Amsterdam,
The Netherlands, 1989.

Wei84. M. Weiser. Program Slicing. IEEE Transactions on Software Engineering,
SE-10(4):352–357, 1984.

Yov97. S. Yovine. KRONOS: A Verification Tool for Real-Time Systems. Software
Tools for Technology Transfer, 1(1+2):123–133, December 1997.

	Tools and Applications II: The IF Toolset

