
Formal Analysis of Key Management APIs

Graham Steel

with Matteo Bortolozzo, Matteo Centenaro, Riccardo Focardi

INRIA & LSV, ENS de Cachan

and Università Ca’ Foscari, Venezia

1/24

Cryptographic key management

The ‘elephant in the room’ of cryptographic security

1/24

Cryptographic key management

The ‘elephant in the room’ of cryptographic security

Key creation and destruction

Key establishment and distribution

Key storage and backup

Key use according to policy

For many hundreds of keys (every employee laptop, smartcard,

credential, ticket, token, device, ...)

.. and all in a secure, robust way in a distributed system in a hostile

environment

2/24

3/24

4/24

Before we go on . . .

PKCS#11 is specified in a 400 page document

Funtions defined by headers and long textual descriptions

We go straight to abstract model

4/24

Before we go on . . .

PKCS#11 is specified in a 400 page document

Funtions defined by headers and long textual descriptions

We go straight to abstract model

h(n1,k1) - a handle n1 for key k1 (h is a private symbol)

a1(n1) - setting of attribute a1 for handle n1

4/24

Before we go on . . .

PKCS#11 is specified in a 400 page document

Funtions defined by headers and long textual descriptions

We go straight to abstract model

h(n1,k1) - a handle n1 for key k1 (h is a private symbol)

a1(n1) - setting of attribute a1 for handle n1

Command :

input;state
new
−−→ output;state′

5/24

Key Management - 1

KeyGenerate :
new n,k
−−−−→ h(n,k);L

Where L = ¬extractable(n),¬wrap(n),¬unwrap(n),

¬encrypt(n),¬decrypt(n),¬sensitive(n)

6/24

Key Management - 2

Set Wrap : h(x1,y1); ¬wrap(x1) → ;wrap(x1)

Set Encrypt : h(x1,y1); ¬encrypt(x1) → ;encrypt(x1)
...

...

UnSet Wrap : h(x1,y1); wrap(x1) → ;¬wrap(x1)

UnSet Encrypt : h(x1,y1); encrypt(x1) → ;¬encrypt(x1)
...

...

Some restrictions, e.g. can’t unset sensitive

7/24

Key Management - 3

Wrap :

h(x1,y1),h(x2,y2); wrap(x1), → {y2}y1

extract(x2)

Unwrap :

h(x2,y2),{y1}y2
; unwrap(x2)

new n1−−−−→ h(n1,y1); extract(n1), L

where L =

¬wrap(n1),¬unwrap(n1),¬encrypt(n1),¬decrypt(n1),¬sensitive(n1).

8/24

9/24

Key Usage

Encrypt :

h(x1,y1),y2; encrypt(x1) → {y2}y1

Decrypt :

h(x1,y1),{y2}y1
; decrypt(x1) → y2

10/24

Key Separation Attack (Clulow, 2003)

Intruder knows : h(n1,k1), h(n2,k2).

State : wrap(n2), decrypt(n2), sensitive(n1), extract(n1)

Wrap: h(n2,k2), h(n1,k1) → {k1}k2

Decrypt: h(n2,k2), {k1}k2
→ k1

11/24

12/24

Fix decrypt/wrap attack..

12/24

Fix decrypt/wrap attack..

Set Wrap : h(x1,y1); ¬wrap(x1),¬decrypt(x1) → wrap(x1)

Set Decrypt : h(x1,y1); ¬wrap(x1),¬decrypt(x1) → decrypt(x1)

12/24

Fix decrypt/wrap attack..

Set Wrap : h(x1,y1); ¬wrap(x1),¬decrypt(x1) → wrap(x1)

Set Decrypt : h(x1,y1); ¬wrap(x1),¬decrypt(x1) → decrypt(x1)

Unset Wrap

Unset Decrypt

13/24

Another Attack

Intruder knows : h(n1,k1), h(n2,k2), k3

State : sensitive(n1),extract(n1), unwrap(n2), encrypt(n2)

SEncrypt: h(n2,k2), k3 → {k3}k2

Unwrap: h(n2,k2), {k3}k2

newn3−−−−→ h(n3,k3)

Set wrap: h(n3,k3) → wrap(n3)

Wrap: h(n3,k3), h(n1,k1) → {k1}k3

Intruder: {k1}k3
, k3 → k1

14/24

Fix decrypt/wrap, encrypt/unwrap..

Intruder knows : h(n1,k1), h(n2,k2), k3

State : sensitive(n1),extract(n1), extract(n2)

Set wrap: h(n2,k2) → ;wrap(n2)

Set wrap: h(n1,k1) → ;wrap(n1)

Wrap: h(n1,k1),h(n2,k2) → {k2}k1

Set unwrap: h(n1,k1) → ;unwrap(n1)

Unwrap: h(n1,k1),{k2}k1

newn3−−−−→ h(n3,k2)

Wrap: h(n2,k2),h(n1,k1) → {k1}k2

Set decrypt: h(n3,k2) → ;decrypt(n3)

Decrypt: h(n3,k2),{k1}k2
→ k1

15/24

16/24

From Formal Models to Real Tokens

16/24

From Formal Models to Real Tokens

We published results in a formal model at CSF 2008.

Reaction from manufacturers was muted

16/24

From Formal Models to Real Tokens

We published results in a formal model at CSF 2008.

Reaction from manufacturers was muted

Decided to construct toolset to query functionality of real token, build

model, find attacks, and execute candidate attacks directly on token.

16/24

From Formal Models to Real Tokens

We published results in a formal model at CSF 2008.

Reaction from manufacturers was muted

Decided to construct toolset to query functionality of real token, build

model, find attacks, and execute candidate attacks directly on token.

Discovered real tokens differ from our CSF model:

Most disable set attribute, use templates instead

16/24

From Formal Models to Real Tokens

We published results in a formal model at CSF 2008.

Reaction from manufacturers was muted

Decided to construct toolset to query functionality of real token, build

model, find attacks, and execute candidate attacks directly on token.

Discovered real tokens differ from our CSF model:

Most disable set attribute, use templates instead

Include CreateObject

16/24

From Formal Models to Real Tokens

We published results in a formal model at CSF 2008.

Reaction from manufacturers was muted

Decided to construct toolset to query functionality of real token, build

model, find attacks, and execute candidate attacks directly on token.

Discovered real tokens differ from our CSF model:

Most disable set attribute, use templates instead

Include CreateObject

Some don’t follow the standard in critical ways

17/24

Some model fragments

KeyGenerate : ; template(A ,X,G)
new n,k
−−−−→ h(n,k);A(n,X)

KeyPairGenerate : ; template(A ,X,G)
new n,s
−−−−→ h(n,s),pub(s);A(n,X)

Unwrap(sym/sym) :

h(x,y2),{|y1|}y2
; unwrap(x,⊤),

new n1−−−−→ h(n1,y1);

template(A ,X,U) A(n1,X)

CreateObject : x; template(A ,X,C)
new n
−−−→ h(n,x); A(n,X)

18/24

Abstractions for Proof (based on Fr öschle & Steel WITS ’09)

KeyGenerate : ; templatei(A ,X,G) → h(ni,ki);A(ni,X)

KeyPairGenerate : ; templatej(A ,X,G) → h(nj,sj),pub(sj);A(nj,X)

Unwrap(sym/sym) :

h(x,y2),{|y1|}y2
; unwrap(x,⊤), → h(nl,y1);

templatel(A ,X,U) A(nl,X)

CreateObject : x; templatem(A ,X,C) → h(nm,x); A(nm,X)

19/24

Results

19/24

Results

Tested on 18 devices from 11 different manufacturers

Of these 9 are vulnerable to at least one attack

The other 9 do not support wrap for sensitive keys

Manufacturers have been informed, reaction mixed

Full results to appear later in 2010

20/24

OpencryptokiX

IBM Opencryptoki is a library including a software token

Vulnerable to many attacks (but it’s a software token)

http://secgroup.ext.dsi.unive.it/cryptokix

20/24

OpencryptokiX

IBM Opencryptoki is a library including a software token

Vulnerable to many attacks (but it’s a software token)

We have coded two fixed versions

one implements config from Fröschle & Steel WITS ’09

one is a new fix with no new crypto mechanisms

Uses a carefully chosen set of templates

http://secgroup.ext.dsi.unive.it/cryptokix

20/24

OpencryptokiX

IBM Opencryptoki is a library including a software token

Vulnerable to many attacks (but it’s a software token)

We have coded two fixed versions

one implements config from Fröschle & Steel WITS ’09

one is a new fix with no new crypto mechanisms

Uses a carefully chosen set of templates

Available to download from

http://secgroup.ext.dsi.unive.it/cryptokix

Details to appear at ASA-4 (FLoC ’10 workshop)

http://secgroup.ext.dsi.unive.it/cryptokix

21/24

A New Hope

Proposals for new APIs by Cachin and Chandran (CSF ’09), Cortier and

Steel (ESORICS ’09).

21/24

A New Hope

Proposals for new APIs by Cachin and Chandran (CSF ’09), Cortier and

Steel (ESORICS ’09).

– CC is for a single central server with a log, CS is for distributed tokens

21/24

A New Hope

Proposals for new APIs by Cachin and Chandran (CSF ’09), Cortier and

Steel (ESORICS ’09).

– CC is for a single central server with a log, CS is for distributed tokens

– CC has a proof in the standard model of crypto, CS a symbolic proof.

21/24

A New Hope

Proposals for new APIs by Cachin and Chandran (CSF ’09), Cortier and

Steel (ESORICS ’09).

– CC is for a single central server with a log, CS is for distributed tokens

– CC has a proof in the standard model of crypto, CS a symbolic proof.

Standards processes trying to set new APIs

– OASIS Key Management Interoperability Protocol

– IEEE Security in Storage Working Group

– PKCS#11 2.30 (no improvement)

22/24

Cachin-Chandran API

Assume only one key server, many users, log of all operations

Keys created with no attributes. Owner of key can set permissions

Conflicts are checked by looking in the log, e.g. ’if this key has been

used by any user for wrapping, do not allow it to be used for decryption’

Also calculates dependencies between keys

+ very flexible, - fails immediately if a key is compromised, or if distributed

over several servers, ‘proof’ a little odd

23/24

Cortier-Steel API

Assume distributed tokens, one for each user

Strict hierarchy of wrap/unwrap and encrypt/decrypt keys

Keys created with attributes that cannot be changed in future

Key attributes include names of other users key can be shared with

All encryptions tagged with key/user information

+ strong security properties, robust to loss of keys, no central log required

- not as flexible as Cachin proposal

24/24

More on Key Management APIs

S. Delaune, S. Kremer and G. Steel. Formal Analysis of PKCS#11 and

Proprietary Extensions. To appear in JCS 2010

V. Cortier and G. Steel. A Generic API for Symmetric Key Management. In

ESORICS ’09.

C. Chachin and N. Chandran. A Secure Cryptographic Token Interface. In

CSF-22.

S. Fröschle and G. Steel. Analysis of PKCS#11 APIs with Unbounded

Fresh Data, ARSPA-WITS ’09.

OASIS www.oasis-open.org/committees/kmip

IEEE 1619 siswg.net

ASA-4, July 21, http://www.lsv.ens-cachan.fr/∼steel/asa4

www.oasis-open.org/committees/kmip
siswg.net
http://www.lsv.ens-cachan.fr/~steel/asa4

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

