CADO-NFS, a Number Field Sieve
implementation

P. Gaudry?, A. Kruppa?, F. Morain?,
L. Mullert, E. Thomé!, P. Zimmermann?

! CARAMEL/INRIA/LORIA ; 2 TANC/INRIA/LIX

Apr 27th, 2012

1/37



Plan

Introduction

2 /37



Motivations

Integer factorization (N = pg — find p, q) is a hard problem.

© Pre-1980's: a stumbling block in mathematical computations,
and a challenging problem. Some significant advances in the
1970’s.

© 1978-present: |IF has attracted considerable attention because
of its relevance for cryptography through the RSA
cryptosystem.

3 /37



CADO-NFS: an implementation of NFS

The fastest integer factoring algorithm is the Number Field Sieve.
© Very complicated algorithm. Embarks lots of number theory.
(much more involved than, e.g., the ECM factoring algorithm)
© Very few available implementations. State of the art is at best
bits and pieces from here and there.
CADO project. Write our own code. Joint effort, started in 2007.

© Actively developed. Playground for new ideas.

© Certainly beatable, but contains nice algorithms.

© No refrain to reorganizing the code to (changing) taste every
so often.

CADO-NFS is LGPL, and written (almost) entirely in C. To date,
~ 120 kLOC.

4 /37



Objectives for an NFS program

An NFS program like CADO-NFS can be used for various purposes.
@ « below-NFS-threshold » numbers. Below 120dd, QS is faster.

= intended for routine checking, timings are not the issue.

© Numbers which explore the limitations of the current code.
Do growing sizes, add optimizations.
Ongoing effort. Currently doing 700 bits.

© Record-size numbers. CADO-NFS can’t factor rsa768, but
participating to rsa768 taught us a lot.

Note: CADO-NFS is clearly not an integrated factoring machinery.
CADO-NFS does not include ECM, QS, ...

© No interaction with a user.
© Interface: a collection of programs driven by a main script.

5 /37



Record sizes: crypto in sight

The feasibility limit explored by NFSrecords is used to determine
key sizes for RSA.

© SSL/TLS. CA root certificates are installed by default in
browsers.

© Linux laptop, 2005: 1024b (50%), 2048b (48%), 4096b (2%) ;
© Linux laptop, 2009: 1024b (31%), 2048b (58%), 4096b (10%).

© EMV credit cards (a.k.a. chip and pin).

Most chip public keys are 960b. Some 1024b
(until end of 2009, some had a 896b key).

Factoring experiments: decision-driving data for setting key sizes.

6 /37



Plan

Overview of NFS

7 /37



The GNFS setup

For factoring “general” N, GNFS uses:

© a number field K = Q(«) defined by fa) =0,
for firreducible over Q and degf=d ;

© Another irreducible polynomial g such that fand g have a
common root m mod N (example: g = x—m).

g defines the rational side, f defines the algebraic side.
Choosing fand g is referred to as the polynomial selection step.

General plan: Obtain relations, and combine them to obtain:

X =y* mod N.

8 /37



Relations in NFS

Z[X]
w(l)fx—ﬂn/ \Jb(2):x—>a
Z[m| Zlo]
oW t—t mod N\, 0@ :a—m mod N
2Nz,

Take for example a — bx in Z[x]. Suppose for a moment that:

@ the integer a — bm is smooth: product of factor base primes;
© the algebraic integer a — ba is also a product.

Then we have an multiplicative relation in Z/N7z,. We can hope to
combine many such relations to form a congruence of squares.

R:(al—blm) X oo X (ak—bkm):[],
A:(al—bla)x'--x(ak—bka):D,
©oM(R) = o (R) mod N.

9 /37



Recognizing when a — ba: factors

Major obstruction: Z[a] not a UFD. “Factoring” (a — bar) won't
work too well.

The proper object to look at is the factorization of the principal
ideal generated by (a — ba) in the ring of integers of K.

© Some obstructions (ramifications, who's the maximal order)
must be worked around.

@ Essentially, we want the integer
Normg/q(a — ba) = Res(a — bx, f) = b9fla/b) = F(a, b)

to be smooth. Nothing terribly complicated.

10 / 37



Complexity of NFS

For factoring an integer N, GNFS takes time:
Ln[1/3,(64/9)"/%] = exp (1 + 0(1))(64/9)"/*(log N)'/*(log log N)*/*)

This is sub-exponential.

Note: some special numbers allow for a faster variant NFS, with
complexity

Ln[1/3,(32/9)"/%] = exp (1 + 0(1))(32/9)"/*(log N)'/*(log log N)*/*) .

11 /37



NFS: no panic

NFS might not be the simplest algorithm on earth, but:
© obstructions have been dealt with already long ago. See
literature.
@ the bottom line is simple: everything boils down to
assembly/C/MPI.
Polynomial selection: find f, g;
Sieving: find many a, bs.t. F(a, b) = b%f(a/b) and G(a, b) smooth.

Linear algebra: combine a, b pairs to get a congruence of squares.
(= solve a large sparse linear system over Fs.)

Square root: complete the factorization.

12 /37



Recent progresses

Since RSA-155 (512 bits) in 1999, many improvements.

© Much better polynomial selection (Kleinjung, 2003, 2006).
© Very efficient sieving code (Franke, Kleinjung, 2003-).
© Very efficient cofactorization code (Kleinjung, Kruppa).
More recent state of the art, notably for linear algebra:
© Use block Wiedemann algorithm (BW), at separate locations.
© Use computer grids idle time to do linear algebra.

© Use sequences of unbalanced length in BW.

13 /37



Plan

Polynomial selection

14 / 37



Polynomial selection

Asymptotic analysis of NFS gives formulae for:

© asymptotic optimal value for deg f (for an n-bit number).

© asymptotic optimal value for the coefficient sizes.

Trivial “base-m" approach:

© Choose the degree d. Choose an integer m =~ N/ (d+1) :
© Write N in base m: N=fymd+ fy_ymd=1+... 4+ f.

© Pick f=fyX+ .-+ fyand g= X—m.

We have an immense freedom in the choice of m = can do better.

15 / 37



Polynomial selection algorithms

Algorithms aim at polynomial pairs (£, g) s.t. F(a, b) = b%fla/b):
@ is comparatively small over the sieving range.
@ is often smooth (f with many roots mod small p).

Several relevant algorithms:

© Kleinjung (2006): handle an immense amount of possible
polynomials, explore promising ones.

© Murphy (1999): rotation and root sieve: (f,g) ~ (f+ A\g, g).

© Kleinjung (2008): modification of the 2006 algorithm.

CADO-NFS has a polyselect program implementing this.

» polynomial root finding mod small p;
» knapsack-like problem solving;

> sieving for good A; could use GPUs.

16 / 37



Plan

Sieving

17 / 37



Sieving: a very old tool

In order to find (a, b) pairs for which F(a, b) is smooth:

© For all small primes p (or prime powers) ;

18 / 37



Sieving: a very old tool

In order to find (a, b) pairs for which F(a, b) is smooth:

© For all small primes p (or prime powers) ;

@ for all roots r of fmod p, pick (ag, by) s.t. ag = rby mod p ;

18 / 37



Sieving: a very old tool

In order to find (a, b) pairs for which F(a, b) is smooth:

© For all small primes p (or prime powers) ;
e for all roots r of fmod p, pick (ag, by) s.t. ap = rby mod p ;
e for all (u,v), mark (a9 + pu, by + pv) as being divisible by p.

Keep (a, b) pairs which have been marked most.

Do this on both sides (fand g). Deciding in which order in subtle.

Note: NFS computation time is mostly spent on sieving.

18 / 37



Sieving: describing work

Lemma. For coprime (a, b),
© v,(F(a, b)) > 1iff (a: b) is a zero of Fin PL(F,).
Example: f=3x* + x+ 1.
F(a,b) = 3a> + ab+ b* =0 mod 3 if either:
© (a:b)=(2:1)in PL(F3): IOW, a—2b=0 mod 3.

© (a:b)=(1:0)inPY(F3): IOW, b=0 mod 3: “projective”.

© More generally, (a, b)'s such that v,(F(a, b)) > k can be
described as a set of points in P1(Z/p‘7).

Starting point of sieving: compute the factor bases (both sides)
© Set of (p’, r), where r < 2p’ encodes a point in P*(Z/p!7,).
© Algebraic side harder than rational, but done offline anyway.
» root finding mod p;

» handle projective roots;
» handle powers. Some guaranteed headaches.

19 /37



Typical problems with sieving

There are several practical shortcomings.

© The (a, b) space to be explored is large, but predicting in
advance the yield for a range of (a, b) pairs is hard ;

© The yield drops as (a, b) grow ;

© => diminishing returns.

Lattice sieving to the rescue.

Old idea (1993), but superiority demonstrated only after 2000.

20 /37



Lattice sieving

“special-q": prime ideal ¢ = (q,a — 1).

How do we describe the set of pairs (a, b) such that q| (a — ba) ?
Answer: points in the lattice £ = (ey = (r, 1), 1 = (g,0)).

We would like to examine e.g. 23! of these points. Which ones ?

» Bad idea: {(a, b) = iey + jer} for (i, j) € [-2'6,216[x][0, 2!5].
a gets then too large: ~ g x 215.

» Better: reduced basis (e, €]) and (i, ) in the same range.
If the reduced basis is nice, we expect a~ b~ 2'0,/q.

21 /37



Lattice sieving

“special-q": prime ideal q = (g, — r).
How do we describe the set of pairs (a, b) such that q | (a — ba) ?
Answer: points in the lattice £ = (ey = (r,1), e1 = (g,0)).
We would like to examine e.g. 23! of these points. Which ones ?
» Bad idea: {(a, b) = iey + jer} for (i,j) € [-2'6,216[x][0, 215].
a gets then too large: ~ g x 21°.
» Better: reduced basis (¢, €]) and (/) in the same range.
If the reduced basis is nice, we expect a = b ~ 216\/?].
Benefits

@ A factor of g is forced in the norm ;
® for g's of comparable size, we have comparable yields ;
© immense choice of special-q’s ;

© smaller sieve areas.
21 /37



Lattice sieving: how do we sieve ?

Given a special-q and (%) = <30 bo), we consider the lattice
€ al b1

Lq={(a,b) =ie)+ je }.

All work is done on the (i,j) plane. A rectangle R;; is fixed.

The workplan for sieving for this special q is:

© Describe locations to sieve in the (i,j) plane.
@ Sieve "small” factor base primes.

© Sieve “large” factor base primes.

© Do this for both sides.

® Locations which have been marked most need to be factored.

22 /37



Sieve locations in the (i, /) plane.

Let p be a prime (power) coprime to q. We have a homography:

o B'@pz) — P'Z/pn),
q- (i:j) — (a:b)=(iagp+ jai : ibo + jb1).

Starting from a description S, of the (a, b) sieve locations:

{(i.), p| F(a,b)} = {(i,)), (a: b) € S, C P1(Z/pz)},
= {(7:)): ha(i: j) € Sp},
={(i.)), (i+]) € hg' Sp}.

© This change of basis must be redone for each g.
@ relatively cheap because independent of the sieve area size.

> Need to compute inverses modulo factor base primes.

23 /37



Fine points of sieving

For a given q, explore some R ;) of size e.g. 231,
© Divide into areas matching L1 cache size (64kb typically), to
be processed one by one.
© Small primes hit often: once per row.

© Larger primes hit rarely. Rather maintain a “schedule” list to
circumvent cache misses: “bucket sieving”.

© Use multithreading.
CADO-NFS implements this in las.

» Hot spots in assembly; Use vector instructions when relevant;

Optimize some data structures to reduce memory footprint;

POSIX threads:

>
» Strive to eliminate badly predictable branches;

>

» Factoring good (a, b)'s: Use p+ 1 and special-purpose ECM.

24 /37



Plan

Linear algebra

25 /37



Fast forward

The output of the sieve process is a set of relations.
These undergo:

© Filtering: making a small relation set from a large one ;

© After filtering, linear system solving.

Algorithmically, nothing very new in filtering since Cavallar (2000).
Implementation in CADO-NFS:

» Hash tables all over the place;
» Minimum spanning trees to help decision;

» Has supported MPI distribution at some point;

Does the job so far.

26 / 37



Linear algebra

Must combine relations so that they consist of only squares.

This rewrites as a linear system. (everything reduces to lin. alg. !)

© matrix M: a relation appears in each row. Coefficients are
multiplicities of prime factors (and ideals). Most are zero.

@ A vector v such that
vM =0 mod 2

indicates which relations to combine in order to obtain only
squares (even multiplicities).

Equivalently, we rephrase this as a linear system Mv =0
(transposing M).

Note: linear algebra mod 2 differs much from linear algebra over C.

27 /37



IF5 is exact, and positive characteristic

(some PDE example) (a factoring matrix)

28 / 37



Linear algebra

We have an N x N matrix M. We want to solve Mw = 0.
The matrix M is large, (very) sparse, and defined over [Fy.

Because of sparsity, we want a black box algorithm.

vl\/l><v

There are several sparse linear algebra algorithms suitable for Fs:

® Lanczos ;

® Wiedemann ; others.

These early suggestions are unsuitable. Bit arithmetic: slow. Also,
failure probability 1/#F, = 1/2 is not so tempting...

29 /37



Block algorithms

Block algorithms apply the black box to e.g. n = 64 vectors at a
time. (n is prescribed by the hardware)

© Block Lanczos (BL). -~ 076
© Block Wiedemann (BW).

black box applications ;

nn,, n’ times (n’ small).

BL is appealing if one has a large cluster.

BW is preferred since it offers distribution opportunities.

30 / 37



Block Wiedemann: workplan

@ Initial setup. Choose starting blocks of vectors x and y.

© Sequence computation. Want L first terms of the sequence:

a; = x" Mky.

© Computing one term after another, this boils down to our
black box v+ Myv.

© This computation can be split into several independent parts
(which all know M).

© Compute some sort of minimal polynomial.

@ Build solution as:
degf

v= Z M- yf,.

k=0
© Again, this uses the black box.
© Can be split into many independent parts (which all know M).

31 /37



Linear algebra: size matters

The matrix M itself is soon out of reach for core storage.
© 2005: kilobit SNFS: 64M rows/cols, 10G non-zero coeffs.
About 30GB.
© 2010: 768b GNFS: 192M rows/cols, 27G non-zero coeffs.
About 75GB.
Computing M x v is also a lot of work. Try to use many processors
if possible.

This is a classical HPC concern.

@ Split the matrix into equal parts.

© Exploit high-bandwith channels: shared memory, infiniband
network.

32 /37



Features of the CADO-NFS BW code

CADO-NFS has a complete BW implementation.
Sequence computation:

» POSIX threads;

» MPI — implementation agnostic. Some optimized collectives;
» Some kind of “sparse binary BLAS” used. Assembly;

» (Stem of) capability to switch to other base field;

» Mostly C, some C++. Wrapper script in Perl.

Minimal polynomial computation using a quasi-linear algorithm.

> recursive structure;
» arithmetic on matrices of polynomials over Fs.

» very old code, needs rework.

33 /37



Plan

Square root

34 /37



The square root step

Our congruence of squares actually comes as:
(al—blm) X -X(ak—bkm) = <Z>((al—b1a)><- c e X (ak—bka)) mod N.

© Both sides are known to factor with even multiplicities: they
are squares.

© BUT computing the square root is in fact non trivial (esp. on
algebraic side).

CADO-NFS implements quasi-linear algorithms for this

» Newton lifting.
» Arithmetic modulo fixed degree polynomials.
» Suitable for current records.

© Alternative algorithm (waives a number theoretic assumption):
» Explicit CRT.
» Can be distributed with MPI.

There exists a more advanced square root algorithm for this step

(Montgomery), but it needs more software support.
35 /37



Plan

Conclusion

36 / 37



Conclusion and further work

Many points would be interesting to improve.

® Polyselect with GPUs (but msieve does this already).
Lattice siever needs cleanup, and some obvious improvements.

Filtering currently can't handle record sizes.

©

©

© Linear algebra sparse BLAS can be improved.

® Linear algebra minimal polynomial step must be reworked.
©

The whole chain could be adapted to discrete log
computation.

37 /37



	Introduction
	Overview of NFS
	Polynomial selection
	Sieving
	Linear algebra
	Square root
	Conclusion

