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Computational and Symbolic Analysis

Traditionally, two ways of looking at and 
analyzing cryptographic protocols

Symbolic
Uses high level formal language
Amenable to automatization
Treated encryption as perfect, black box operation
Accuracy is unclear as neglects probability, complexity

Computational
More detailed description using probabilities and complexity
Proofs by hand (reductions)
More difficult
More accurate

Trying to link since 2000 (Abadi Rogaway)



Success of Symbolic Analysis
Needham Schroeder protocol

Man in the middle attack:
Possible to find an attack purely symbolically

Treating encryption as perfect black box

B thinks he is communicating with A 
(authentication fails)

M learns N2 which was meant to be a secret of 
A and B (secrecy fails)

Searching for and eliminating the possibility of symbolic 
attacks is a good thing 



Computational View
Computational execution is probabilistic polinomial time.

Sequence of random processes indexed by security parameter η. 

Negligible function:
f(η): for any n natural, there is an η0 such that whenever  η > η0,  f(η) 
< 1/ ηn.

Adversary:
An adversary is successful if it can do bad things with non-negligible 
probability:

Security proofs rely on the assumption that certain operations 
(e.g. computing logarithm) are infeasible

Proof by reduction

Encryption is not perfect
CCA2 security: the function                                       is neglibible in η

)



Ways of Soundness
Aim: Symbolic analysis provide computational guarantees
By now long history, active adversaries in two groups:

Two-world view
Symbolic and computational executions are formalized separately as well as 
security properties
Explicitly formalized what the adversary can do (eg. decrypt if he has the key)
Soundness: Try to prove that no successful symbolic (Dolev-Yao) attacker implies 
no successful computational attacker.
Such are

Reactive Simulatability of M. Backes, B. Pfitzmann, M. Waidner
D. Micciancio, B. Warinschi, V. Cortier (mapping lemma)
V. Cortier, H. Comon-Lundh (soundness of observational equivalence)

Logical view
Only computational execution, no explicit formal reasoning about adversary. 
Logical theory axiomatizes the relevant properties of cryptographic primitives.
Security properties are directly proven from computationally sound axioms and 
derivation rules (I.e. works directly in the computational model)

Computational Protocol Compositional Logic of Stanford (John Mitchell’s group)
The proof system presented here
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• 1. Parsing and limitations of two-world view



Parsing and adversarial capabilities

Computational soundness and parsing
Two-world view: No successful symbolic adversary implies no 
successful computational

In the soundness proof, to each computational trace, you have to 
create a symbolic (trace lifting)
Symbolic expressions that are different but have the same 
computational interpretation cause problems
Limited soundness theorems

E.g.
E.g. {N} = {N’}  may happen computationally; problems with key forging

Or, type-flaw attacks depend on things like〈n,Q〉= N

In such cases, trace-lifting fails.

Such equalities must be included in adversarial capabilities
Noone has been able to do this

R
K

R’
K’



Two type-flaw attacks on NSL
Reminder:

Using 〈n,Q〉= N with two parallel sessions
Take a Q agent name such that for any value N, there is an n with 〈n,Q〉= N

Q is not honest agent

Assigned name attack: Honest name may also be bad.

In Dolev-Yao framework, such possibilities have to be explicitely included in 
adversarial capabilities

3.      A    →	 	 	 B
             Q catches {N2}B

 1.      Q    →	 	 	 B
                             ↓ B generates N

 2.      Q    ←	 	 	 B
                   Q computes n and N2=〈n,Q〉

{N2}B

{N2}B = {n,Q}B

{n,N,B}Q



Unforgeability and symmetric NS

Symmetric Needham Schroeder protocol

Clearly, if encryption can be forged, for example, using another key, 
A has no way to know that the message in step 6 came from B.

In A symbolic execution, if the adversary sends a message of the 
form {N4}K’ , A will halt, but computationally not necessarily.

Q    →	 	 	 A　 → B　
{n}K’ = {m}K  {m-1}K



Key Cycles

Two-world soundness theorems only work when 
for protocols that do not admit key cycles.

So, first by symbolic analysis, show:
There is no successful symbolic attacker
There cannot be key cycles.

If symbolically there are no key cycles, does that mean 
there aren’t computationally?

Probably, when you have unarbitrary parsing.
Otherwise?

Also: a protocol that admits key cycle, may still 
be secure.



• 2. Build a first-order system from scratch



Aims

• For agreement, authentication and secrecy for protocols 
using long term public keys, long term shared keys and 
session keys.

• Derive security properties with a first order theory 
from what we surely know in the computational world 
• I.e. instead of listing what the adversary may do, list what he surely 

cannot spoil.
• If e.g. the pairing is such that〈n,Q〉= N can be ruled out, then we 

can use 〈n,Q〉≠ N

• No need for additional assumption on key cycles
• Intuitive (proof should follow intuition)
• Keep it as simple as possible
• But, can prove protocols (done: NSL, symmetric NS, 

Otway-Rees all for unbounded sessions)



What we need 1
We need be able to talk about traces, what agents sent, received, and when honestly 
created new things in some session

Here we want to mean that the agent parsed the received and sent messages 
according to how the term indicates.

For comparing just bit strings corresponding to the terms, we will include the 
following notation: 

So            means a parsed term, where as ...         means the bit string (more 
precisely, the sequence of random variables of bit strings)

So we surely know e.g.:                        For N1, N2, A1, A2, r1, r2 honest:

Honest items behave differently, so we need different types for honest things.

We also need subterm relation to talk about sent and receive information.



What we need 2
So far: types for honest things, pairing, encryption, parsed and not parsed terms, 
generate, send, receive, equality, subterm predicates

We also want secrecy and key usability:

N is indistinguishable from another nonce generated independently of the protocol for 
anyone outside A1, A2, ..., An

K can be securely used by A1, A2,..., An.

We want to show secrecy inductively: that no honest send action corrupts important 
nonces and keys. That is, something like:

                     Send action by honest guy following the protocol

But, instead:

Where                             means that N is indistinguishable (from independent 
nonce) for others until τ even if t is revealed to them. Clearly, we will need axioms 
that specify how we can build up t in the second argument. E.g:



What we need 3
So far: types for honest things, pairing, encryption, parsed and not parsed terms, 
generate, send, receive, equality, subterm, secrecy and key secrecy (usuability), time 
sections

We will need to talk about traces for roles and security properties:

But this is just an abbreviation:

We need to link secrecy and authentication: We need will need something that implies 
this in the NSL protocol:

Eg:



• 3. Summary of what we built



Sorts, Function Symbols
Sorts

Infinitely many variables of each sort 

Message terms

t: variable of sort bittree, s: bitstring, Q,Q’: names
T: in general sort bittree, but T overline: bitstring 
Message terms represent parsed messages, but T overline is 
the corresponding bitstring
They are in fact infinite sequences of random variables



Computational Model
The usual probabilistic polynomial time execution, the adversary controlling the 
network. For each fixed security parameter, the execution is a stochastic process  
with an underlying probability space

Computational structure: Execution together with a non-negligible sequence of 
subsets D of the underlying sequence of probability spaces.

Interpretation of elements of sort bitstring: sequences (in the security par) of 
random variables on D

Interpretation of elements of sort bittree: Ordered trees with sequences of 
random var’s (over D) on the leaves and encryption or paring on the internal 
nodes.

Interpretation of elements of sort timesection: Infinite sequence of stopping times 
on D

Interpretation of elements of sort event: Non-negligible sequence of subsets of D

Pair(N �, Q)

A B r

N

K

A s

Pair

Pair

LSKEnc

LPKEnc
{N, �{�N �, Q�}s

A,K�}r
AB

Tree structure of



Atomic Formulas

• acts 
• is either generates or receives or sends
• Q does the corresponding action on section τ in session i doing as much 

parsing as indicated by t
• Sec, KeySec

• A is a list of honest names〈A, B, C...〉 for Sec and KeySec to be not 
false. 

• ν is either honest nonce or honest key.
• Sec (indistinguishability) means that agents other than those listed in A 

together with the adversary, based on their combined view until τ cannot 
distinguish ν from another nonce (or key) generated independently from 
the protocol, even if we give them the bit string corresponding to t

• KeySec (key usability) means that agents other than those listed in A 
together with the adversary, based on their combined view until τ cannot 
break the security game (CCA-2) against key K even if we give them the 
bit string corresponding to t



Formulas

• = 
• on bitstrings: equality of sequences of random variables up to negligible 

sets.
• on bittrees: labels on internal nodes agree, the leaves are equal up to 

negl, except the random seed.
• But:

• ⊑

• subterm
• e.g.:

• < 
• τ is earlier than τ’ on all traces 

• Formulas:



Axioms 

• Axioms about the partial ordering of τ

• Term axioms resulting e.g.                      and 
expressing what we surely know about the 
behavior of bit strings: eg. 

• Axioms about secrecy: further examples:

• Axioms about secrecy implying authentication

• Induction axiom



• 4. How it works



Roles

• E.g. NSL

• With our syntax:



Agreement and Authentication

• E.g. NSL from the responder’s view:

• This is what we want to prove

• Where

• Foll is an abbreviation meaning that an initial section of the 
trace in question was executed (maybe to the end) with the 
given values.



Proof through secrecy 1

• First we show that nonces (or keys) are not corrupted throughout 
the protocol. That is (reminder):

• Formally:

• C expresses that ν was generated by the agents in A and intended for 
communication among them

• Notice that τ is the same for the send action and for the Secrecy 
predicates.

• The formula expresses that ν remains a secret of the agents in A

• Does not work.

• We need:



Proof through secrecy 2
• Again:

• Formally:

• In NSL: A = 〈A,B〉

• C expresses that N was generated by A or B

• C’ expresses that u is a list of nonces generated by A or B



Proof steps

• First show

• For each            send actions  of A and B, we have to show 
that                      for all u’ implies                        
for all u.  

• Send actions of Init:

• Send actions of Resp:  

• Once SecSend is proven, agreement and auth.



Good news

• Works! 

• We can actually prove protocols

• So far: NSL, symmetric NS, Otway-Rees

• (by hand, not too difficult)



Bad news

• We lied. 

• The axioms are not quite sound



Correcting soundness

• Encryption implying authentication e.g. for public key

• Not sound.

• Sound:

• Because of this, all predicates have to be redefined on non-
negligible subsets

•



More good news

• About Soundness: 
• With the correction, soundness holds if 

• the encryption is CCA-2 (for sym key, we have 
unforgeable and non unforgeable versions) and 

• if length of pairing and encryption depend only on the 
length of the inputs

• About Subsets:
• For properties that are preserved under restriction 

to subsets and unions, you don’t have to consider sets 
in the proof. That is, you can use unsound axioms to 
derive sound result.



Conclusions

• We motivated and built a first-order system:
• Computationally sound

• Relies only on facts that we can surely know 

• Simple, but is capable of proving protocols

• Proof works by proving secrecy inductively

• Adjustable

• E.g.                 can be added if we know that the pairing and nonces 
are such 

• If we want to allow such a type-flaw attack, we don’t include this in the 
axioms. 

• If we want to allow assigned name attacks (honest names can depend on 
other things), then we have to remove some axioms.



Further Work

• Should be easy: allowing corrupted long-term keys

• Dynamic corruption - should not be difficult

• Composability conditions


