
Secrecy-Oriented, Computationally
Sound First-Order Logical Analysis

of Cryptographic Protocols

Gergei Bana (ENS Cachan)
with Koji Hasebe (University of Tsukuba),

Mitsuhiro Okada (Keio University)

Computational and Symbolic Analysis

Traditionally, two ways of looking at and
analyzing cryptographic protocols

Symbolic
Uses high level formal language
Amenable to automatization
Treated encryption as perfect, black box operation
Accuracy is unclear as neglects probability, complexity

Computational
More detailed description using probabilities and complexity
Proofs by hand (reductions)
More difficult
More accurate

Trying to link since 2000 (Abadi Rogaway)

Success of Symbolic Analysis
Needham Schroeder protocol

Man in the middle attack:
Possible to find an attack purely symbolically

Treating encryption as perfect black box

B thinks he is communicating with A
(authentication fails)

M learns N2 which was meant to be a secret of
A and B (secrecy fails)

Searching for and eliminating the possibility of symbolic
attacks is a good thing

Computational View
Computational execution is probabilistic polinomial time.

Sequence of random processes indexed by security parameter η.

Negligible function:
f(η): for any n natural, there is an η0 such that whenever η > η0, f(η)
< 1/ ηn.

Adversary:
An adversary is successful if it can do bad things with non-negligible
probability:

Security proofs rely on the assumption that certain operations
(e.g. computing logarithm) are infeasible

Proof by reduction

Encryption is not perfect
CCA2 security: the function is neglibible in η

)

Ways of Soundness
Aim: Symbolic analysis provide computational guarantees
By now long history, active adversaries in two groups:

Two-world view
Symbolic and computational executions are formalized separately as well as
security properties
Explicitly formalized what the adversary can do (eg. decrypt if he has the key)
Soundness: Try to prove that no successful symbolic (Dolev-Yao) attacker implies
no successful computational attacker.
Such are

Reactive Simulatability of M. Backes, B. Pfitzmann, M. Waidner
D. Micciancio, B. Warinschi, V. Cortier (mapping lemma)
V. Cortier, H. Comon-Lundh (soundness of observational equivalence)

Logical view
Only computational execution, no explicit formal reasoning about adversary.
Logical theory axiomatizes the relevant properties of cryptographic primitives.
Security properties are directly proven from computationally sound axioms and
derivation rules (I.e. works directly in the computational model)

Computational Protocol Compositional Logic of Stanford (John Mitchell’s group)
The proof system presented here

Plan

• 1. Parsing and limitations of two-world view

• 2. Build a first-order system from scratch

• 3. Summary of what we built

• 4. How it works

• 1. Parsing and limitations of two-world view

Parsing and adversarial capabilities

Computational soundness and parsing
Two-world view: No successful symbolic adversary implies no
successful computational

In the soundness proof, to each computational trace, you have to
create a symbolic (trace lifting)
Symbolic expressions that are different but have the same
computational interpretation cause problems
Limited soundness theorems

E.g.
E.g. {N} = {N’} may happen computationally; problems with key forging

Or, type-flaw attacks depend on things like〈n,Q〉= N

In such cases, trace-lifting fails.

Such equalities must be included in adversarial capabilities
Noone has been able to do this

R
K

R’
K’

Two type-flaw attacks on NSL
Reminder:

Using 〈n,Q〉= N with two parallel sessions
Take a Q agent name such that for any value N, there is an n with 〈n,Q〉= N

Q is not honest agent

Assigned name attack: Honest name may also be bad.

In Dolev-Yao framework, such possibilities have to be explicitely included in
adversarial capabilities

3. A →	 	 	 B
 Q catches {N2}B

 1. Q →	 	 	 B
 ↓ B generates N

 2. Q ←	 	 	 B
 Q computes n and N2=〈n,Q〉

{N2}B

{N2}B = {n,Q}B

{n,N,B}Q

Unforgeability and symmetric NS

Symmetric Needham Schroeder protocol

Clearly, if encryption can be forged, for example, using another key,
A has no way to know that the message in step 6 came from B.

In A symbolic execution, if the adversary sends a message of the
form {N4}K’ , A will halt, but computationally not necessarily.

Q →	 	 	 A　 → B　
{n}K’ = {m}K {m-1}K

Key Cycles

Two-world soundness theorems only work when
for protocols that do not admit key cycles.

So, first by symbolic analysis, show:
There is no successful symbolic attacker
There cannot be key cycles.

If symbolically there are no key cycles, does that mean
there aren’t computationally?

Probably, when you have unarbitrary parsing.
Otherwise?

Also: a protocol that admits key cycle, may still
be secure.

• 2. Build a first-order system from scratch

Aims

• For agreement, authentication and secrecy for protocols
using long term public keys, long term shared keys and
session keys.

• Derive security properties with a first order theory
from what we surely know in the computational world
• I.e. instead of listing what the adversary may do, list what he surely

cannot spoil.
• If e.g. the pairing is such that〈n,Q〉= N can be ruled out, then we

can use 〈n,Q〉≠ N

• No need for additional assumption on key cycles
• Intuitive (proof should follow intuition)
• Keep it as simple as possible
• But, can prove protocols (done: NSL, symmetric NS,

Otway-Rees all for unbounded sessions)

What we need 1
We need be able to talk about traces, what agents sent, received, and when honestly
created new things in some session

Here we want to mean that the agent parsed the received and sent messages
according to how the term indicates.

For comparing just bit strings corresponding to the terms, we will include the
following notation:

So means a parsed term, where as ... means the bit string (more
precisely, the sequence of random variables of bit strings)

So we surely know e.g.: For N1, N2, A1, A2, r1, r2 honest:

Honest items behave differently, so we need different types for honest things.

We also need subterm relation to talk about sent and receive information.

What we need 2
So far: types for honest things, pairing, encryption, parsed and not parsed terms,
generate, send, receive, equality, subterm predicates

We also want secrecy and key usability:

N is indistinguishable from another nonce generated independently of the protocol for
anyone outside A1, A2, ..., An

K can be securely used by A1, A2,..., An.

We want to show secrecy inductively: that no honest send action corrupts important
nonces and keys. That is, something like:

 Send action by honest guy following the protocol

But, instead:

Where means that N is indistinguishable (from independent
nonce) for others until τ even if t is revealed to them. Clearly, we will need axioms
that specify how we can build up t in the second argument. E.g:

What we need 3
So far: types for honest things, pairing, encryption, parsed and not parsed terms,
generate, send, receive, equality, subterm, secrecy and key secrecy (usuability), time
sections

We will need to talk about traces for roles and security properties:

But this is just an abbreviation:

We need to link secrecy and authentication: We need will need something that implies
this in the NSL protocol:

Eg:

• 3. Summary of what we built

Sorts, Function Symbols
Sorts

Infinitely many variables of each sort

Message terms

t: variable of sort bittree, s: bitstring, Q,Q’: names
T: in general sort bittree, but T overline: bitstring
Message terms represent parsed messages, but T overline is
the corresponding bitstring
They are in fact infinite sequences of random variables

Computational Model
The usual probabilistic polynomial time execution, the adversary controlling the
network. For each fixed security parameter, the execution is a stochastic process
with an underlying probability space

Computational structure: Execution together with a non-negligible sequence of
subsets D of the underlying sequence of probability spaces.

Interpretation of elements of sort bitstring: sequences (in the security par) of
random variables on D

Interpretation of elements of sort bittree: Ordered trees with sequences of
random var’s (over D) on the leaves and encryption or paring on the internal
nodes.

Interpretation of elements of sort timesection: Infinite sequence of stopping times
on D

Interpretation of elements of sort event: Non-negligible sequence of subsets of D

Pair(N �, Q)

A B r

N

K

A s

Pair

Pair

LSKEnc

LPKEnc
{N, �{�N �, Q�}s

A,K�}r
AB

Tree structure of

Atomic Formulas

• acts
• is either generates or receives or sends
• Q does the corresponding action on section τ in session i doing as much

parsing as indicated by t
• Sec, KeySec

• A is a list of honest names〈A, B, C...〉 for Sec and KeySec to be not
false.

• ν is either honest nonce or honest key.
• Sec (indistinguishability) means that agents other than those listed in A

together with the adversary, based on their combined view until τ cannot
distinguish ν from another nonce (or key) generated independently from
the protocol, even if we give them the bit string corresponding to t

• KeySec (key usability) means that agents other than those listed in A
together with the adversary, based on their combined view until τ cannot
break the security game (CCA-2) against key K even if we give them the
bit string corresponding to t

Formulas

• =
• on bitstrings: equality of sequences of random variables up to negligible

sets.
• on bittrees: labels on internal nodes agree, the leaves are equal up to

negl, except the random seed.
• But:

• ⊑

• subterm
• e.g.:

• <
• τ is earlier than τ’ on all traces

• Formulas:

Axioms

• Axioms about the partial ordering of τ

• Term axioms resulting e.g. and
expressing what we surely know about the
behavior of bit strings: eg.

• Axioms about secrecy: further examples:

• Axioms about secrecy implying authentication

• Induction axiom

• 4. How it works

Roles

• E.g. NSL

• With our syntax:

Agreement and Authentication

• E.g. NSL from the responder’s view:

• This is what we want to prove

• Where

• Foll is an abbreviation meaning that an initial section of the
trace in question was executed (maybe to the end) with the
given values.

Proof through secrecy 1

• First we show that nonces (or keys) are not corrupted throughout
the protocol. That is (reminder):

• Formally:

• C expresses that ν was generated by the agents in A and intended for
communication among them

• Notice that τ is the same for the send action and for the Secrecy
predicates.

• The formula expresses that ν remains a secret of the agents in A

• Does not work.

• We need:

Proof through secrecy 2
• Again:

• Formally:

• In NSL: A = 〈A,B〉

• C expresses that N was generated by A or B

• C’ expresses that u is a list of nonces generated by A or B

Proof steps

• First show

• For each send actions of A and B, we have to show
that for all u’ implies
for all u.

• Send actions of Init:

• Send actions of Resp:

• Once SecSend is proven, agreement and auth.

Good news

• Works!

• We can actually prove protocols

• So far: NSL, symmetric NS, Otway-Rees

• (by hand, not too difficult)

Bad news

• We lied.

• The axioms are not quite sound

Correcting soundness

• Encryption implying authentication e.g. for public key

• Not sound.

• Sound:

• Because of this, all predicates have to be redefined on non-
negligible subsets

•

More good news

• About Soundness:
• With the correction, soundness holds if

• the encryption is CCA-2 (for sym key, we have
unforgeable and non unforgeable versions) and

• if length of pairing and encryption depend only on the
length of the inputs

• About Subsets:
• For properties that are preserved under restriction

to subsets and unions, you don’t have to consider sets
in the proof. That is, you can use unsound axioms to
derive sound result.

Conclusions

• We motivated and built a first-order system:
• Computationally sound

• Relies only on facts that we can surely know

• Simple, but is capable of proving protocols

• Proof works by proving secrecy inductively

• Adjustable

• E.g. can be added if we know that the pairing and nonces
are such

• If we want to allow such a type-flaw attack, we don’t include this in the
axioms.

• If we want to allow assigned name attacks (honest names can depend on
other things), then we have to remove some axioms.

Further Work

• Should be easy: allowing corrupted long-term keys

• Dynamic corruption - should not be difficult

• Composability conditions

