
On detection methods and analysis of malware

Jean-Yves Marion
LORIA

jeudi 1 novembre 2012

On detection methods and analysis of malware

1. A quick tour of Malware detection methods

2. Behavioral analysis using model-checking

3. Cryptographic function identification

jeudi 1 novembre 2012

What is a malware ?

jeudi 1 novembre 2012

What is a malware ?

• A malware is a program which has malicious intentions

jeudi 1 novembre 2012

What is a malware ?

• A malware is a program which has malicious intentions

• A malware is a virus, a worm, a botnet ...

jeudi 1 novembre 2012

What is a malware ?

• A malware is a program which has malicious intentions

• A malware is a virus, a worm, a botnet ...

• Giving a mathematical definition is difficult

jeudi 1 novembre 2012

What is a malware ?

• A malware is a program which has malicious intentions

• A malware is a virus, a worm, a botnet ...

• Giving a mathematical definition is difficult

- How to protect a system ?

jeudi 1 novembre 2012

What is a malware ?

• A malware is a program which has malicious intentions

• A malware is a virus, a worm, a botnet ...

• Giving a mathematical definition is difficult

- How to protect a system ?

- How to detect a malware ?

jeudi 1 novembre 2012

What is a malware ?

• A malware is a program which has malicious intentions

• A malware is a virus, a worm, a botnet ...

• Giving a mathematical definition is difficult

- How to protect a system ?

- How to detect a malware ?

Pourquoi tracer ? (1/3)

Définition : l’analyse binaire, c’est

• de l’analyse de programme

• où le programme est inconnu

=⇒ on a juste un blob binaire
Raisons :

• sauts indirects
=⇒ flot de contrôle indécidable

• lectures/écritures indirectes
=⇒ flot de données indécidable

• code auto-modifiant
=⇒ syntaxe indécidable

3 / 32

jeudi 1 novembre 2012

Code protection

1.Obfuscation

2.Cryptography

3.Self-modification

4.Anti-analysis tricks

Detection is hard because malware are protected

Win32.Swizzor Packer
displayed by IDA

!"#$%&'()*(+'#,-.(/0(1-0#"'2.3#-

445"36#,7*(8&9&":&;&-<3-&&"3-<(#0('2%=2"&(62>?&":(0#"(@,''3&:(; A&&6B&>)C4C(

jeudi 1 novembre 2012

A common protection scheme for malware

layer 1

Slide à remplacer ?

jeudi 1 novembre 2012

A common protection scheme for malware

layer 1

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

Slide à remplacer ?

jeudi 1 novembre 2012

A common protection scheme for malware

layer 1

Decrypt

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

Slide à remplacer ?

jeudi 1 novembre 2012

A common protection scheme for malware

layer 1

Decrypt

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

layer 2

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

Slide à remplacer ?

jeudi 1 novembre 2012

A common protection scheme for malware

layer 1

DecryptDecrypt

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

layer 2

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

Slide à remplacer ?

jeudi 1 novembre 2012

A common protection scheme for malware

layer 1

Decrypt

..........

DecryptDecrypt

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

layer 2

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

Slide à remplacer ?

jeudi 1 novembre 2012

A common protection scheme for malware

layer 1

Decrypt

..........

DecryptDecrypt

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

layer 2

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

Slide à remplacer ?

jeudi 1 novembre 2012

A common protection scheme for malware

layer 1

payload

Decrypt

..........

DecryptDecrypt

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

layer 2

!""#$ %&'()%**"+,

!"#$%&'()%*+,%"-%&'$%.(/0$#%/"1$%23%2)%4"".3%5
!"

Slide à remplacer ?

jeudi 1 novembre 2012

Packer protections
Exemple (4/5)

• hostname packé avec Themida

Different code
waves with their

relations

Themida packer

Yoda packer

jeudi 1 novembre 2012

Malware detection by string scanning

Pros :
• Accuracy: low rate of false positive

➡ programs which are not malware are not detected

• Efficient : Fast string matching algorithm

➡ Karp & Rabin, Knuth, Morris & Pratt, Boyer & Moore

• Signature is a regular expression denoting a sequence of bytes

jeudi 1 novembre 2012

Malware detection by string scanning

• Signature are quasi-manually constructed

• Signatures are not robust to malware protections

➡ Mutations, Code obfuscations, ...

• Static analysis of binary is very difficult

Pros :

Cons :

• Accuracy: low rate of false positive

➡ programs which are not malware are not detected

• Efficient : Fast string matching algorithm

➡ Karp & Rabin, Knuth, Morris & Pratt, Boyer & Moore

• Signature is a regular expression denoting a sequence of bytes

jeudi 1 novembre 2012

Detection by integrity check

• Identify a file using a hash function

Hash functionFiles Hash numbers

a

b

numerical
fingerprints

jeudi 1 novembre 2012

Detection by integrity check

• Identify a file using a hash function

Cons :
• File systems are updated, so numerical fingerprints change
• Difficult to maintain in practice
• Files may change with the same numerical fingerprint (due to hash fct)

Hash functionFiles Hash numbers

a

b

numerical
fingerprints

jeudi 1 novembre 2012

Behavioral detection

• Identification of a sequence of actions :
• System calls or library calls, Network interactions, ...

jeudi 1 novembre 2012

Behavioral detection

• Identification of a sequence of actions :
• System calls or library calls, Network interactions, ...

• Two approaches

jeudi 1 novembre 2012

Behavioral detection

• Identification of a sequence of actions :
• System calls or library calls, Network interactions, ...

• Two approaches

• Anomaly Detection from a set of normal behaviours

jeudi 1 novembre 2012

Behavioral detection

• Identification of a sequence of actions :
• System calls or library calls, Network interactions, ...

• Two approaches

• Anomaly Detection from a set of normal behaviours

• Detection from a set of potential malicious behaviours

jeudi 1 novembre 2012

Behavioral detection

• Identification of a sequence of actions :
• System calls or library calls, Network interactions, ...

Cons :
• Difficult to have a set of normal or bad behaviours
• Difficult to maintain in practice
• Functional obfuscations :

• Two approaches

• Anomaly Detection from a set of normal behaviours

• Detection from a set of potential malicious behaviours

jeudi 1 novembre 2012

Behavioral detection

• Identification of a sequence of actions :
• System calls or library calls, Network interactions, ...

Cons :
• Difficult to have a set of normal or bad behaviours
• Difficult to maintain in practice
• Functional obfuscations :

h=fopen(C:\windows\sys.dll);fwrite(«test»,h)

h=createFile(C:\windows\sys.dll);writeFile(h,«test»)

Two ways of writing into a file

✓ Several possible
implementations of
a high level action

• Two approaches

• Anomaly Detection from a set of normal behaviours

• Detection from a set of potential malicious behaviours

jeudi 1 novembre 2012

!"#"$%&'(&$)"%&%$*+,

• !"#$%#&%&$'()*$+',#-$%"#$#,.)/.%0'($,#-&0'(&$'1$.1'-#2#(%0'(#3$.(%04,0-/&$5-'3/+%&$.(3$2.*$
6#(#-.%#$3011#-#(%$-#&/)%&$1-'2$%"#$5.*0(6$,#-&0'(&7

• !"0&$&%/3*$1'+/$'($89:;4)0<#$='(4%"#41)*>$3#%#+%0'($'1$2.)0+0'/&$?#".,0'-7$8#(+#1'-%"@$0%$
2.*$('%$?#$-#)#,.(%$%'$%"#$&+.((0(6$+.5.?0)0%0#&$'1$&.03$5-'3/+%&7

• !"0&$&#%$'1 $ %#&%&$ 0&$)020%#3$.(3$3'#&$('% $+',#-$ %*50+.) $2#%"'3&$1'-$2.)A.-#$%'$?#+'2#$
5#-&0&%#(%$.+-'&&$-#?''%&$=&/+"$.&$%"#$.330(6$'-$2'3010+.%0'($'1$-#60&%-*$<#*&>7

• B.+"$%#&%$5-'6-.2$A.&$-/($1'-$.$)020%#3$.2'/(%$'1$%02#$=%*50+.))*@$'(#$20(/%#>7

-.%$&/.%*0$%

1.,0'22./%

!"0&$&#-0#&$'1$%#&%&$0(+)/3#&$&0C$<#*)'660(6$%#+"(0D/#&@$%"-##$'1$A"0+"$+.($?#$-/($1-'2$/&#-$&5.+#$
.(3$3'$('%$-#D/0-#$.320(0&%-.%0'($5-0,0)#6#&7$E%"#-&$-#D/0-#$%"#$)'.30(6$'1$.$<#-(#)$3-0,#-@$.(3$A#-#$
'-060(.))*$3#,#)'5#3$?*$!"'2.&$;.?'('$FGHI$1'-$%"#$5/-5'&#$'1$%#&%0(6$.(%04-''%<0%$5-'6-.2&7

• FJI$%#&%KLGM$!"#$N#%O.A9(5/%P.%.=>$K:9$A.&$0(%-'3/+#3$0($Q0(3'A&$R:$%'$.++#&&$0(5/%$
3#,0+#&$.%$.$)'A$)#,#)@$2.0()*$1'-$P0-#+%R4#(.?)#3$6.2#&7$!"0&$1/(+%0'($A.&$3'+/2#(%#3$0($
HLLS$'($%"#$T0-#A.))$U#.<$!#&%#-$FVI$A#?$&0%#7

• FJI$%#&%KLH$0(&%.))&$.$Q8WXBYZEKOPWUU$A0(3'A&$"''<$%'$+.5%/-#$.))$<#*?'.-3$#,#(%&$
=+'(%-.-*$%'$%"#$Q8WXBYZEKOP$"''<@$0%$3'#&$('%$0([#+%$.$PUU$0(%'$'%"#-$5-'+#&&#&>7

• FJI $ %#&%KL\M $!"# $N#%K&*(+X#*;%.%#=> $ K:9 $.))'A& $ D/#-*0(6 $ %"# $ &%.%# $ '1 $ %"# $ <#*?'.-3$
.&*(+"-'('/&)*7

• FKI$%#&%KGG$"''<&$%"#$<#*?'.-3$3-0,#-]&$9O^W_^WOBKP$1/(+%0'(7

• FKI$%#&%KGH$"''<&$%"#$<#*?'.-3$3-0,#-]&$9(%#--/5%$;#-,0+#$O#D/#&%7

• FKI $ %#&%KG\$ 0(&%.))& $.$ `+".0(#3a $3#,0+# $3-0,#- $A"0+" $5).+#& $ 0%&#)1 $?#%A##($ %"#$<#*?'.-3$
3-0,#-$.(3$/55#-$)#,#)$0(5/%$3#,0+#$3-0,#-&7

!"#$%#&%&$A#-#$-/($1'-$'(#$20(/%#@$3/-0(6$A"0+"$<#*&$A#-#$#(%#-#37$!"#$'/%5/%$'1$#.+"$&.25)#$
A.&$%"#($+"#+<#37

3/'+*4$&
56#.

$.%$789 $.%$78: $.%$78; $.%$799 $.%$79: $.%$79;

.,.&%b c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

KeN c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

K,0-. c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

Z0%P#1#(3#- c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

B;B! c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

Anti-virus tests against unknown threats
Source : A study of anti-virus response to unknown threats by C. Devine and N. Richaud

(EICAR 2009)

!"#"$%&'(&$)"%&%$*+,

• !"#$%#&%&$'()*$+',#-$%"#$#,.)/.%0'($,#-&0'(&$'1$.1'-#2#(%0'(#3$.(%04,0-/&$5-'3/+%&$.(3$2.*$
6#(#-.%#$3011#-#(%$-#&/)%&$1-'2$%"#$5.*0(6$,#-&0'(&7

• !"0&$&%/3*$1'+/$'($89:;4)0<#$='(4%"#41)*>$3#%#+%0'($'1$2.)0+0'/&$?#".,0'-7$8#(+#1'-%"@$0%$
2.*$('%$?#$-#)#,.(%$%'$%"#$&+.((0(6$+.5.?0)0%0#&$'1$&.03$5-'3/+%&7

• !"0&$&#%$'1 $ %#&%&$ 0&$)020%#3$.(3$3'#&$('% $+',#-$ %*50+.) $2#%"'3&$1'-$2.)A.-#$%'$?#+'2#$
5#-&0&%#(%$.+-'&&$-#?''%&$=&/+"$.&$%"#$.330(6$'-$2'3010+.%0'($'1$-#60&%-*$<#*&>7

• B.+"$%#&%$5-'6-.2$A.&$-/($1'-$.$)020%#3$.2'/(%$'1$%02#$=%*50+.))*@$'(#$20(/%#>7

-.%$&/.%*0$%

1.,0'22./%

!"0&$&#-0#&$'1$%#&%&$0(+)/3#&$&0C$<#*)'660(6$%#+"(0D/#&@$%"-##$'1$A"0+"$+.($?#$-/($1-'2$/&#-$&5.+#$
.(3$3'$('%$-#D/0-#$.320(0&%-.%0'($5-0,0)#6#&7$E%"#-&$-#D/0-#$%"#$)'.30(6$'1$.$<#-(#)$3-0,#-@$.(3$A#-#$
'-060(.))*$3#,#)'5#3$?*$!"'2.&$;.?'('$FGHI$1'-$%"#$5/-5'&#$'1$%#&%0(6$.(%04-''%<0%$5-'6-.2&7

• FJI$%#&%KLGM$!"#$N#%O.A9(5/%P.%.=>$K:9$A.&$0(%-'3/+#3$0($Q0(3'A&$R:$%'$.++#&&$0(5/%$
3#,0+#&$.%$.$)'A$)#,#)@$2.0()*$1'-$P0-#+%R4#(.?)#3$6.2#&7$!"0&$1/(+%0'($A.&$3'+/2#(%#3$0($
HLLS$'($%"#$T0-#A.))$U#.<$!#&%#-$FVI$A#?$&0%#7

• FJI$%#&%KLH$0(&%.))&$.$Q8WXBYZEKOPWUU$A0(3'A&$"''<$%'$+.5%/-#$.))$<#*?'.-3$#,#(%&$
=+'(%-.-*$%'$%"#$Q8WXBYZEKOP$"''<@$0%$3'#&$('%$0([#+%$.$PUU$0(%'$'%"#-$5-'+#&&#&>7

• FJI $ %#&%KL\M $!"# $N#%K&*(+X#*;%.%#=> $ K:9 $.))'A& $ D/#-*0(6 $ %"# $ &%.%# $ '1 $ %"# $ <#*?'.-3$
.&*(+"-'('/&)*7

• FKI$%#&%KGG$"''<&$%"#$<#*?'.-3$3-0,#-]&$9O^W_^WOBKP$1/(+%0'(7

• FKI$%#&%KGH$"''<&$%"#$<#*?'.-3$3-0,#-]&$9(%#--/5%$;#-,0+#$O#D/#&%7

• FKI $ %#&%KG\$ 0(&%.))& $.$ `+".0(#3a $3#,0+# $3-0,#- $A"0+" $5).+#& $ 0%&#)1 $?#%A##($ %"#$<#*?'.-3$
3-0,#-$.(3$/55#-$)#,#)$0(5/%$3#,0+#$3-0,#-&7

!"#$%#&%&$A#-#$-/($1'-$'(#$20(/%#@$3/-0(6$A"0+"$<#*&$A#-#$#(%#-#37$!"#$'/%5/%$'1$#.+"$&.25)#$
A.&$%"#($+"#+<#37

3/'+*4$&
56#.

$.%$789 $.%$78: $.%$78; $.%$799 $.%$79: $.%$79;

.,.&%b c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

KeN c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

K,0-. c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

Z0%P#1#(3#- c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

B;B! c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$<#*&$
)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

c'$.)#-%d$
<#*&$)'66#37

jeudi 1 novembre 2012

!"#$%&%'%()

*"'"+#,%-.%/.0-#,12,345.63%(3075.#%.8".#"5#"&

!"#$%"&'%#$&($)*&+,%-.$-&$/#$-#.-#+$01.$/1.#+$&2$-"#'*$)&),31*'-45$'2$&*+#*$-&$%&6#*$-"#$31*7#.-$
'2.-133#+$/1.#+$1.$)&..'/3#8$9,*-"#*:&*#5$-':#$%&2.-*1'2-.$0&,3+$2&-$"16#$133&0#+$-#.-'27$-"#$(,33$
127#$&($133$161'31/3#$12-';6',.$)*&7*1:.8$<&2.'+#*'27$2&$*#%#2-$12+$(*##34$161'31/3#$.-,+4$&($12-';
6'*,.$:1*=#-$."1*#$%&,3+$/#$(&,2+5$0#$*#3'#+$&2$-"*##$+#2&:'21-&*.$-&$:1=#$&,*$+#%'.'&2>

• ?&023&1+$.-1-'.-'%.$(&*$-"#$@2-';6'*,.$.#%-'&2$&($-"#$A&(-)#+'1$0#/.'-#$BCD5

• E&&73#$2,:/#*$&($*#.,3-.$(&*$-"#$F,#*4$G+&023&1+$B21:#$&($12-';6'*,.$HDI5

• !"#$12-';6'*,.$6#2+&*$"1+$-&$)*&6'+#$1$(*##$#613,1-'&2$6#*.'&2$&($"'.$)*&+,%-8

@2$'2'-'13$3'.-$&($-"'*-4;#'7"-$)*&+,%-.$01.$*#-*'#6#+$(*&:$J'*,.-&-13$BKD8$!"'.$3'.-$01.$-"#2$21**&0#+$
+&02$-&$-0#36#$)*&+,%-.$%"&.#2$(&*$.,/.#F,#2-$-#.-'275$12+$1*#$."&02$1.$(&33&0.>

93%&4+#.-07" :"35,%-.#"5#"&

161.-L$)*&(#..'&213$#+'-'&2 M8K8NOPQ

@JE$R2-#*2#-$A#%,*'-4 K8S8OSS

@6'*1$T*#:',:$A#%,*'-4$A,'-# K8O8S8OUO

V'-?#(#2+#*$!&-13$A#%,*'-4$OSSP NO8S8NN8O

WAW!$A:1*-$A#%,*'-4$XYZ?[O\ [8S8QCO8S

9;A#%,*#$R2-#*2#-$A#%,*'-4$OSSP P8SS$/,'3+$NMP

]1.)#*.=4$@2-';J'*,.$9&*$^'2+&0.$^&*=.-1-'&2. Q8S8[8K[C

_%@(##$!&-13$T*&-#%-'&2$OSSP N[8S8ONK

Y&*-&2$[QS$J#*.'&2$O8S O8U8S8U

T12+1$R2-#*2#-$A#%,*'-4$OSSP NM8SS8SS

A&)"&.$@2-';J'*,.$`$<3'#2-$9'*#0133 C8Q8O

!*#2+$_'%*&$R2-#*2#-$A#%,*'-4$T*& NC8S8N[SU

;08'".<=.>,5#.%/."20'40#"&.0-#,12,345.63%(3075

@$^'2+&0. HT&)#*1-'27 $.4.-#:$X#273'." $6#*.'&2\ $0'-" $AT[$ '2-#7*1-#+$01. $ '2.-133#+ $ '2.'+# 1
J_01*# $ 6'*-,13 $:1%"'2#8 $!0& $ 1%%&,2-. $0#*# $ %*#1-#+5 $ &2# $0'-" $ 1+:'2'.-*1-'6# $ *'7"-. $ X21:#+$
G3&%131+:'2I\5$12+$12&-"#*$0'-"&,-$XG3&%13,.#*I\8$Y&$1++'-'&213$)1-%"#.$&*$%&2('7,*1-'&2$%"127#.$
0#*#$1))3'#+8$@$.21)."&-$&($-"#$6'*-,13$:1%"'2#$.-1-#$01.$-"#2$:1+#5$0"'%"$.#*6#+$1.$-"#$'2.-133$
/1.#$1.$0#33$1.$-"#$%&2-*&3$.,/a#%-8

!"#25$#1%"$12-';6'*,.$01.$'2.-133#+$1.$1$3#1($&($-"#$.21)."&-$:1+#$)*#6'&,.345$12+$(,334$,)+1-#+$-&$
-"# $ 31-#.- $ 6#*.'&2 $&($ -"# $.'721-,*#.8 $@(-#* $ -"'. $.-#)5 $ 1%%#.. $ -& $ -"# $ '2-#*2#- $01. $ *#:&6#+ $/4$
.0'-%"'27 $ -"# $2#-0&*= $1+1)-#* $ (*&:$ GY@!I $ -& $ Gb&.-;&234I $:&+#5 $ -& $#2.,*# $ -"# $ -#.-. $%&,3+ $/#$
#)&+,%#+$'+#2-'%1334$(&*$133$12-';6'*,.$)*&7*1:.8$R-$ '.$':)&*-12-$-&$2&-#$-"#$12-';6'*,.$)*&7*1:.$

Versions of anti-virus software

jeudi 1 novembre 2012

jeudi 1 novembre 2012

2012

jeudi 1 novembre 2012

On detection methods and analysis of malware

1. A quick tour of Malware detection methods

2. Behavioral analysis using model-checking

3. Cryptographic function identification

Joint work with Philippe Beaucamps and Isabelle Gnaedig
Esorics 2012

jeudi 1 novembre 2012

Allaple excerpt

8 / 22

void scan_d i r (const char∗ d i r) {
HANDLE hFind ;
char szFilename [2048] ;
WIN32_FIND_DATA f indData ;

s p r i n t f (szFilename , "%s \\%s " , d i r , "∗.∗ ") ;
hFind = F i n dF i r s t F i l e (szFilename , &f indData) ;
i f (hFind == INVALID_HANDLE_VALUE) return ;
do {

s p r i n t f (szFilename , "%s \\%s " , d i r ,
f indData . cFileName) ;

i f (f indData . dwF i l eA t t r i bu t es
& FILE_ATTRIBUTE_DIRECTORY)

scan_d i r (szFilename) ;
else { . . . }

} while (F indNextF i le (hFind , &f indData)) ;
FindClose (hFind) ;

}

void main (i n t argc , char∗∗ argv) {
HANDLE hIcmp ;
const char∗ icmpData = " Babcdef . . . " ;
char r ep l y [1 28] ;

/∗ Behavior pa t t e r n : p ing of a remote host ∗/
hIcmp = IcmpCreateFi le () ;
f o r (i n t i = 0 ; i < 2 ; ++ i)
IcmpSendEcho(hIcmp , ipaddr , icmpData , 10 ,

NULL, rep ly , 128 , 1000) ;
IcmpCloseHandle (hIcmp) ;

/∗ Behavior pa t t e r n : Netb ios connect ion ∗/
SOCKET s = socket (AF_INET , SOCK_STREAM, 0) ;
s t r u c t sockaddr_ in s in =

{AF_INET , ipaddr , htons (139) /∗ Netb ios ∗ / } ;
i f (connect (s , (SOCKADDR∗)&sin , s i zeo f (s in))

!= SOCKET_ERROR) {
. . .

}

/∗ Behavior pa t t e r n : scanning of l o c a l d r i ves ∗/
char bu f f e r [1024] ;
Ge tLog ica lDr i veSt r ings (s i zeo f (b u f f e r) , b u f f e r) ;
const char∗ szDr ive = bu f f e r ;
wh i le (∗szDr ive) {

i f (GetDriveType (szDr ive) == DRIVE_FIXED)
scan_d i r (szDr ive) ;

szDr ive += s t r l e n (szDr ive) + 1 ;
}

}

Example execution trace of library calls:
...GetLogicalDriveStrings.GetDriveType.FindFirstFile.FindFirstFile.

FindNextFile...

Low level Traces

Allaple.a excerpt

jeudi 1 novembre 2012

Allaple excerpt

8 / 22

void scan_d i r (const char∗ d i r) {
HANDLE hFind ;
char szFilename [2048] ;
WIN32_FIND_DATA f indData ;

s p r i n t f (szFilename , "%s \\%s " , d i r , "∗.∗ ") ;
hFind = F i n dF i r s t F i l e (szFilename , &f indData) ;
i f (hFind == INVALID_HANDLE_VALUE) return ;
do {

s p r i n t f (szFilename , "%s \\%s " , d i r ,
f indData . cFileName) ;

i f (f indData . dwF i l eA t t r i bu t es
& FILE_ATTRIBUTE_DIRECTORY)

scan_d i r (szFilename) ;
else { . . . }

} while (F indNextF i le (hFind , &f indData)) ;
FindClose (hFind) ;

}

void main (i n t argc , char∗∗ argv) {
HANDLE hIcmp ;
const char∗ icmpData = " Babcdef . . . " ;
char r ep l y [1 28] ;

/∗ Behavior pa t t e r n : p ing of a remote host ∗/
hIcmp = IcmpCreateFi le () ;
f o r (i n t i = 0 ; i < 2 ; ++ i)
IcmpSendEcho(hIcmp , ipaddr , icmpData , 10 ,

NULL, rep ly , 128 , 1000) ;
IcmpCloseHandle (hIcmp) ;

/∗ Behavior pa t t e r n : Netb ios connect ion ∗/
SOCKET s = socket (AF_INET , SOCK_STREAM, 0) ;
s t r u c t sockaddr_ in s in =

{AF_INET , ipaddr , htons (139) /∗ Netb ios ∗ / } ;
i f (connect (s , (SOCKADDR∗)&sin , s i zeo f (s in))

!= SOCKET_ERROR) {
. . .

}

/∗ Behavior pa t t e r n : scanning of l o c a l d r i ves ∗/
char bu f f e r [1024] ;
Ge tLog ica lDr i veSt r ings (s i zeo f (b u f f e r) , b u f f e r) ;
const char∗ szDr ive = bu f f e r ;
wh i le (∗szDr ive) {

i f (GetDriveType (szDr ive) == DRIVE_FIXED)
scan_d i r (szDr ive) ;

szDr ive += s t r l e n (szDr ive) + 1 ;
}

}

Example execution trace of library calls:
...GetLogicalDriveStrings.GetDriveType.FindFirstFile.FindFirstFile.

FindNextFile...

Low level Traces

Trace are finite terms:
FindfirstFile(x,y).FindNextFile(z,x). FindNextFile(z,x).FindClose(z).
IcmpSendEcho(u,...).IcmpSendEcho(u,...).IcmpCloseHandle(u)....

Allaple.a excerpt

jeudi 1 novembre 2012

Program behaviour

• The program behaviour is given by sequences of system calls

- represented by a set L of terms

• How to collect traces ?

jeudi 1 novembre 2012

Program behaviour

• The program behaviour is given by sequences of system calls

- represented by a set L of terms

• How to collect traces ?
Static analysis

• A good approximation of a set of execution traces

• Good detection coverage

• But static analysis is difficult to perform

jeudi 1 novembre 2012

Program behaviour

• The program behaviour is given by sequences of system calls

- represented by a set L of terms

• How to collect traces ?

Dynamic analysis

• Collect an execution trace (with use PIN)

• Monitor program interactions (sys calls, network calls, ...)

• What is the detection coverage ? partial behaviours ...

Static analysis

• A good approximation of a set of execution traces

• Good detection coverage

• But static analysis is difficult to perform

jeudi 1 novembre 2012

Trace abstraction

jeudi 1 novembre 2012

- Several ways to send a ping :

Trace abstraction

jeudi 1 novembre 2012

- Several ways to send a ping :

1. Call the socket function with the parameter IPPROTO_ICMP and then call the
sendto function with ICMP_ECHOREQ

Trace abstraction

jeudi 1 novembre 2012

- Several ways to send a ping :

1. Call the socket function with the parameter IPPROTO_ICMP and then call the
sendto function with ICMP_ECHOREQ

2. Call the IcmpSendEcho function

Trace abstraction

jeudi 1 novembre 2012

- Several ways to send a ping :

1. Call the socket function with the parameter IPPROTO_ICMP and then call the
sendto function with ICMP_ECHOREQ

2. Call the IcmpSendEcho function

- Abstract the ping behaviour by a predicate PING(x) to represent a ping on socket x

Trace abstraction

jeudi 1 novembre 2012

- Several ways to send a ping :

1. Call the socket function with the parameter IPPROTO_ICMP and then call the
sendto function with ICMP_ECHOREQ

2. Call the IcmpSendEcho function

- Abstract the ping behaviour by a predicate PING(x) to represent a ping on socket x

Trace abstraction

-Define an abstraction relation R as a term rewrite system

- We abstract/rewrite a pattern on a trace only once

socket(x,u).sendto(x,v,y) socket(x,u).sendto(x,v,y).PING(x)

IcmpSendEcho(x) IcmpSendEcho(x).PING(x)

jeudi 1 novembre 2012

- Several ways to send a ping :

1. Call the socket function with the parameter IPPROTO_ICMP and then call the
sendto function with ICMP_ECHOREQ

2. Call the IcmpSendEcho function

- Abstract the ping behaviour by a predicate PING(x) to represent a ping on socket x

Trace abstraction

-Define an abstraction relation R as a term rewrite system

- We abstract/rewrite a pattern on a trace only once

socket(x,u).sendto(x,v,y) socket(x,u).sendto(x,v,y).PING(x)

IcmpSendEcho(x) IcmpSendEcho(x).PING(x)

IcmpSendEcho(u,...).IcmpSendEcho(u,...).IcmpCloseHandle(u)
 IcmpSendEcho(u,...).PING(u).IcmpSendEcho(u,...).IcmpCloseHandle(u)
 IcmpSendEcho(u,...).PING(u).IcmpSendEcho(u,...). PING(u).IcmpCloseHandle(u)

-As a result, we have a terminating and rational abstraction system

- We keep the LHS to deal with complex patterns

jeudi 1 novembre 2012

Computation of Abstract Trace language

Abstract a trace language L by reducing it w.r.t. an abstraction relation R

Theorem :
Let R be a rational abstraction relation
and L be a trace language.
 If L is regular then so is L↓

L → . . . → L↓

- Based on tree automata methods

Related work

- Martignoni et al. 2008: multi-layered abstraction on a single trace

jeudi 1 novembre 2012

Behaviour patterns

• A behavior pattern is a First-order LTL (Linear temporal logic) formula

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

Let L be the behaviour of the program P. If a trace t of L satisfies a behaviour
pattern , then P has the behaviour described byϕϕ

Quantification domain is the finite set of paramerter names

jeudi 1 novembre 2012

Behaviour patterns

• A behavior pattern is a First-order LTL (Linear temporal logic) formula

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

• Traces satisfying a FO-LTL formula are :

Let L be the behaviour of the program P. If a trace t of L satisfies a behaviour
pattern , then P has the behaviour described byϕϕ

Quantification domain is the finite set of paramerter names

jeudi 1 novembre 2012

Malicious behavior detection

Theorem : Let L be a finite set of finite traces. Let L↓ be a trace correctly
abstracted from a rational abstraction relation R. Let be a FOLTL formula.

Deciding whether deciding L↓ is infected by is linear-time computable.

ϕ
ϕ

It works also when L is regular (and infinite), see the paper for details

Related work

-Jacob et al., 2009: low-level functionalities, exponential-time detection

jeudi 1 novembre 2012

A C Keylogger or a sms message leaking app

CHAPITRE 2. ANALYSE COMPORTEMENTALE STATIQUE 29

Ainsi, dans cette section, nous prenons l’exemple d’un programme capturant
les caractères entrés au clavier (afin d’en extraire notamment mots de passe,
informations bancaires et autres données sensibles). L’analyse sous IDA de sa
forme compilée permet de déterminer la structure de la pile et le type des
variables la composant. Par simplicité, nous travaillons sur son code source :

1 LRESULT WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {
2 RAWINPUTDEVICE rid;
3 RAWINPUT *buffer;
4 UINT dwSize;
5 USHORT uKey;
6

7 switch(msg) {
8 case WM_CREATE: /* Creation de la fenetre principale */
9 /* Initialisation de la capture du clavier */

10 rid.usUsagePage = 0x01;
11 rid.usUsage = 0x06;
12 rid.dwFlags = RIDEV_INPUTSINK;
13 rid.hwndTarget = hwnd;
14 RegisterRawInputDevices(&rid, 1, sizeof(RAWINPUTDEVICE));
15 break;
16

17 case WM_INPUT: /* Evenement clavier, souris, etc. */
18 /* Quelle taille pour buffer ? */
19 GetRawInputData((HRAWINPUT) lParam, RID_INPUT, NULL,
20 &dwSize, sizeof(RAWINPUTHEADER));
21 buffer = (RAWINPUT*) malloc(dwSize);
22 /* Recuperer dans buffer les donnees capturees */
23 if(!GetRawInputData((HRAWINPUT) lParam, RID_INPUT, buffer,
24 &dwSize, sizeof(RAWINPUTHEADER)))
25 break;
26 if(buffer->header.dwType == RIM_TYPEKEYBOARD &&
27 buffer->data.keyboard.Message == WM_KEYDOWN) {
28 printf("%c\n", buffer->data.keyboard.VKey);
29 }
30 free(buffer);
31 break;
32 }
33 /* ... */
34 }

Ce code contient sept variables : hwnd, msg, wParam, lParam, rid, buffer
et dwSize. Les types HWND et HRAWINPUT représentent des entiers. Les types
WPARAM et LPARAM sont interprétés différement selon le contexte : ici, seule
la variable lParam est utilisée et représente un entier dans le contexte de son
utilisation. Les types RAWINPUTDEVICE et RAWINPUT sont des structures décrites
ci-après. Seuls les champs nous intéressant ont été conservés.

struct RAWINPUTDEVICE {
int usUsagePage;
int usUsage;

CHAPITRE 3. AUTOMATES DE TRACES 34

9

10

11 public void onReceive(Context context, Intent intent)
12 {
13 Bundle bundle;
14 Object pdus[];
15

16 String from = null;
17 String msg = "";
18 String str = "";
19

20 bundle = intent.getExtras();
21 pdus = (Object[])bundle.get("pdus");
22

23 // Pour chaque message envoye
24 int pdus_len = pdus.length;
25 for(int i = 0; i < pdus_len; i++)
26 {
27 Object pdu = pdus[i];
28 SmsMessage smsmessage = SmsMessage.createFromPdu((byte[])pdu);
29

30 // from = "From:" + smsmessage.getDisplayOriginatingAddress() + ":";
31 StringBuilder sb1 = new StringBuilder("From:");
32 String s1 = smsmessage.getDisplayOriginatingAddress();
33 sb1.append(s1);
34 sb1.append(":");
35 from = sb1.toString();
36

37 // msg = msg + smsmessage.getMessageBody();
38 StringBuilder sb2 = new StringBuilder(msg);
39 String s2 = smsmessage.getMessageBody();
40 sb2.append(s2);
41 msg = sb2.toString();
42 }
43

44 // str = from + msg;
45 StringBuilder sb3 = new StringBuilder(from);
46 sb3.append(msg);
47 str = sb3.toString();
48

49 SmsManager sms_manager = SmsManager.getDefault();
50 for (int i = 0; i < str.length(); i += 160)
51 {
52 String s3 = str.substring(i, i + 160);
53 sms_manager.sendTextMessage(this.number, null, s3, null, null);
54 }
55 }
56 }

On s’intéresse spécifiquement à l’exécution de la fonction onReceive. Lorsque cette

jeudi 1 novembre 2012

An information leaking behaviour pattern
7

information leak abstract behavior is then defined by:

M := ∃x.λsteal (x) ∧ ¬λinval (x) Uλleak (x) .

By looking at several malware samples, like keyloggers, sms
message leaking applications or personal information stealing
mobile applications, we consider the following definitions of
the three behavior patterns involved:

• λsteal (x) describes a keystroke capture functionality1

and, on Android mobile phones, the retrieving of the
IMEI number:

λsteal(x) := GetAsyncKeyState(x)∨
(RegisterDev(KBD, SINK)⊙GetInputData(x, INPUT))∨
(∃y. SetWindowsHookEx(y, WH_KEYBOARD_LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))∨

∃y.TelephonyManager_getDeviceId(x, y).

• λleak(x) describes a network send functionality under
Windows or Android:

λleak(x) := ∃y, z. sendto(z, x, y)∨
∃y, z. (connect (z, y) ∧ ¬close(z)U send(z, x))∨

∃c, s.HttpURLConnection_getOutputStream(s, c)∧
¬OutputStream_close(s)UOutputStream_write(s, x).

• λinval (x) describes the overwriting or freeing of x:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y)∨
GetInputData(x, INPUT) ∨ . . .

Finally, the captured data is usually not leaked in its raw form,
so we take into account transformations of this data via the
behavior pattern λdepends (x, y) which denotes a dependency
of x on y. For instance, x may be a string representation of
y, or x may be an encryption or an encoding of y:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)∨
∃sb. StringBuilder_append(sb, y)⊙ SB_toString(x, sb).

Then, in order to account for one such transformation of
the stolen data, we adapt the definition of the information leak
abstract behavior:

M := ∃x, y.λsteal (x)∧ ¬λinval (x) Uλdepends (y, x)∧
¬λinval (y) Uλleak (y) .

Of course, we can adapt this formula to allow more than
one data transformation.

VIII. EXPERIMENTS

We tested the validity of our approach on several types
of malware: keyloggers, sms message leaking, mobile phone
personal information stealing. Our goal is to detect the infor-
mation leak behavior M defined in the previous section. In
order to perform behavior pattern abstraction and behavior
detection in the presence of data, we use the CADP tool-
box [27], which allows us to manipulate and model-check
communicating processes written in the LOTOS language.
CADP features a verification tool, evaluator4, which allows
on-the-fly model checking of formulas expressed in the MCL

1We assume the execution of a hook f with argument x is represented in
a trace by an action HookCalled (f, x).

language, a fragment of the modal mu-calculus extended with
data variables, whose FOLTL logic used in this paper is a
subset.

We first represent the program set of traces as a CADP pro-
cess. For this, we use a program control flow graph obtained by
static analysis (see [21] and [23], [24]). Regularity of the set of
traces is enforced by limiting recursion and inlining function
calls, an approximation that can be deemed safe with respect
to the abstract behaviors to detect. Note that there are two
shortcomings to regular approximation. First, approximation
of conditional branches by nondeterministic branches may
result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations
during dataflow analysis can result in false negatives. However,
this does not significantly impact our detection results.

Now, as expressed in Theorem 3, detection of the in-
formation leak abstract behavior M can be broken down
into two steps: abstracting the set of traces L by computing
Rλinval

��
R≤2(L)

�
and then verifying whether an abstracted

trace matches the abstract behavior formula.
So, we can simulate the abstraction step in CADP and

delegate the verification step to the evaluator4 module. For
this, we represent the set of traces L of a given program by
a system of communicating processes expressed in LOTOS,
with a particular gate on which communications correspond to
library calls. Then, computation of R≤2(L) is performed by
synchronization with another LOTOS process which simulates
the transducer realizing the abstraction. Moreover, the relation
Rλinval

� is rational and can also be simulated by process
synchronization in CADP.

For each malware sample we tested, we success-
fully run evaluator4 on the resulting process, representing
Rλinval

� (R≤2(L)), in order to detect the information leak
abstract behavior defined in the previous section.

Also, in our previous work [21], we implemented our
string rewriting based abstraction technique and we defined
several behavior patterns and abstract behaviors, by looking at
malicious execution traces. Then, we tested it on samples of
malicious programs collected using a honeypot2 and identified
using Kaspersky Antivirus. These samples belonged to known
malware families, among which Allaple, Virut, Agent, Rbot,
Afcore and Mimail. Most of them were successfully matched
to our malware database.

IX. CONCLUSION

We presented an original approach for detecting high-level
behaviors in programs, describing combinations of function-
alities and defined by first-order temporal logic formulas.
Behavior patterns, expressing concrete realizations of the
functionalities, are also defined by first-order temporal logic
formulas. Abstraction of these functionalities in program traces
is performed by term rewriting. Validation of the abstracted
traces with respect to some high-level behavior is performed
using usual model checking techniques. In order to address
the general intractability of the problem of constructing the
set of normal forms of traces for a given program, we have

2The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr.

7

information leak abstract behavior is then defined by:

M := ∃x.λsteal (x) ∧ ¬λinval (x) Uλleak (x) .

By looking at several malware samples, like keyloggers, sms
message leaking applications or personal information stealing
mobile applications, we consider the following definitions of
the three behavior patterns involved:

• λsteal (x) describes a keystroke capture functionality1

and, on Android mobile phones, the retrieving of the
IMEI number:

λsteal(x) := GetAsyncKeyState(x)∨
(RegisterDev(KBD, SINK)⊙GetInputData(x, INPUT))∨
(∃y. SetWindowsHookEx(y, WH_KEYBOARD_LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))∨

∃y.TelephonyManager_getDeviceId(x, y).

• λleak(x) describes a network send functionality under
Windows or Android:

λleak(x) := ∃y, z. sendto(z, x, y)∨
∃y, z. (connect (z, y) ∧ ¬close(z)U send(z, x))∨

∃c, s.HttpURLConnection_getOutputStream(s, c)∧
¬OutputStream_close(s)UOutputStream_write(s, x).

• λinval (x) describes the overwriting or freeing of x:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y)∨
GetInputData(x, INPUT) ∨ . . .

Finally, the captured data is usually not leaked in its raw form,
so we take into account transformations of this data via the
behavior pattern λdepends (x, y) which denotes a dependency
of x on y. For instance, x may be a string representation of
y, or x may be an encryption or an encoding of y:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)∨
∃sb. StringBuilder_append(sb, y)⊙ SB_toString(x, sb).

Then, in order to account for one such transformation of
the stolen data, we adapt the definition of the information leak
abstract behavior:

M := ∃x, y.λsteal (x)∧ ¬λinval (x) Uλdepends (y, x)∧
¬λinval (y) Uλleak (y) .

Of course, we can adapt this formula to allow more than
one data transformation.

VIII. EXPERIMENTS

We tested the validity of our approach on several types
of malware: keyloggers, sms message leaking, mobile phone
personal information stealing. Our goal is to detect the infor-
mation leak behavior M defined in the previous section. In
order to perform behavior pattern abstraction and behavior
detection in the presence of data, we use the CADP tool-
box [27], which allows us to manipulate and model-check
communicating processes written in the LOTOS language.
CADP features a verification tool, evaluator4, which allows
on-the-fly model checking of formulas expressed in the MCL

1We assume the execution of a hook f with argument x is represented in
a trace by an action HookCalled (f, x).

language, a fragment of the modal mu-calculus extended with
data variables, whose FOLTL logic used in this paper is a
subset.

We first represent the program set of traces as a CADP pro-
cess. For this, we use a program control flow graph obtained by
static analysis (see [21] and [23], [24]). Regularity of the set of
traces is enforced by limiting recursion and inlining function
calls, an approximation that can be deemed safe with respect
to the abstract behaviors to detect. Note that there are two
shortcomings to regular approximation. First, approximation
of conditional branches by nondeterministic branches may
result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations
during dataflow analysis can result in false negatives. However,
this does not significantly impact our detection results.

Now, as expressed in Theorem 3, detection of the in-
formation leak abstract behavior M can be broken down
into two steps: abstracting the set of traces L by computing
Rλinval

��
R≤2(L)

�
and then verifying whether an abstracted

trace matches the abstract behavior formula.
So, we can simulate the abstraction step in CADP and

delegate the verification step to the evaluator4 module. For
this, we represent the set of traces L of a given program by
a system of communicating processes expressed in LOTOS,
with a particular gate on which communications correspond to
library calls. Then, computation of R≤2(L) is performed by
synchronization with another LOTOS process which simulates
the transducer realizing the abstraction. Moreover, the relation
Rλinval

� is rational and can also be simulated by process
synchronization in CADP.

For each malware sample we tested, we success-
fully run evaluator4 on the resulting process, representing
Rλinval

� (R≤2(L)), in order to detect the information leak
abstract behavior defined in the previous section.

Also, in our previous work [21], we implemented our
string rewriting based abstraction technique and we defined
several behavior patterns and abstract behaviors, by looking at
malicious execution traces. Then, we tested it on samples of
malicious programs collected using a honeypot2 and identified
using Kaspersky Antivirus. These samples belonged to known
malware families, among which Allaple, Virut, Agent, Rbot,
Afcore and Mimail. Most of them were successfully matched
to our malware database.

IX. CONCLUSION

We presented an original approach for detecting high-level
behaviors in programs, describing combinations of function-
alities and defined by first-order temporal logic formulas.
Behavior patterns, expressing concrete realizations of the
functionalities, are also defined by first-order temporal logic
formulas. Abstraction of these functionalities in program traces
is performed by term rewriting. Validation of the abstracted
traces with respect to some high-level behavior is performed
using usual model checking techniques. In order to address
the general intractability of the problem of constructing the
set of normal forms of traces for a given program, we have

2The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr.

7

information leak abstract behavior is then defined by:

M := ∃x.λsteal (x) ∧ ¬λinval (x) Uλleak (x) .

By looking at several malware samples, like keyloggers, sms
message leaking applications or personal information stealing
mobile applications, we consider the following definitions of
the three behavior patterns involved:

• λsteal (x) describes a keystroke capture functionality1

and, on Android mobile phones, the retrieving of the
IMEI number:

λsteal(x) := GetAsyncKeyState(x)∨
(RegisterDev(KBD, SINK)⊙GetInputData(x, INPUT))∨
(∃y. SetWindowsHookEx(y, WH_KEYBOARD_LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))∨

∃y.TelephonyManager_getDeviceId(x, y).

• λleak(x) describes a network send functionality under
Windows or Android:

λleak(x) := ∃y, z. sendto(z, x, y)∨
∃y, z. (connect (z, y) ∧ ¬close(z)U send(z, x))∨

∃c, s.HttpURLConnection_getOutputStream(s, c)∧
¬OutputStream_close(s)UOutputStream_write(s, x).

• λinval (x) describes the overwriting or freeing of x:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y)∨
GetInputData(x, INPUT) ∨ . . .

Finally, the captured data is usually not leaked in its raw form,
so we take into account transformations of this data via the
behavior pattern λdepends (x, y) which denotes a dependency
of x on y. For instance, x may be a string representation of
y, or x may be an encryption or an encoding of y:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)∨
∃sb. StringBuilder_append(sb, y)⊙ SB_toString(x, sb).

Then, in order to account for one such transformation of
the stolen data, we adapt the definition of the information leak
abstract behavior:

M := ∃x, y.λsteal (x)∧ ¬λinval (x) Uλdepends (y, x)∧
¬λinval (y) Uλleak (y) .

Of course, we can adapt this formula to allow more than
one data transformation.

VIII. EXPERIMENTS

We tested the validity of our approach on several types
of malware: keyloggers, sms message leaking, mobile phone
personal information stealing. Our goal is to detect the infor-
mation leak behavior M defined in the previous section. In
order to perform behavior pattern abstraction and behavior
detection in the presence of data, we use the CADP tool-
box [27], which allows us to manipulate and model-check
communicating processes written in the LOTOS language.
CADP features a verification tool, evaluator4, which allows
on-the-fly model checking of formulas expressed in the MCL

1We assume the execution of a hook f with argument x is represented in
a trace by an action HookCalled (f, x).

language, a fragment of the modal mu-calculus extended with
data variables, whose FOLTL logic used in this paper is a
subset.

We first represent the program set of traces as a CADP pro-
cess. For this, we use a program control flow graph obtained by
static analysis (see [21] and [23], [24]). Regularity of the set of
traces is enforced by limiting recursion and inlining function
calls, an approximation that can be deemed safe with respect
to the abstract behaviors to detect. Note that there are two
shortcomings to regular approximation. First, approximation
of conditional branches by nondeterministic branches may
result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations
during dataflow analysis can result in false negatives. However,
this does not significantly impact our detection results.

Now, as expressed in Theorem 3, detection of the in-
formation leak abstract behavior M can be broken down
into two steps: abstracting the set of traces L by computing
Rλinval

��
R≤2(L)

�
and then verifying whether an abstracted

trace matches the abstract behavior formula.
So, we can simulate the abstraction step in CADP and

delegate the verification step to the evaluator4 module. For
this, we represent the set of traces L of a given program by
a system of communicating processes expressed in LOTOS,
with a particular gate on which communications correspond to
library calls. Then, computation of R≤2(L) is performed by
synchronization with another LOTOS process which simulates
the transducer realizing the abstraction. Moreover, the relation
Rλinval

� is rational and can also be simulated by process
synchronization in CADP.

For each malware sample we tested, we success-
fully run evaluator4 on the resulting process, representing
Rλinval

� (R≤2(L)), in order to detect the information leak
abstract behavior defined in the previous section.

Also, in our previous work [21], we implemented our
string rewriting based abstraction technique and we defined
several behavior patterns and abstract behaviors, by looking at
malicious execution traces. Then, we tested it on samples of
malicious programs collected using a honeypot2 and identified
using Kaspersky Antivirus. These samples belonged to known
malware families, among which Allaple, Virut, Agent, Rbot,
Afcore and Mimail. Most of them were successfully matched
to our malware database.

IX. CONCLUSION

We presented an original approach for detecting high-level
behaviors in programs, describing combinations of function-
alities and defined by first-order temporal logic formulas.
Behavior patterns, expressing concrete realizations of the
functionalities, are also defined by first-order temporal logic
formulas. Abstraction of these functionalities in program traces
is performed by term rewriting. Validation of the abstracted
traces with respect to some high-level behavior is performed
using usual model checking techniques. In order to address
the general intractability of the problem of constructing the
set of normal forms of traces for a given program, we have

2The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr.

7

information leak abstract behavior is then defined by:

M := ∃x.λsteal (x) ∧ ¬λinval (x) Uλleak (x) .

By looking at several malware samples, like keyloggers, sms
message leaking applications or personal information stealing
mobile applications, we consider the following definitions of
the three behavior patterns involved:

• λsteal (x) describes a keystroke capture functionality1

and, on Android mobile phones, the retrieving of the
IMEI number:

λsteal(x) := GetAsyncKeyState(x)∨
(RegisterDev(KBD, SINK)⊙GetInputData(x, INPUT))∨
(∃y. SetWindowsHookEx(y, WH_KEYBOARD_LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))∨

∃y.TelephonyManager_getDeviceId(x, y).

• λleak(x) describes a network send functionality under
Windows or Android:

λleak(x) := ∃y, z. sendto(z, x, y)∨
∃y, z. (connect (z, y) ∧ ¬close(z)U send(z, x))∨

∃c, s.HttpURLConnection_getOutputStream(s, c)∧
¬OutputStream_close(s)UOutputStream_write(s, x).

• λinval (x) describes the overwriting or freeing of x:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y)∨
GetInputData(x, INPUT) ∨ . . .

Finally, the captured data is usually not leaked in its raw form,
so we take into account transformations of this data via the
behavior pattern λdepends (x, y) which denotes a dependency
of x on y. For instance, x may be a string representation of
y, or x may be an encryption or an encoding of y:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)∨
∃sb. StringBuilder_append(sb, y)⊙ SB_toString(x, sb).

Then, in order to account for one such transformation of
the stolen data, we adapt the definition of the information leak
abstract behavior:

M := ∃x, y.λsteal (x)∧ ¬λinval (x) Uλdepends (y, x)∧
¬λinval (y) Uλleak (y) .

Of course, we can adapt this formula to allow more than
one data transformation.

VIII. EXPERIMENTS

We tested the validity of our approach on several types
of malware: keyloggers, sms message leaking, mobile phone
personal information stealing. Our goal is to detect the infor-
mation leak behavior M defined in the previous section. In
order to perform behavior pattern abstraction and behavior
detection in the presence of data, we use the CADP tool-
box [27], which allows us to manipulate and model-check
communicating processes written in the LOTOS language.
CADP features a verification tool, evaluator4, which allows
on-the-fly model checking of formulas expressed in the MCL

1We assume the execution of a hook f with argument x is represented in
a trace by an action HookCalled (f, x).

language, a fragment of the modal mu-calculus extended with
data variables, whose FOLTL logic used in this paper is a
subset.

We first represent the program set of traces as a CADP pro-
cess. For this, we use a program control flow graph obtained by
static analysis (see [21] and [23], [24]). Regularity of the set of
traces is enforced by limiting recursion and inlining function
calls, an approximation that can be deemed safe with respect
to the abstract behaviors to detect. Note that there are two
shortcomings to regular approximation. First, approximation
of conditional branches by nondeterministic branches may
result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations
during dataflow analysis can result in false negatives. However,
this does not significantly impact our detection results.

Now, as expressed in Theorem 3, detection of the in-
formation leak abstract behavior M can be broken down
into two steps: abstracting the set of traces L by computing
Rλinval

��
R≤2(L)

�
and then verifying whether an abstracted

trace matches the abstract behavior formula.
So, we can simulate the abstraction step in CADP and

delegate the verification step to the evaluator4 module. For
this, we represent the set of traces L of a given program by
a system of communicating processes expressed in LOTOS,
with a particular gate on which communications correspond to
library calls. Then, computation of R≤2(L) is performed by
synchronization with another LOTOS process which simulates
the transducer realizing the abstraction. Moreover, the relation
Rλinval

� is rational and can also be simulated by process
synchronization in CADP.

For each malware sample we tested, we success-
fully run evaluator4 on the resulting process, representing
Rλinval

� (R≤2(L)), in order to detect the information leak
abstract behavior defined in the previous section.

Also, in our previous work [21], we implemented our
string rewriting based abstraction technique and we defined
several behavior patterns and abstract behaviors, by looking at
malicious execution traces. Then, we tested it on samples of
malicious programs collected using a honeypot2 and identified
using Kaspersky Antivirus. These samples belonged to known
malware families, among which Allaple, Virut, Agent, Rbot,
Afcore and Mimail. Most of them were successfully matched
to our malware database.

IX. CONCLUSION

We presented an original approach for detecting high-level
behaviors in programs, describing combinations of function-
alities and defined by first-order temporal logic formulas.
Behavior patterns, expressing concrete realizations of the
functionalities, are also defined by first-order temporal logic
formulas. Abstraction of these functionalities in program traces
is performed by term rewriting. Validation of the abstracted
traces with respect to some high-level behavior is performed
using usual model checking techniques. In order to address
the general intractability of the problem of constructing the
set of normal forms of traces for a given program, we have

2The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr.

Keystroke or IMEI capture Network send functionality

invalidated

jeudi 1 novembre 2012

Tool chains

program source
or

Traces

Model Checker
FOLTL-Behavior

patterns
FO-LTL

Related work
Kinder & al, Detecting malicious code by model
checking

Abstraction

Test on detection of keyloggers

7 Information Leak Behaviors

Abstraction can be applied to detection of generic threats, and in particular to
detection of sensitive information leak. Such a leak can be decomposed into two
steps: capturing sensitive information and sending this information to an exoge-
nous location. The captured data can be keystrokes, passwords or data read from
a sensitive network location, while the exogenous location can be the network, a
removable device, etc. Thus, we define a behavior pattern λsteal (x), representing
the capture of some sensitive data x, and a behavior pattern λleak (x), represent-
ing the transmission of x to an exogenous location. Moreover, since the captured
data must not be invalidated before being leaked, we define a behavior pattern
λinval (x), which represents such an invalidation.

Finally, the captured data is usually not leaked in its raw form, so we take
into account transformations of this data via the behavior pattern λdepends (x, y)
which denotes a dependency of x on y. For instance, x may be a string repre-
sentation of y, or x may be an encryption or an encoding of y.

Then, in order to account for one such transformation of the stolen data, we
define the information leak abstract behavior:

M := ∃x, y.λsteal (x) ∧ ¬λinval (x) Uλdepends (y, x) ∧Uλleak (y) .

We consider the following definitions of the four behavior patterns involved,
after looking at several malware samples, like keyloggers, sms message leaking
applications or personal information stealing mobile applications:

– keystroke capture functionality:

λsteal(x) := GetAsyncKeyState(x) ∨ (RegisterDev(KBD, SINK) ⊙ GetInputData(x, INPUT))

∨(∃y. SetWindowsHookEx(y, WH KEYBOARD LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))

∨∃y.TelephonyManager getDeviceId(x, y).

– network send functionality:

λleak(x) := ∃y, z. sendto(z, x, y) ∨ ∃y, z. (connect (z, y) ∧ ¬close(z)U send(z, x))∨
∃c, s.HttpURLConnection getOutputStream(s, c)∧
¬OutputStream close(s)UOutputStream write(s, x).

– overwriting or freeing:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y) ∨ GetInputData(x, INPUT) ∨ . . .

– dependences:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)
∨∃sb. StringBuilder append(sb, y) ⊙ SB toString(x, sb).

jeudi 1 novembre 2012

Abstraction based analysis of malware behaviours

Our works

- Expressing set of traces by regular term languages

- Compute an higher level semantics of traces by term rewriting systems

- Keeping track of parameters

- Expressing Behavior patterns by FOLTL formulas

- Testing whether abstract traces satisfy a FOLTL-behavior pattern

- Efficient analysis (quasi-linear time wrt several restrictions)

jeudi 1 novembre 2012

A problem is the absence of high level abstraction to
structure and understand obfuscated codes.

• Detection of malicious behaviors:

• Our approach is difficult and time-consumming to implement in practice.

• We made only a few experiments Allaple, Rbot, Afcore, Mimail and a
keylogger for Android

• Detection of malware is a difficult subject and a reason is

A first conclusion

Related works

-Preda, Christodorescu & al 2007: A semantics based approach to malware detection.

-Chrisdorescu, Song & al 2007 : Semantics-Aware Malware detection

jeudi 1 novembre 2012

On detection methods and analyis of malware

1. A quick tour of Malware detection methods

2. Behavioral analysis using model-checking

3. Cryptographic function identification

Joint	
 work	
 with	
 Joan	
 Calvet,	
 José	
 M.	
 Fernandez
CCS	
 2012

jeudi 1 novembre 2012

Cryptographic function identification in obfuscated
binary programs

Joint	
 work	
 with	
 Joan	
 Calvet,	
 José	
 M.	
 Fernandez
CCS	
 2012

jeudi 1 novembre 2012

Identification of cryptographic functions

Example:	

Win32.Sality.AA

Not	
 far	
 from	
 the	
 program	

entry	
 point,	
 in	
 the	
 first	

code	
 layer…

Decryp'on	
 ?

No API Calls and function names

jeudi 1 novembre 2012

Is	
 the	
 previous	
 code	
 by	
 any	
 chance	
 an	
 implementaIon	
 of	
 a	

known	
 cryptographic	
 algorithm	
 ?

jeudi 1 novembre 2012

Is	
 the	
 previous	
 code	
 by	
 any	
 chance	
 an	
 implementaIon	
 of	
 a	

known	
 cryptographic	
 algorithm	
 ?

Answering	
 this	
 quesIon	
 affirmaIvely	
 would	
 provide	
 to	
 the	

analyst	
 a	
 high-­‐level	
 descrip;on	
 of	
 this	
 code,	
 without	

studying	
 it	
 line-­‐by-­‐line!

jeudi 1 novembre 2012

Is	
 the	
 previous	
 code	
 by	
 any	
 chance	
 an	
 implementaIon	
 of	
 a	

known	
 cryptographic	
 algorithm	
 ?

Answering	
 this	
 quesIon	
 affirmaIvely	
 would	
 provide	
 to	
 the	

analyst	
 a	
 high-­‐level	
 descrip;on	
 of	
 this	
 code,	
 without	

studying	
 it	
 line-­‐by-­‐line!

The	
 general	
 quesIons	
 are
•	
 How	
 to	
 determine	
 the	
 meaning	
 of	
 a	
 piece	
 of	
 code	
 ?
•	
 How	
 to	
 determine	
 the	
 meaning	
 of	
 an	
 execuIon	
 trace	
 ?	

What	
 is	
 computed	
 ?

jeudi 1 novembre 2012

The problem

Set of known of
known

cryptographic
functions

S

RC4

AES TEA

Custom ciphers

unknown
program

P

Does P contain any known
functions of S ?

jeudi 1 novembre 2012

The problem

Set of known of
known

cryptographic
functions

S

RC4

AES TEA

Custom ciphers

unknown
program

P

Does P contain any known
functions of S ?

Just from an execution trace

jeudi 1 novembre 2012

The problem

Set of known of
known

cryptographic
functions

S

RC4

AES TEA

Custom ciphers

unknown
program

P

Does P contain any known
functions of S ?

Proving	
 a	
 general	
 seman;c	
 equivalence	
 between	
 a	
 funcIon
	
 	
 	
 	
 of	
 P	
 and	
 one	
 of	
 the	
 S	
 funcIons	
 seems	
 difficult

Just from an execution trace

jeudi 1 novembre 2012

ExisIng	
 approaches

• A	
 common	
 way	
 to	
 locate	
 cryptographic	
 code	
 is	
 to	

calculate	
 the	
 raIo	
 of	
 arithmeIc	
 machine	

instrucIons	
 (ADD,	
 SUB,	
 XOR...).

•When	
 this	
 raIo	
 is	
 superior	
 to	
 a	
 certain	
 threshold,	

it	
 indicates	
 cryptographic	
 code.

30

jeudi 1 novembre 2012

In	
 Our	
 Sality	
 Sample...

31

...	
 every	
 basic	
 block	

looks	
 like	
 those.

jeudi 1 novembre 2012

Our approach

jeudi 1 novembre 2012

Our approach

1.To observe an execution of P

jeudi 1 novembre 2012

Our approach

1.To observe an execution of P

2.To collect input-output values used during this execution, that is a set of (x,y)
such that P(x)=y

jeudi 1 novembre 2012

Our approach

1.To observe an execution of P

2.To collect input-output values used during this execution, that is a set of (x,y)
such that P(x)=y

3.To check if one F, or more function(s), of S satifies F(x)=y

jeudi 1 novembre 2012

Our approach

1.To observe an execution of P

2.To collect input-output values used during this execution, that is a set of (x,y)
such that P(x)=y

3.To check if one F, or more function(s), of S satifies F(x)=y

If yes, we conclude that P behaves as an implementation of F (in the values
(x,y)).

jeudi 1 novembre 2012

Our approach

1.To observe an execution of P

2.To collect input-output values used during this execution, that is a set of (x,y)
such that P(x)=y

3.To check if one F, or more function(s), of S satifies F(x)=y

If yes, we conclude that P behaves as an implementation of F (in the values
(x,y)).

But, roughly (...), in the cryptographic case :

There is a unique (with high probability) cryptographic function K such K(x)=y
where x is a cipehered text, y is the deciphered.

One point should be enough to interpolate a cryptographic function

jeudi 1 novembre 2012

Obfuscation

ImplemenIng	
 this	
 simple	
 reasoning	
 in	
 obfuscated	
 binary	

programs	
 is	
 non	
 trivial…	

	
 …	
 and	
 this	
 is	
 our	
 focus	
 in	
 this	
 project!

jeudi 1 novembre 2012

Obfuscation

ImplemenIng	
 this	
 simple	
 reasoning	
 in	
 obfuscated	
 binary	

programs	
 is	
 non	
 trivial…	

	
 …	
 and	
 this	
 is	
 our	
 focus	
 in	
 this	
 project!

• Where are I/O parameters ?

jeudi 1 novembre 2012

Obfuscation

ImplemenIng	
 this	
 simple	
 reasoning	
 in	
 obfuscated	
 binary	

programs	
 is	
 non	
 trivial…	

	
 …	
 and	
 this	
 is	
 our	
 focus	
 in	
 this	
 project!

• Where are I/O parameters ?

• Where are functions ?

jeudi 1 novembre 2012

Obfuscation

ImplemenIng	
 this	
 simple	
 reasoning	
 in	
 obfuscated	
 binary	

programs	
 is	
 non	
 trivial…	

	
 …	
 and	
 this	
 is	
 our	
 focus	
 in	
 this	
 project!

• Where are I/O parameters ?

• Where are functions ?

...	
 there	
 are	
 no	
 such	
 things	
 as	
 funcIon	
 calls.

Never	
 returns!

➡There is no high level definition

jeudi 1 novembre 2012

Implementation

jeudi 1 novembre 2012

Implementation

1. Information gathering:

jeudi 1 novembre 2012

Implementation

1. Information gathering:

 We collect an execution trace of P :

jeudi 1 novembre 2012

Implementation

1. Information gathering:

 We collect an execution trace of P :

For each run instruction, we gather

jeudi 1 novembre 2012

Implementation

1. Information gathering:

 We collect an execution trace of P :

For each run instruction, we gather

a) its memory address

jeudi 1 novembre 2012

Implementation

1. Information gathering:

 We collect an execution trace of P :

For each run instruction, we gather

a) its memory address

b) its machine instruction

jeudi 1 novembre 2012

Implementation

1. Information gathering:

 We collect an execution trace of P :

For each run instruction, we gather

a) its memory address

b) its machine instruction

c) its access to memory, registers and the values

jeudi 1 novembre 2012

Implementation

1. Information gathering:

 We collect an execution trace of P :

For each run instruction, we gather

a) its memory address

b) its machine instruction

c) its access to memory, registers and the values

2. Extraction:

jeudi 1 novembre 2012

Implementation

1. Information gathering:

 We collect an execution trace of P :

For each run instruction, we gather

a) its memory address

b) its machine instruction

c) its access to memory, registers and the values

2. Extraction:

 Delimit possible cryptographic code in the execution trace.

jeudi 1 novembre 2012

Implementation

1. Information gathering:

 We collect an execution trace of P :

For each run instruction, we gather

a) its memory address

b) its machine instruction

c) its access to memory, registers and the values

2. Extraction:

 Delimit possible cryptographic code in the execution trace.

3. Identification:

jeudi 1 novembre 2012

Implementation

1. Information gathering:

 We collect an execution trace of P :

For each run instruction, we gather

a) its memory address

b) its machine instruction

c) its access to memory, registers and the values

2. Extraction:

 Delimit possible cryptographic code in the execution trace.

3. Identification:

 Check if the extracted code maintained during the previous execution the
input-output relationship of a known cryptographic function.

jeudi 1 novembre 2012

Loop extraction
• Cryptographic algorithms usually apply a same treatment on their input-output

parameters.

• It makes loops a cryptographic code feature and a possible criterion to
extract it from execution traces.

• But there are loops everywhere, not only in crypto algorithms...
What kind of loops are we looking for ?

jeudi 1 novembre 2012

Loop extraction
• Cryptographic algorithms usually apply a same treatment on their input-output

parameters.

• It makes loops a cryptographic code feature and a possible criterion to
extract it from execution traces.

• But there are loops everywhere, not only in crypto algorithms...
What kind of loops are we looking for ?

Win32.Mebroot
Unrolling	
 op2miza2on

jeudi 1 novembre 2012

A loop definition

Our	
 defini2on:	
 “A	
 loop	
 is	
 the	
 repeIIon	
 of	
 a	
 same	
 sequence	
 of	

machine	
 instrucIons	
 at	
 least	
 two	
 Imes.”

...
401325
401327
401329
40132c
401325
401327
401329
40132c
...

...
add	
 ebx,	
 edi
sub	
 edx,	
 ebx
dec	
 dword	
 ptr	
 [ebp+0xc]
jnz	
 0x401325
add	
 ebx,	
 edi
sub	
 edx,	
 ebx
dec	
 dword	
 ptr	
 [ebp+0xc]
jnz	
 0x401325
...

ExecuIon	
 Trace

• We	
 look	
 for	
 the	
 same	
 opera2ons	
 applied	
 repeatedly	
 on	
 a	
 set	
 of	
 data.

jeudi 1 novembre 2012

A loop definition

Our	
 defini2on:	
 “A	
 loop	
 is	
 the	
 repeIIon	
 of	
 a	
 same	
 sequence	
 of	

machine	
 instrucIons	
 at	
 least	
 two	
 Imes.”

...
401325
401327
401329
40132c
401325
401327
401329
40132c
...

...
add	
 ebx,	
 edi
sub	
 edx,	
 ebx
dec	
 dword	
 ptr	
 [ebp+0xc]
jnz	
 0x401325
add	
 ebx,	
 edi
sub	
 edx,	
 ebx
dec	
 dword	
 ptr	
 [ebp+0xc]
jnz	
 0x401325
...

IteraIon	
 1

IteraIon	
 2

ExecuIon	
 Trace

• We	
 look	
 for	
 the	
 same	
 opera2ons	
 applied	
 repeatedly	
 on	
 a	
 set	
 of	
 data.

jeudi 1 novembre 2012

A loop definition

Our	
 defini2on:	
 “A	
 loop	
 is	
 the	
 repeIIon	
 of	
 a	
 same	
 sequence	
 of	

machine	
 instrucIons	
 at	
 least	
 two	
 Imes.”

...
401325
401327
401329
40132c
401325
401327
401329
40132c
...

...
add	
 ebx,	
 edi
sub	
 edx,	
 ebx
dec	
 dword	
 ptr	
 [ebp+0xc]
jnz	
 0x401325
add	
 ebx,	
 edi
sub	
 edx,	
 ebx
dec	
 dword	
 ptr	
 [ebp+0xc]
jnz	
 0x401325
...

IteraIon	
 1

IteraIon	
 2

ExecuIon	
 Trace

Loop

• We	
 look	
 for	
 the	
 same	
 opera2ons	
 applied	
 repeatedly	
 on	
 a	
 set	
 of	
 data.

jeudi 1 novembre 2012

A loop definition

Our	
 defini2on:	
 “A	
 loop	
 is	
 the	
 repeIIon	
 of	
 a	
 same	
 sequence	
 of	

machine	
 instrucIons	
 at	
 least	
 two	
 Imes.”

...
401325
401327
401329
40132c
401325
401327
401329
40132c
...

...
add	
 ebx,	
 edi
sub	
 edx,	
 ebx
dec	
 dword	
 ptr	
 [ebp+0xc]
jnz	
 0x401325
add	
 ebx,	
 edi
sub	
 edx,	
 ebx
dec	
 dword	
 ptr	
 [ebp+0xc]
jnz	
 0x401325
...

IteraIon	
 1

IteraIon	
 2

ExecuIon	
 Trace

Loop

It	
 corresponds	
 to	
 the	
 language	
 L={ww}, which	
 is	
 non-­‐context	
 free...

• We	
 look	
 for	
 the	
 same	
 opera2ons	
 applied	
 repeatedly	
 on	
 a	
 set	
 of	
 data.

jeudi 1 novembre 2012

What	
 About	
 Nested	
 Loops	
 ?

Simplified	
 CFG

37

jeudi 1 novembre 2012

What	
 About	
 Nested	
 Loops	
 ?

A
B
B
B
C
A
B
B
C

ExecuIon	
 trace

Simplified	
 CFG

37

jeudi 1 novembre 2012

What	
 About	
 Nested	
 Loops	
 ?

A
B
B
B
C
A
B
B
C

Loop	
 B
3	
 iteraIons

Loop	
 B
2	
 iteraIons

ExecuIon	
 trace

Simplified	
 CFG

37

jeudi 1 novembre 2012

What	
 About	
 Nested	
 Loops	
 ?

A
B
B
B
C
A
B
B
C

ExecuIon	
 trace

Simplified	
 CFG

37

jeudi 1 novembre 2012

What	
 About	
 Nested	
 Loops	
 ?

A
B
B
B
C
A
B
B
C

Different
at	
 each	

iteraIon!

ExecuIon	
 trace

Simplified	
 CFG

37

jeudi 1 novembre 2012

What	
 About	
 Nested	
 Loops	
 ?

A
B
B
B
C
A
B
B
C

ExecuIon	
 trace

Simplified	
 CFG

37

jeudi 1 novembre 2012

What	
 About	
 Nested	
 Loops	
 ?

A
B
B
B
C
A
B
B
C

A
X
C
A
X
C

Ok	
 !

Trace
RewriIng

ExecuIon	
 trace

Simplified	
 CFG

37

jeudi 1 novembre 2012

What	
 About	
 Nested	
 Loops	
 ?

A
B
B
B
C
A
B
B
C

A
X
C
A
X
C

Ok	
 !

Trace
RewriIng

ExecuIon	
 trace

Simplified	
 CFG

37

jeudi 1 novembre 2012

Loop	
 DetecIon	
 Algorithm

1.Detects	
 two	
 repeIIons	
 of	
 a	
 loop	
 body	
 in	
 the	

execuIon	
 trace.

(non	
 trivial,	
 non-­‐context	
 free	
 language)

2.	
 Replaces	
 in	
 the	
 trace	
 the	
 detected	
 loop	
 by	
 a	

symbol	
 represenIng	
 their	
 body.

3.	
 Goes	
 back	
 to	
 step	
 1	
 if	
 new	
 loops	
 have	
 been	

detected.

38

jeudi 1 novembre 2012

	

We	
 extracted	
 possible	
 cryptographic	
 code	
 from	

execuIon	
 traces	
 thanks	
 to	
 a	
 parIcular	
 loop	

definiIon.

	

39

I/O	
 IdenIficaIon	
 (1)

jeudi 1 novembre 2012

	

We	
 extracted	
 possible	
 cryptographic	
 code	
 from	

execuIon	
 traces	
 thanks	
 to	
 a	
 parIcular	
 loop	

definiIon.

	

	
 But	
 our	
 idenIficaIon	
 method	
 needs	
 the	
 input-­‐
output	
 values	
 of	
 this	
 crypto	
 code.

39

I/O	
 IdenIficaIon	
 (1)

jeudi 1 novembre 2012

	

We	
 extracted	
 possible	
 cryptographic	
 code	
 from	

execuIon	
 traces	
 thanks	
 to	
 a	
 parIcular	
 loop	

definiIon.

	

	
 But	
 our	
 idenIficaIon	
 method	
 needs	
 the	
 input-­‐
output	
 values	
 of	
 this	
 crypto	
 code.

39

I/O	
 IdenIficaIon	
 (1)

jeudi 1 novembre 2012

	

We	
 extracted	
 possible	
 cryptographic	
 code	
 from	

execuIon	
 traces	
 thanks	
 to	
 a	
 parIcular	
 loop	

definiIon.

	

	
 But	
 our	
 idenIficaIon	
 method	
 needs	
 the	
 input-­‐
output	
 values	
 of	
 this	
 crypto	
 code.

	
 How	
 can	
 we	
 define	
 such	
 input-­‐output	

parameters	
 from	
 the	
 bytes	
 read	
 and	
 wrijen	
 in	

execuIon	
 traces	
 ?

39

I/O	
 IdenIficaIon	
 (1)

jeudi 1 novembre 2012

	
 DisIncIon	
 between	
 input	
 and	
 output	
 bytes	
 in	

the	
 execuIon	
 trace:
	
 Input	
 bytes	
 have	
 been	
 read	
 without	
 having	

been	
 previously	
 wriAen.
	
 Output	
 bytes	
 have	
 been	
 wriAen.

40

I/O	
 IdenIficaIon	
 (2)

A	
 reasonable	
 hypothesis

jeudi 1 novembre 2012

	
 Grouping	
 of	
 several	
 bytes	
 into	
 the	
 same	

parameter:
1. If	
 they	
 are	
 adjacent	
 in	
 memory	
 (too	
 large!)
2. And	
 if	
 they	
 are	
 manipulated	
 by	
 the	
 same	
 instruc2on	

in	
 the	
 loop	
 body.

41

add	
 [ecx],	
 edi
mov	
 eax,	
 [ebx]
...
add	
 [ecx],	
 edi
mov	
 eax,	
 [ebx]
...

IteraIon	
 1

IteraIon	
 2

IdenIficaIon	
 (3)
Loop	
 parameters

jeudi 1 novembre 2012

• A	
 crypto	
 implementaIon	
 can	
 contain	
 several	

loops.

42

Loop	
 Data	
 Flow

jeudi 1 novembre 2012

• A	
 crypto	
 implementaIon	
 can	
 contain	
 several	

loops.

•We	
 consider	
 that	
 two	
 loops	
 L1	
 and	
 L2	
 are	
 in	
 the	

same	
 crypto	
 implementaIon:
–If	
 L1	
 started	
 before	
 L2	
 in	
 the	
 trace.

–If	
 L2	
 uses	
 as	
 an	
 input	
 parameter	
 an	
 output	
 parameter	

of	
 L1.

42

Loop	
 Data	
 Flow

jeudi 1 novembre 2012

43

Loop	
 Data	
 Flow	
 Graph	
 (oriented,	
 acyclic)

L1 L2 L3

jeudi 1 novembre 2012

44

L1 L2 L3

We	
 consider	
 each	
 path	
 in	
 the	
 graph	
 as	
 a	
 possible	

cryptographic	
 algorithm!

(in	
 order	
 to	
 deal	
 with	
 algorithm	
 combina;ons)

jeudi 1 novembre 2012

44

L1 L2 L3

We	
 consider	
 each	
 path	
 in	
 the	
 graph	
 as	
 a	
 possible	

cryptographic	
 algorithm!

(in	
 order	
 to	
 deal	
 with	
 algorithm	
 combina;ons)

jeudi 1 novembre 2012

44

L1 L2 L3

We	
 consider	
 each	
 path	
 in	
 the	
 graph	
 as	
 a	
 possible	

cryptographic	
 algorithm!

(in	
 order	
 to	
 deal	
 with	
 algorithm	
 combina;ons)

jeudi 1 novembre 2012

44

L1 L2 L3

We	
 consider	
 each	
 path	
 in	
 the	
 graph	
 as	
 a	
 possible	

cryptographic	
 algorithm!

(in	
 order	
 to	
 deal	
 with	
 algorithm	
 combina;ons)

jeudi 1 novembre 2012

44

L1 L2 L3

We	
 consider	
 each	
 path	
 in	
 the	
 graph	
 as	
 a	
 possible	

cryptographic	
 algorithm!

(in	
 order	
 to	
 deal	
 with	
 algorithm	
 combina;ons)

jeudi 1 novembre 2012

Method	
 Recap
1. We	
 collect	
 an	
 execuIon	
 trace.

2. We	
 extract	
 possible	
 cryptographic	
 algorithms	
 with	
 their	

parameter	
 values.

3. We	
 compare	
 the	
 input-­‐output	
 relaIonship	
 with	
 known	

cryptographic	
 algorithms.

	

45

We	
 can	
 demonstrate	
 that	
 a	
 program	
 behaves	
 like	
 a	

known	
 crypto	
 algorithm	
 during	
 one	
 par2cular	
 execu2on.

jeudi 1 novembre 2012

	

	

	
 Let’s	
 illustrate	
 this	
 process	
 on	
 our	
 Sality	

sample...

46

jeudi 1 novembre 2012

47

Step	
 1	
 :	
 Gather	
 ExecuIon	
 Trace

jeudi 1 novembre 2012

47

Step	
 1	
 :	
 Gather	
 ExecuIon	
 Trace

Sality
Sample

jeudi 1 novembre 2012

47

Step	
 1	
 :	
 Gather	
 ExecuIon	
 Trace

TRACER

Sality
Sample

jeudi 1 novembre 2012

47

First	

instruc2on

Last	

instruc2on

Step	
 1	
 :	
 Gather	
 ExecuIon	
 Trace

TRACER

Sality
Sample

jeudi 1 novembre 2012

48

L1 L2 L3

Step	
 2	
 :	
 Recognize	
 Loops	
 on	
 the	
 Trace

jeudi 1 novembre 2012

49

L1 L2 L3

Step	
 2	
 :	
 Recognize	
 Loops	
 on	
 the	
 Trace

jeudi 1 novembre 2012

50

Step	
 3	
 :	
 Define	
 Loop	
 I/O	
 Parameters

L1 L2 L3

jeudi 1 novembre 2012

51

Step	
 4	
 :	
 Connect	
 Loops	
 With	
 Data-­‐Flow

L1 L2 L3

jeudi 1 novembre 2012

Unknown	
 Algorithm	
 Extracted

52

jeudi 1 novembre 2012

	

	

We	
 sIll	
 have	
 the	
 last	
 mile	
 to	
 do...

53

jeudi 1 novembre 2012

Comparison	
 Algorithm

1. Build	
 the	
 set	
 I	
 of	
 possible	
 input	
 values	
 with	
 all	

possible	
 orderings	
 of	
 A	
 input	
 parameters.

2. Build	
 the	
 set	
 O	
 of	
 possible	
 output	
 values	
 in	
 the	

same	
 manner	
 with	
 A	
 output	
 parameters.

3. Evaluate	
 each	
 S	
 funcIon	
 on	
 all	
 values	
 in	
 I and	

check	
 if	
 the	
 result	
 produced	
 is	
 in	
 O.

	
 If	
 yes,	
 this	
 is	
 a	
 success!

54

jeudi 1 novembre 2012

Input	
 1:	
 unknown	
 algorithm	
 A	
 with	
 its	
 parameter	
 values

55

jeudi 1 novembre 2012

Input	
 1:	
 unknown	
 algorithm	
 A	
 with	
 its	
 parameter	
 values

Input	
 2:

55

Finite	
 set	
 of	

known	

cryptographic	

func2ons

S

AES

RC4

TEA
MD5

Custom
Cipher	
 X

Custom
Cipher	
 Y

jeudi 1 novembre 2012

QuesIon

56

jeudi 1 novembre 2012

QuesIon
• Some	
 difficulIes,	
 for	
 example:
–Parameter	
 division:	
 a	
 same	
 cryptographic	
 parameter	
 can	

be	
 divided	
 into	
 several	
 loop	
 parameter.
–Parameter	
 number:	
 we	
 collect	
 more	
 than	
 the	

cryptographic	
 parameters.

56

jeudi 1 novembre 2012

	

	
 In	
 pracIce,	
 the	
 complexity	
 of	
 this	
 algorithm	

can	
 be	
 greatly	
 reduced	
 with	
 some	
 simple	

rules:
–Do	
 not	
 consider	
 memory	
 addresses	
 as	
 valid	
 parameters.
–Do	
 not	
 consider	
 common	
 constant	
 values	
 (0,FF)	
 as	
 valid	

parameters.

57

jeudi 1 novembre 2012

Let’s	
 Recap	
 the	
 Process

58

TRACER

ExecuIon
Trace

EXTRACTIONSample

Unknown	

Algorithms

IDENTIFICATION

Reference
ImplementaIons

Result

Describes	
 if	
 the	
 sample	

behaved	
 	
 as	
 a	
 known	

cryptographic	
 funcIon	
 	

during	
 the	
 observed	

execuIon

jeudi 1 novembre 2012

59

jeudi 1 novembre 2012

More	
 Results

60

(cf.	
 paper)

jeudi 1 novembre 2012

LimitaIons

• As	
 we	
 analyze	
 execuIon	
 traces,	
 we	
 have	
 to	
 know	

how	
 to	
 exhibit	
 interesIng	
 execuIon	
 paths.

• The	
 tool	
 is	
 as	
 good	
 as	
 the	
 reference	

implementaIon	
 database.

• It	
 is	
 easy	
 to	
 bypass,	
 like	
 any	
 program	
 analysis	

technique.

61

jeudi 1 novembre 2012

Future	
 Work

• Extract	
 reference	
 implementaIons	
 directly	
 from	

binary	
 programs.

• Implement	
 other	
 extracIon	
 criteria	
 than	
 our	
 loop	

model.

62

Code	
 is	
 available	
 at	

hjps://code.google.com/p/aligot/

jeudi 1 novembre 2012

https://code.google.com/p/aligot/
https://code.google.com/p/aligot/

High Security Lab @ Nancy.fr

Other subjects
•Morphological analysis
•Botnet counter- attacks

Telescope & honeypots
In vitro experiment clusters

Thanks !
jeudi 1 novembre 2012

BONUS	
 SLIDES

64

jeudi 1 novembre 2012

Morphological analysis in a nutshell

jeudi 1 novembre 2012

Morphological analysis in a nutshell

Signatures are abstract
flow graph

jeudi 1 novembre 2012

Morphological analysis in a nutshell

Signatures are abstract
flow graph

Detection of subgraph in program flow graph
abstraction

jeudi 1 novembre 2012

Automatic construction of signatures

jeudi 1 novembre 2012

Reduction of signatures by graph rewriting

jeudi 1 novembre 2012

Morphological detection : Results

• False negative

• No experiment on unknown malware

• Signatures with < 18 nodes are potential false negative

• Restricted signatures of 20 nodes are efficient

• Less than 3 sec. for signatures of 500 nodes

jeudi 1 novembre 2012

Conclusion about morphological detection

• Benchmarks are good

• Pro

• More robust on local mutation and obfuscation

• Detect easily variants of the same malware family

• Try to take into account program semantics

• Quasi-automatic generation of signatures

• Cons

• Difficult to determine flow graph statically of self-modifying programs

• Use of combination of static and dynamic analysis

jeudi 1 novembre 2012

Reference

• Guillaume Bonfante, Matthieu Kaczmarek and Jean-Yves Marion, Architecture of a malware
morphological detector, Journal in Computer Virology, Springer 2008.

• Recon 2012 and Malware 2012

jeudi 1 novembre 2012

Performances
Sality	
 1 Sality	
 2

Trace	
 Size
(instrucIons)

~1M ~4M

Time	
 To	
 Trace 5mn 10mn

Time	
 To	
 Extract	
 Crypto	
 Algoritm 4h 10h

Time	
 To	
 IdenIfy 3mn 4mn

•	
 The	
 tool	
 is	
 just	
 a	
 PoC,	
 no	
 opImizaIon	
 at	
 all.	

•	
 When	
 the	
 analysts	
 knows	
 where	
 the	
 algorithm	
 is,	
 it	

will	
 reduce	
 the	
 trace	
 size.

71

jeudi 1 novembre 2012

ExisIng	
 Tools	
 For	
 Crypto	
 IdenIficaIon

Tools Answers	
 on	
 Sality	
 sample
Crypto	
 Searcher Ø
Draca	
 v0.5.7b Ø
Findcrypt	
 v2 Ø

Hash	
 &	
 Crypto	
 Detector	
 v1.4 Ø
PEiD	
 KANAL	
 v2.92 Ø

Kerckhoffs Ø
Signsrch	
 0.1.7 Ø

SnD	
 Crypto	
 Scanner	
 v0.5b Ø

72

jeudi 1 novembre 2012

