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On detection methods and analysis of malware

1. A quick tour of Malware detection methods

2. Behavioral analysis using model-checking

3. Cryptographic function identification 
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What is a malware ?

• A malware is a program which has malicious intentions

• A malware is a virus, a worm, a botnet ...

• Giving a mathematical definition is difficult

- How to protect a system ? 

- How to detect a malware ?

Pourquoi tracer ? (1/3)

Définition : l’analyse binaire, c’est

• de l’analyse de programme

• où le programme est inconnu

=⇒ on a juste un blob binaire
Raisons :

• sauts indirects
=⇒ flot de contrôle indécidable

• lectures/écritures indirectes
=⇒ flot de données indécidable

• code auto-modifiant
=⇒ syntaxe indécidable

3 / 32
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Code protection

1.Obfuscation

2.Cryptography

3.Self-modification

4.Anti-analysis tricks

Detection is hard because malware are protected 

Win32.Swizzor Packer 
displayed by IDA 

!"#$%&'()*(+'#,-.(/0(1-0#"'2.3#-

445"36#,7*(8&9&":&;&-<3-&&"3-<(#0('2%=2"&(62>?&":(0#"(@,''3&:(; A&&6B&> )C4C(
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A common protection scheme for malware

layer 1

Slide à remplacer ?
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A common protection scheme for malware

layer 1

payload
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Packer protections
Exemple (4/5)

• hostname packé avec Themida

Different code 
waves with their 

relations

Themida packer

Yoda packer

jeudi 1 novembre 2012



Malware detection by string scanning

Pros :
• Accuracy:  low rate of false positive

➡ programs which are not malware are not detected

• Efficient : Fast string matching algorithm

➡ Karp & Rabin, Knuth, Morris & Pratt, Boyer & Moore

• Signature is a regular expression denoting a sequence of bytes
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Malware detection by string scanning

• Signature are quasi-manually constructed

• Signatures are not robust to malware protections

➡ Mutations, Code obfuscations, ...

• Static analysis of binary is very difficult

Pros :

Cons :

• Accuracy:  low rate of false positive

➡ programs which are not malware are not detected

• Efficient : Fast string matching algorithm

➡ Karp & Rabin, Knuth, Morris & Pratt, Boyer & Moore

• Signature is a regular expression denoting a sequence of bytes
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Detection by integrity check

• Identify a file using a hash function

Hash functionFiles Hash numbers

a

b

numerical 
fingerprints
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Detection by integrity check

• Identify a file using a hash function

Cons : 
• File systems are updated, so numerical fingerprints change
• Difficult to maintain in practice
• Files may change with the same numerical fingerprint (due to hash fct)

Hash functionFiles Hash numbers

a

b

numerical 
fingerprints
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Behavioral detection 

• Identification of a sequence of actions :
• System calls or library calls, Network interactions, ...
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Behavioral detection 

• Identification of a sequence of actions :
• System calls or library calls, Network interactions, ...

Cons : 
• Difficult to have a set of normal or bad behaviours
• Difficult to maintain in practice
• Functional obfuscations :

h=fopen(C:\windows\sys.dll);fwrite(«test»,h)

h=createFile(C:\windows\sys.dll);writeFile(h,«test»)

Two ways of writing into a file

✓  Several possible 
implementations of 
a high level action

• Two approaches

• Anomaly Detection from a set of normal behaviours

• Detection from a set of potential malicious behaviours
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Anti-virus tests against unknown threats
Source : A study of anti-virus response to unknown threats by C. Devine and N. Richaud 

(EICAR 2009)
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1. A quick tour of Malware detection methods

2. Behavioral analysis using model-checking

3. Cryptographic function identification 
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void scan_d i r ( const char∗ d i r ) {
HANDLE hFind ;
char szFilename [2048 ] ;
WIN32_FIND_DATA f indData ;

s p r i n t f ( szFilename , "%s \\%s " , d i r , "∗.∗ " ) ;
hFind = F i n dF i r s t F i l e ( szFilename , &f indData ) ;
i f ( hFind == INVALID_HANDLE_VALUE) return ;
do {

s p r i n t f ( szFilename , "%s \\%s " , d i r ,
f indData . cFileName ) ;

i f ( f indData . dwF i l eA t t r i bu t es
& FILE_ATTRIBUTE_DIRECTORY)

scan_d i r ( szFilename ) ;
else { . . . }

} while ( F indNextF i le ( hFind , &f indData ) ) ;
FindClose ( hFind ) ;

}

void main ( i n t argc , char∗∗ argv ) {
HANDLE hIcmp ;
const char∗ icmpData = " Babcdef . . . " ;
char r ep l y [ 1 28 ] ;

/∗ Behavior pa t t e r n : p ing of a remote host ∗/
hIcmp = IcmpCreateFi le ( ) ;
f o r ( i n t i = 0 ; i < 2 ; ++ i )
IcmpSendEcho( hIcmp , ipaddr , icmpData , 10 ,

NULL, rep ly , 128 , 1000) ;
IcmpCloseHandle ( hIcmp ) ;

/∗ Behavior pa t t e r n : Netb ios connect ion ∗/
SOCKET s = socket (AF_INET , SOCK_STREAM, 0 ) ;
s t r u c t sockaddr_ in s in =

{AF_INET , ipaddr , htons (139) /∗ Netb ios ∗ / } ;
i f ( connect ( s , (SOCKADDR∗)&sin , s i zeo f ( s in ) )

!= SOCKET_ERROR) {
. . .

}

/∗ Behavior pa t t e r n : scanning of l o c a l d r i ves ∗/
char bu f f e r [ 1024 ] ;
Ge tLog ica lDr i veSt r ings ( s i zeo f ( b u f f e r ) , b u f f e r ) ;
const char∗ szDr ive = bu f f e r ;
wh i le (∗szDr ive ) {

i f ( GetDriveType ( szDr ive ) == DRIVE_FIXED )
scan_d i r ( szDr ive ) ;

szDr ive += s t r l e n ( szDr ive ) + 1 ;
}

}

Example execution trace of library calls:
...GetLogicalDriveStrings.GetDriveType.FindFirstFile.FindFirstFile.

FindNextFile...

Low level Traces

Allaple.a excerpt
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Example execution trace of library calls:
...GetLogicalDriveStrings.GetDriveType.FindFirstFile.FindFirstFile.

FindNextFile...

Low level Traces

Trace are finite terms: 
FindfirstFile(x,y).FindNextFile(z,x). FindNextFile(z,x).FindClose(z).
IcmpSendEcho(u,...).IcmpSendEcho(u,...).IcmpCloseHandle(u)....

Allaple.a excerpt
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Program behaviour

• The program behaviour is given by sequences of system calls

- represented by a set L of terms 

• How to collect traces ?
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• A good approximation of a set of execution traces 

• Good detection coverage
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Program behaviour

• The program behaviour is given by sequences of system calls

- represented by a set L of terms 

• How to collect traces ?

Dynamic analysis

• Collect an execution trace (with use PIN)

• Monitor program interactions (sys calls, network calls, ...)

• What is the detection coverage ? partial behaviours ...

Static analysis

• A good approximation of a set of execution traces 

• Good detection coverage

• But static analysis is difficult to perform 
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- Several ways to send a ping :
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- Several ways to send a ping :

1. Call the socket function with the parameter IPPROTO_ICMP and then call the 
sendto function with ICMP_ECHOREQ
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- Several ways to send a ping :

1. Call the socket function with the parameter IPPROTO_ICMP and then call the 
sendto function with ICMP_ECHOREQ

2. Call the IcmpSendEcho function

- Abstract the ping behaviour by a predicate PING(x) to represent a ping on socket x
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- Several ways to send a ping :

1. Call the socket function with the parameter IPPROTO_ICMP and then call the 
sendto function with ICMP_ECHOREQ

2. Call the IcmpSendEcho function

- Abstract the ping behaviour by a predicate PING(x) to represent a ping on socket x

Trace abstraction

-Define an abstraction relation R as a term rewrite system 

- We abstract/rewrite a pattern on a trace only once

socket(x,u).sendto(x,v,y)        socket(x,u).sendto(x,v,y).PING(x)

IcmpSendEcho(x)          IcmpSendEcho(x).PING(x)
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- Several ways to send a ping :

1. Call the socket function with the parameter IPPROTO_ICMP and then call the 
sendto function with ICMP_ECHOREQ

2. Call the IcmpSendEcho function

- Abstract the ping behaviour by a predicate PING(x) to represent a ping on socket x

Trace abstraction

-Define an abstraction relation R as a term rewrite system 

- We abstract/rewrite a pattern on a trace only once

socket(x,u).sendto(x,v,y)        socket(x,u).sendto(x,v,y).PING(x)

IcmpSendEcho(x)          IcmpSendEcho(x).PING(x)

IcmpSendEcho(u,...).IcmpSendEcho(u,...).IcmpCloseHandle(u)
      IcmpSendEcho(u,...).PING(u).IcmpSendEcho(u,...).IcmpCloseHandle(u) 
      IcmpSendEcho(u,...).PING(u).IcmpSendEcho(u,...). PING(u).IcmpCloseHandle(u) 

-As a result, we have a terminating and rational abstraction system 

- We keep the LHS to deal with complex patterns
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Computation of Abstract Trace language

Abstract a trace language L by reducing it w.r.t. an abstraction relation R

Theorem : 
Let R be a rational abstraction relation
and L be a trace language.
                     If L is regular then so is L↓

L → . . . → L↓

- Based on tree automata methods

Related work

- Martignoni et al. 2008: multi-layered abstraction on a single trace
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Behaviour patterns

• A behavior pattern is a First-order LTL (Linear temporal logic) formula

3

we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .
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Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .
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we consider that the captured data is the library calls along
with their arguments. Σ therefore represents the finite set of
library calls, while constants from Fd identify the arguments
and the return values of these calls. A program execution trace
then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the
set of its execution traces, that is a possibly infinite subset of
TTrace (FΣ). For instance, the term fopen (1, 2)·fwrite (1, 3)
represents the execution trace of a file open call fopen (1, 2)
followed by a file write call fwrite (1, 3), where 1 ∈ Fd

identifies the file handle returned by fopen, 2 ∈ Fd identifies
the file path and 3 ∈ Fd identifies the written data.

First-Order LTL (FOLTL) Temporal Logic: We con-
sider the First-Order Temporal Logic (FOLTL) defined in
[17], without the equality predicate, where atomic predicates
are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .

Let L be the behaviour of the program P. If a trace t of L satisfies a behaviour 
pattern   ,  then P has the behaviour described byϕϕ

Quantification domain is the finite set of paramerter names
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• A behavior pattern is a First-order LTL (Linear temporal logic) formula
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[17], without the equality predicate, where atomic predicates
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exists a substitution σ ∈ SubstY such that ξ |= ϕσ.
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ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.
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a trace by abstracting occurrences of the behavior patterns
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can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.
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ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
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is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
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TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
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IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
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the file path and 3 ∈ Fd identifies the written data.
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be the set of atomic propositions. FOLTL is an extension of
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the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
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is the network protocol, the first parameter of sendto is the
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is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.
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TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
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As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
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are terms and may have variables. More precisely, let X be a
finite set of variables of sort Data and AP = TAction (FΣ, X)
be the set of atomic propositions. FOLTL is an extension of
the LTL temporal logic (see Appendix A2) such that:

• If ϕ is an LTL formula, then ϕ is an FOLTL formula ;
• If ϕ is an FOLTL formula and Y ⊆ X is a set of

variables, then: ∃Y.ϕ and ∀Y.ϕ are FOLTL formulas,
where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 ⊙ ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that an FOLTL formula is closed when it has no

free variable, i.e., every variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈

SubstY be a ground substitution over Y . The application of
σ to an FOLTL formula ϕ is naturally defined by the formula
ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

As with LTL, a formula is validated on infinite sequences
of sets of atomic predicates, denoted by ξ = (ξ0, ξ1, . . .) ∈�
2AP

�ω . ξ |= ϕ (ξ validates ϕ) is defined in the same way as
for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists a substitution σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is validated over traces of
TTrace (F) identified with sequences of singleton sets of
atomic predicates. A finite trace t = a0 · · · an is identified
with the infinite sequence of sets of atomic predicates ξt =
({a0} , . . . , {an} , {} , {} , . . .), and t validates ϕ, denoted by
t |= ϕ, iff ξt |= ϕ.

Tree Automata and Tree Transducers: Tree automata
and tree transducers are defined as usual (see Appendix A3
and [22]). We consider specifically top-down tree automata
without � rules and linear nondeleting top-down tree transduc-
ers. A tree language is regular iff it is recognized by some tree
automaton and a binary relation is rational iff it is realized by
some linear nondeleting top-down tree transducer.

III. BEHAVIOR PATTERNS

The problem under study can be formalized in the following
way. First, using FOLTL formulas, we define a set of behavior
patterns, where each pattern represents a (possibly infinite)
set of terms from TTrace (FΣ). Second, we need to define
a terminating abstraction relation R allowing to schematize
a trace by abstracting occurrences of the behavior patterns

in that trace. Finally, given some program p coming with an
infinite set of traces L (static analysis scenario, for instance
by using the control flow graph, see our previous work [21]
and [23], [24]), we formulate the detection problem in the
following way: given an abstract behavior M defined by an
FOLTL formula ϕ, does there exist a trace t in L↓R such that
t |= ϕ, where L↓R is the set of normal forms of traces of
L for R? Our goal is then to find an effective and efficient
method solving this problem.

A behavior pattern describes a functionality we want to
recognize in a program trace, like writing to system files,
sending a mail or pinging a remote host. Such a functionality
can be realized in different ways, depending on which system
calls, library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such
that traces validating this formula are traces carrying out the
functionality.

Example 1. Let us consider the functionality of sending a
ping. One way of realizing it consists in calling the socket
function with the parameter IPPROTO_ICMP describing the
network protocol and, then, calling the sendto function with
the parameter ICMP_ECHOREQ describing the data to be sent.
Between these two calls, the socket should not be freed . This is
described by the FOLTL formula: ϕ1 = ∃x, y. socket (x,α)∧
(¬closesocket (x) U sendto (x,β, y)), where the first param-
eter of socket is the created socket and the second parameter
is the network protocol, the first parameter of sendto is the
used socket, the second parameter is the sent data and the
third one is the target, the unique parameter of closesocket
is the freed socket and constants α and β in Fd identify the
above parameters IPPROTO_ICMP and ICMP_ECHOREQ.

A ping may also be realized using the function IcmpSend-
Echo, whose parameter represents the ping target. This corre-
sponds to the FOLTL formula: ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the
FOLTL formula: ϕping = ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces
carrying out its functionality, i.e., as the set of traces validating
the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆
TTrace (FΣ) validating a closed FOLTL formula ϕ on AP =
TAction (FΣ, X): B = {t ∈ TTrace (FΣ) | t |= ϕ} .

IV. DETECTION PROBLEM

As said before, our goal is to be able to detect, in a given set
of traces, some predefined behavior composed of combinations
of high-level functionalities. For this, we associate to each
behavior pattern an abstract symbol λ taken in the alphabet
Γ. An abstract behavior is then defined by combinations of
abstract symbols associated to behavior patterns, using an
FOLTL formula ϕ on AP = TAction (FΓ, X) instead of
TAction (FΣ, X).

Definition 2. An abstract behavior is a set of traces M ⊆
TTrace (FΓ) validating a closed FOLTL formula ϕM on AP =
TAction (FΓ, X): M = {t ∈ TTrace (FΓ) | t |= ϕM} .
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• Traces satisfying a FO-LTL formula are :

Let L be the behaviour of the program P. If a trace t of L satisfies a behaviour 
pattern   ,  then P has the behaviour described byϕϕ

Quantification domain is the finite set of paramerter names
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Malicious behavior detection

Theorem : Let L be a finite set of finite traces. Let L↓ be a trace correctly 
abstracted from a rational abstraction relation R. Let    be a FOLTL formula.  

Deciding whether deciding L↓ is infected by    is linear-time computable.

ϕ
ϕ

It works also when L is regular (and infinite), see the paper for details 

Related work

-Jacob et al., 2009: low-level functionalities, exponential-time detection
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A C Keylogger or a sms message leaking app

CHAPITRE 2. ANALYSE COMPORTEMENTALE STATIQUE 29

Ainsi, dans cette section, nous prenons l’exemple d’un programme capturant
les caractères entrés au clavier (afin d’en extraire notamment mots de passe,
informations bancaires et autres données sensibles). L’analyse sous IDA de sa
forme compilée permet de déterminer la structure de la pile et le type des
variables la composant. Par simplicité, nous travaillons sur son code source :

1 LRESULT WndProc(HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam) {
2 RAWINPUTDEVICE rid;
3 RAWINPUT *buffer;
4 UINT dwSize;
5 USHORT uKey;
6

7 switch(msg) {
8 case WM_CREATE: /* Creation de la fenetre principale */
9 /* Initialisation de la capture du clavier */

10 rid.usUsagePage = 0x01;
11 rid.usUsage = 0x06;
12 rid.dwFlags = RIDEV_INPUTSINK;
13 rid.hwndTarget = hwnd;
14 RegisterRawInputDevices(&rid, 1, sizeof(RAWINPUTDEVICE));
15 break;
16

17 case WM_INPUT: /* Evenement clavier, souris, etc. */
18 /* Quelle taille pour buffer ? */
19 GetRawInputData( (HRAWINPUT) lParam, RID_INPUT, NULL,
20 &dwSize, sizeof(RAWINPUTHEADER) );
21 buffer = (RAWINPUT*) malloc(dwSize);
22 /* Recuperer dans buffer les donnees capturees */
23 if(!GetRawInputData( (HRAWINPUT) lParam, RID_INPUT, buffer,
24 &dwSize, sizeof(RAWINPUTHEADER) ))
25 break;
26 if(buffer->header.dwType == RIM_TYPEKEYBOARD &&
27 buffer->data.keyboard.Message == WM_KEYDOWN) {
28 printf("%c\n", buffer->data.keyboard.VKey);
29 }
30 free(buffer);
31 break;
32 }
33 /* ... */
34 }

Ce code contient sept variables : hwnd, msg, wParam, lParam, rid, buffer
et dwSize. Les types HWND et HRAWINPUT représentent des entiers. Les types
WPARAM et LPARAM sont interprétés différement selon le contexte : ici, seule
la variable lParam est utilisée et représente un entier dans le contexte de son
utilisation. Les types RAWINPUTDEVICE et RAWINPUT sont des structures décrites
ci-après. Seuls les champs nous intéressant ont été conservés.

struct RAWINPUTDEVICE {
int usUsagePage;
int usUsage;

CHAPITRE 3. AUTOMATES DE TRACES 34

9

10

11 public void onReceive(Context context, Intent intent)
12 {
13 Bundle bundle;
14 Object pdus[];
15

16 String from = null;
17 String msg = "";
18 String str = "";
19

20 bundle = intent.getExtras();
21 pdus = (Object[])bundle.get("pdus");
22

23 // Pour chaque message envoye
24 int pdus_len = pdus.length;
25 for(int i = 0; i < pdus_len; i++)
26 {
27 Object pdu = pdus[i];
28 SmsMessage smsmessage = SmsMessage.createFromPdu((byte[])pdu);
29

30 // from = "From:" + smsmessage.getDisplayOriginatingAddress() + ":";
31 StringBuilder sb1 = new StringBuilder("From:");
32 String s1 = smsmessage.getDisplayOriginatingAddress();
33 sb1.append(s1);
34 sb1.append(":");
35 from = sb1.toString();
36

37 // msg = msg + smsmessage.getMessageBody();
38 StringBuilder sb2 = new StringBuilder(msg);
39 String s2 = smsmessage.getMessageBody();
40 sb2.append(s2);
41 msg = sb2.toString();
42 }
43

44 // str = from + msg;
45 StringBuilder sb3 = new StringBuilder(from);
46 sb3.append(msg);
47 str = sb3.toString();
48

49 SmsManager sms_manager = SmsManager.getDefault();
50 for (int i = 0; i < str.length(); i += 160)
51 {
52 String s3 = str.substring(i, i + 160);
53 sms_manager.sendTextMessage( this.number, null, s3, null, null );
54 }
55 }
56 }

On s’intéresse spécifiquement à l’exécution de la fonction onReceive. Lorsque cette
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information leak abstract behavior is then defined by:

M := ∃x.λsteal (x) ∧ ¬λinval (x) Uλleak (x) .

By looking at several malware samples, like keyloggers, sms
message leaking applications or personal information stealing
mobile applications, we consider the following definitions of
the three behavior patterns involved:

• λsteal (x) describes a keystroke capture functionality1

and, on Android mobile phones, the retrieving of the
IMEI number:

λsteal(x) := GetAsyncKeyState(x)∨
(RegisterDev(KBD, SINK)⊙GetInputData(x, INPUT))∨
(∃y. SetWindowsHookEx(y, WH_KEYBOARD_LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))∨

∃y.TelephonyManager_getDeviceId(x, y).

• λleak(x) describes a network send functionality under
Windows or Android:

λleak(x) := ∃y, z. sendto(z, x, y)∨
∃y, z. (connect (z, y) ∧ ¬close(z)U send(z, x))∨

∃c, s.HttpURLConnection_getOutputStream(s, c)∧
¬OutputStream_close(s)UOutputStream_write(s, x).

• λinval (x) describes the overwriting or freeing of x:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y)∨
GetInputData(x, INPUT) ∨ . . .

Finally, the captured data is usually not leaked in its raw form,
so we take into account transformations of this data via the
behavior pattern λdepends (x, y) which denotes a dependency
of x on y. For instance, x may be a string representation of
y, or x may be an encryption or an encoding of y:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)∨
∃sb. StringBuilder_append(sb, y)⊙ SB_toString(x, sb).

Then, in order to account for one such transformation of
the stolen data, we adapt the definition of the information leak
abstract behavior:

M := ∃x, y.λsteal (x)∧ ¬λinval (x) Uλdepends (y, x)∧
¬λinval (y) Uλleak (y) .

Of course, we can adapt this formula to allow more than
one data transformation.

VIII. EXPERIMENTS

We tested the validity of our approach on several types
of malware: keyloggers, sms message leaking, mobile phone
personal information stealing. Our goal is to detect the infor-
mation leak behavior M defined in the previous section. In
order to perform behavior pattern abstraction and behavior
detection in the presence of data, we use the CADP tool-
box [27], which allows us to manipulate and model-check
communicating processes written in the LOTOS language.
CADP features a verification tool, evaluator4, which allows
on-the-fly model checking of formulas expressed in the MCL

1We assume the execution of a hook f with argument x is represented in
a trace by an action HookCalled (f, x).

language, a fragment of the modal mu-calculus extended with
data variables, whose FOLTL logic used in this paper is a
subset.

We first represent the program set of traces as a CADP pro-
cess. For this, we use a program control flow graph obtained by
static analysis (see [21] and [23], [24]). Regularity of the set of
traces is enforced by limiting recursion and inlining function
calls, an approximation that can be deemed safe with respect
to the abstract behaviors to detect. Note that there are two
shortcomings to regular approximation. First, approximation
of conditional branches by nondeterministic branches may
result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations
during dataflow analysis can result in false negatives. However,
this does not significantly impact our detection results.

Now, as expressed in Theorem 3, detection of the in-
formation leak abstract behavior M can be broken down
into two steps: abstracting the set of traces L by computing
Rλinval

��
R≤2(L)

�
and then verifying whether an abstracted

trace matches the abstract behavior formula.
So, we can simulate the abstraction step in CADP and

delegate the verification step to the evaluator4 module. For
this, we represent the set of traces L of a given program by
a system of communicating processes expressed in LOTOS,
with a particular gate on which communications correspond to
library calls. Then, computation of R≤2(L) is performed by
synchronization with another LOTOS process which simulates
the transducer realizing the abstraction. Moreover, the relation
Rλinval

� is rational and can also be simulated by process
synchronization in CADP.

For each malware sample we tested, we success-
fully run evaluator4 on the resulting process, representing
Rλinval

� (R≤2(L)), in order to detect the information leak
abstract behavior defined in the previous section.

Also, in our previous work [21], we implemented our
string rewriting based abstraction technique and we defined
several behavior patterns and abstract behaviors, by looking at
malicious execution traces. Then, we tested it on samples of
malicious programs collected using a honeypot2 and identified
using Kaspersky Antivirus. These samples belonged to known
malware families, among which Allaple, Virut, Agent, Rbot,
Afcore and Mimail. Most of them were successfully matched
to our malware database.

IX. CONCLUSION

We presented an original approach for detecting high-level
behaviors in programs, describing combinations of function-
alities and defined by first-order temporal logic formulas.
Behavior patterns, expressing concrete realizations of the
functionalities, are also defined by first-order temporal logic
formulas. Abstraction of these functionalities in program traces
is performed by term rewriting. Validation of the abstracted
traces with respect to some high-level behavior is performed
using usual model checking techniques. In order to address
the general intractability of the problem of constructing the
set of normal forms of traces for a given program, we have

2The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr.
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and, on Android mobile phones, the retrieving of the
IMEI number:

λsteal(x) := GetAsyncKeyState(x)∨
(RegisterDev(KBD, SINK)⊙GetInputData(x, INPUT))∨
(∃y. SetWindowsHookEx(y, WH_KEYBOARD_LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))∨

∃y.TelephonyManager_getDeviceId(x, y).

• λleak(x) describes a network send functionality under
Windows or Android:

λleak(x) := ∃y, z. sendto(z, x, y)∨
∃y, z. (connect (z, y) ∧ ¬close(z)U send(z, x))∨

∃c, s.HttpURLConnection_getOutputStream(s, c)∧
¬OutputStream_close(s)UOutputStream_write(s, x).

• λinval (x) describes the overwriting or freeing of x:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y)∨
GetInputData(x, INPUT) ∨ . . .

Finally, the captured data is usually not leaked in its raw form,
so we take into account transformations of this data via the
behavior pattern λdepends (x, y) which denotes a dependency
of x on y. For instance, x may be a string representation of
y, or x may be an encryption or an encoding of y:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)∨
∃sb. StringBuilder_append(sb, y)⊙ SB_toString(x, sb).

Then, in order to account for one such transformation of
the stolen data, we adapt the definition of the information leak
abstract behavior:

M := ∃x, y.λsteal (x)∧ ¬λinval (x) Uλdepends (y, x)∧
¬λinval (y) Uλleak (y) .

Of course, we can adapt this formula to allow more than
one data transformation.

VIII. EXPERIMENTS

We tested the validity of our approach on several types
of malware: keyloggers, sms message leaking, mobile phone
personal information stealing. Our goal is to detect the infor-
mation leak behavior M defined in the previous section. In
order to perform behavior pattern abstraction and behavior
detection in the presence of data, we use the CADP tool-
box [27], which allows us to manipulate and model-check
communicating processes written in the LOTOS language.
CADP features a verification tool, evaluator4, which allows
on-the-fly model checking of formulas expressed in the MCL

1We assume the execution of a hook f with argument x is represented in
a trace by an action HookCalled (f, x).

language, a fragment of the modal mu-calculus extended with
data variables, whose FOLTL logic used in this paper is a
subset.

We first represent the program set of traces as a CADP pro-
cess. For this, we use a program control flow graph obtained by
static analysis (see [21] and [23], [24]). Regularity of the set of
traces is enforced by limiting recursion and inlining function
calls, an approximation that can be deemed safe with respect
to the abstract behaviors to detect. Note that there are two
shortcomings to regular approximation. First, approximation
of conditional branches by nondeterministic branches may
result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations
during dataflow analysis can result in false negatives. However,
this does not significantly impact our detection results.

Now, as expressed in Theorem 3, detection of the in-
formation leak abstract behavior M can be broken down
into two steps: abstracting the set of traces L by computing
Rλinval

��
R≤2(L)

�
and then verifying whether an abstracted

trace matches the abstract behavior formula.
So, we can simulate the abstraction step in CADP and

delegate the verification step to the evaluator4 module. For
this, we represent the set of traces L of a given program by
a system of communicating processes expressed in LOTOS,
with a particular gate on which communications correspond to
library calls. Then, computation of R≤2(L) is performed by
synchronization with another LOTOS process which simulates
the transducer realizing the abstraction. Moreover, the relation
Rλinval

� is rational and can also be simulated by process
synchronization in CADP.

For each malware sample we tested, we success-
fully run evaluator4 on the resulting process, representing
Rλinval

� (R≤2(L)), in order to detect the information leak
abstract behavior defined in the previous section.

Also, in our previous work [21], we implemented our
string rewriting based abstraction technique and we defined
several behavior patterns and abstract behaviors, by looking at
malicious execution traces. Then, we tested it on samples of
malicious programs collected using a honeypot2 and identified
using Kaspersky Antivirus. These samples belonged to known
malware families, among which Allaple, Virut, Agent, Rbot,
Afcore and Mimail. Most of them were successfully matched
to our malware database.

IX. CONCLUSION

We presented an original approach for detecting high-level
behaviors in programs, describing combinations of function-
alities and defined by first-order temporal logic formulas.
Behavior patterns, expressing concrete realizations of the
functionalities, are also defined by first-order temporal logic
formulas. Abstraction of these functionalities in program traces
is performed by term rewriting. Validation of the abstracted
traces with respect to some high-level behavior is performed
using usual model checking techniques. In order to address
the general intractability of the problem of constructing the
set of normal forms of traces for a given program, we have

2The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr.
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detection in the presence of data, we use the CADP tool-
box [27], which allows us to manipulate and model-check
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CADP features a verification tool, evaluator4, which allows
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language, a fragment of the modal mu-calculus extended with
data variables, whose FOLTL logic used in this paper is a
subset.

We first represent the program set of traces as a CADP pro-
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static analysis (see [21] and [23], [24]). Regularity of the set of
traces is enforced by limiting recursion and inlining function
calls, an approximation that can be deemed safe with respect
to the abstract behaviors to detect. Note that there are two
shortcomings to regular approximation. First, approximation
of conditional branches by nondeterministic branches may
result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations
during dataflow analysis can result in false negatives. However,
this does not significantly impact our detection results.

Now, as expressed in Theorem 3, detection of the in-
formation leak abstract behavior M can be broken down
into two steps: abstracting the set of traces L by computing
Rλinval

��
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and then verifying whether an abstracted
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So, we can simulate the abstraction step in CADP and

delegate the verification step to the evaluator4 module. For
this, we represent the set of traces L of a given program by
a system of communicating processes expressed in LOTOS,
with a particular gate on which communications correspond to
library calls. Then, computation of R≤2(L) is performed by
synchronization with another LOTOS process which simulates
the transducer realizing the abstraction. Moreover, the relation
Rλinval

� is rational and can also be simulated by process
synchronization in CADP.

For each malware sample we tested, we success-
fully run evaluator4 on the resulting process, representing
Rλinval

� (R≤2(L)), in order to detect the information leak
abstract behavior defined in the previous section.

Also, in our previous work [21], we implemented our
string rewriting based abstraction technique and we defined
several behavior patterns and abstract behaviors, by looking at
malicious execution traces. Then, we tested it on samples of
malicious programs collected using a honeypot2 and identified
using Kaspersky Antivirus. These samples belonged to known
malware families, among which Allaple, Virut, Agent, Rbot,
Afcore and Mimail. Most of them were successfully matched
to our malware database.

IX. CONCLUSION

We presented an original approach for detecting high-level
behaviors in programs, describing combinations of function-
alities and defined by first-order temporal logic formulas.
Behavior patterns, expressing concrete realizations of the
functionalities, are also defined by first-order temporal logic
formulas. Abstraction of these functionalities in program traces
is performed by term rewriting. Validation of the abstracted
traces with respect to some high-level behavior is performed
using usual model checking techniques. In order to address
the general intractability of the problem of constructing the
set of normal forms of traces for a given program, we have
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Test on detection of keyloggers

7 Information Leak Behaviors

Abstraction can be applied to detection of generic threats, and in particular to
detection of sensitive information leak. Such a leak can be decomposed into two
steps: capturing sensitive information and sending this information to an exoge-
nous location. The captured data can be keystrokes, passwords or data read from
a sensitive network location, while the exogenous location can be the network, a
removable device, etc. Thus, we define a behavior pattern λsteal (x), representing
the capture of some sensitive data x, and a behavior pattern λleak (x), represent-
ing the transmission of x to an exogenous location. Moreover, since the captured
data must not be invalidated before being leaked, we define a behavior pattern
λinval (x), which represents such an invalidation.

Finally, the captured data is usually not leaked in its raw form, so we take
into account transformations of this data via the behavior pattern λdepends (x, y)
which denotes a dependency of x on y. For instance, x may be a string repre-
sentation of y, or x may be an encryption or an encoding of y.

Then, in order to account for one such transformation of the stolen data, we
define the information leak abstract behavior:

M := ∃x, y.λsteal (x) ∧ ¬λinval (x) Uλdepends (y, x) ∧Uλleak (y) .

We consider the following definitions of the four behavior patterns involved,
after looking at several malware samples, like keyloggers, sms message leaking
applications or personal information stealing mobile applications:

– keystroke capture functionality:

λsteal(x) := GetAsyncKeyState(x) ∨ (RegisterDev(KBD, SINK) ⊙ GetInputData(x, INPUT))

∨(∃y. SetWindowsHookEx(y, WH KEYBOARD LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))

∨∃y.TelephonyManager getDeviceId(x, y).

– network send functionality:

λleak(x) := ∃y, z. sendto(z, x, y) ∨ ∃y, z. (connect (z, y) ∧ ¬close(z)U send(z, x))∨
∃c, s.HttpURLConnection getOutputStream(s, c)∧
¬OutputStream close(s)UOutputStream write(s, x).

– overwriting or freeing:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y) ∨ GetInputData(x, INPUT) ∨ . . .

– dependences:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)
∨∃sb. StringBuilder append(sb, y) ⊙ SB toString(x, sb).
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Abstraction based analysis of malware behaviours

Our works

- Expressing set of traces by regular term languages 

- Compute an higher level semantics of traces by term rewriting systems

- Keeping track of parameters 

- Expressing Behavior patterns by FOLTL formulas  

- Testing whether abstract traces satisfy a FOLTL-behavior pattern 

- Efficient analysis (quasi-linear time wrt several restrictions)
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A problem is the absence of high level abstraction to 
structure and understand obfuscated codes.

• Detection of malicious behaviors:

• Our approach is difficult and time-consumming to implement in practice.

• We made only a few experiments Allaple, Rbot, Afcore, Mimail and a 
keylogger for Android 

• Detection of malware is a difficult subject and a reason is

A first conclusion 

Related works

-Preda, Christodorescu & al 2007: A semantics based approach to malware detection.

-Chrisdorescu, Song & al 2007 : Semantics-Aware Malware detection
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On detection methods and analyis of malware

1. A quick tour of Malware detection methods

2. Behavioral analysis using model-checking

3. Cryptographic function identification 
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Cryptographic function identification in obfuscated 
binary programs
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Identification of cryptographic functions

Example:	
  
Win32.Sality.AA

Not	
  far	
  from	
  the	
  program	
  
entry	
   point,	
   in	
   the	
   first	
  
code	
  layer…

Decryp'on	
  ?

No API Calls and function names
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Is	
   the	
  previous	
  code	
  by	
  any	
  chance	
  an	
   implementaIon	
  of	
  a	
  
known	
  cryptographic	
  algorithm	
  ?
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  algorithm	
  ?

Answering	
  this	
  quesIon	
  affirmaIvely	
  would	
  provide	
  to	
  the	
  
analyst	
   a	
   high-­‐level	
   descrip;on	
   of	
   this	
   code,	
   without	
  
studying	
  it	
  line-­‐by-­‐line!
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  by	
  any	
  chance	
  an	
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  of	
  a	
  
known	
  cryptographic	
  algorithm	
  ?

Answering	
  this	
  quesIon	
  affirmaIvely	
  would	
  provide	
  to	
  the	
  
analyst	
   a	
   high-­‐level	
   descrip;on	
   of	
   this	
   code,	
   without	
  
studying	
  it	
  line-­‐by-­‐line!

The	
  general	
  quesIons	
  are
•	
  How	
  to	
  determine	
  the	
  meaning	
  of	
  a	
  piece	
  of	
  code	
  ?
•	
   How	
   to	
   determine	
   the	
  meaning	
   of	
   an	
   execuIon	
   trace	
   ?	
  
What	
  is	
  computed	
  ?
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The problem

Set of known of 
known 

cryptographic 
functions

S 
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Custom ciphers

unknown 
program

P

Does P contain any known 
functions of S ?
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The problem

Set of known of 
known 

cryptographic 
functions

S 

RC4

AES TEA

Custom ciphers

unknown 
program

P

Does P contain any known 
functions of S ?

Proving	
  a	
  general	
  seman;c	
  equivalence	
  between	
  a	
  funcIon
	
  	
  	
  	
  of	
  P	
  and	
  one	
  of	
  the	
  S	
  funcIons	
  seems	
  difficult

Just from an execution trace
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ExisIng	
  approaches

• A	
  common	
  way	
  to	
  locate	
  cryptographic	
  code	
  is	
  to	
  
calculate	
   the	
   raIo	
   of	
   arithmeIc	
   machine	
  
instrucIons	
  (ADD,	
  SUB,	
  XOR...).

•When	
  this	
  raIo	
  is	
  superior	
  to	
  a	
  certain	
  threshold,	
  
it	
  indicates	
  cryptographic	
  code.

30
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In	
  Our	
  Sality	
  Sample...

31

...	
   every	
   basic	
   block	
  
looks	
  like	
  those.
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Our approach

1.To observe an execution of P

2.To collect input-output values used during this execution, that is a set of (x,y) 
such that P(x)=y

3.To check if one F, or more function(s), of S satifies F(x)=y

If yes, we conclude that P behaves as an implementation of F (in the values 
(x,y)).

But, roughly (...), in the cryptographic case :

There is a unique (with high probability) cryptographic function K such K(x)=y 
where x is a cipehered text, y is the deciphered.

One point should be enough to interpolate a cryptographic function
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Obfuscation

ImplemenIng	
   this	
   simple	
   reasoning	
   in	
   obfuscated	
   binary	
  
programs	
  is	
  non	
  trivial…	
  

	
  …	
  and	
  this	
  is	
  our	
  focus	
  in	
  this	
  project!
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Obfuscation

ImplemenIng	
   this	
   simple	
   reasoning	
   in	
   obfuscated	
   binary	
  
programs	
  is	
  non	
  trivial…	
  

	
  …	
  and	
  this	
  is	
  our	
  focus	
  in	
  this	
  project!

• Where are I/O parameters ?

• Where are functions ?

...	
  there	
  are	
  no	
  such	
  things	
  as	
  funcIon	
  calls.

Never	
  returns!

➡There is no high level definition
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Implementation

1. Information gathering: 

 We collect an execution trace of P :

For each run instruction, we gather

a) its memory address

b) its machine instruction

c) its access to memory, registers and the values

2. Extraction: 

 Delimit possible cryptographic code in the execution trace.

3. Identification: 

 Check if the extracted code maintained during the previous execution the 
input-output relationship of a known cryptographic function.
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Loop extraction
• Cryptographic algorithms usually apply a same treatment on their input-output 

parameters.

• It makes loops a cryptographic code feature and a possible criterion to 
extract it from execution traces.

• But there are loops everywhere, not only in crypto algorithms... 
What kind of loops are we looking for ?
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Loop extraction
• Cryptographic algorithms usually apply a same treatment on their input-output 

parameters.

• It makes loops a cryptographic code feature and a possible criterion to 
extract it from execution traces.

• But there are loops everywhere, not only in crypto algorithms... 
What kind of loops are we looking for ?

Win32.Mebroot
Unrolling	
  op2miza2on
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A loop definition

Our	
   defini2on:	
   “A	
   loop	
   is	
   the	
   repeIIon	
   of	
   a	
   same	
   sequence	
   of	
  
machine	
  instrucIons	
  at	
  least	
  two	
  Imes.”

...
401325
401327
401329
40132c
401325
401327
401329
40132c
...

...
add	
  ebx,	
  edi
sub	
  edx,	
  ebx
dec	
  dword	
  ptr	
  [ebp+0xc]
jnz	
  0x401325
add	
  ebx,	
  edi
sub	
  edx,	
  ebx
dec	
  dword	
  ptr	
  [ebp+0xc]
jnz	
  0x401325
...

ExecuIon	
  Trace

• We	
  look	
  for	
  the	
  same	
  opera2ons	
  applied	
  repeatedly	
  on	
  a	
  set	
  of	
  data.

jeudi 1 novembre 2012



A loop definition

Our	
   defini2on:	
   “A	
   loop	
   is	
   the	
   repeIIon	
   of	
   a	
   same	
   sequence	
   of	
  
machine	
  instrucIons	
  at	
  least	
  two	
  Imes.”

...
401325
401327
401329
40132c
401325
401327
401329
40132c
...

...
add	
  ebx,	
  edi
sub	
  edx,	
  ebx
dec	
  dword	
  ptr	
  [ebp+0xc]
jnz	
  0x401325
add	
  ebx,	
  edi
sub	
  edx,	
  ebx
dec	
  dword	
  ptr	
  [ebp+0xc]
jnz	
  0x401325
...

IteraIon	
  1

IteraIon	
  2

ExecuIon	
  Trace

• We	
  look	
  for	
  the	
  same	
  opera2ons	
  applied	
  repeatedly	
  on	
  a	
  set	
  of	
  data.

jeudi 1 novembre 2012



A loop definition

Our	
   defini2on:	
   “A	
   loop	
   is	
   the	
   repeIIon	
   of	
   a	
   same	
   sequence	
   of	
  
machine	
  instrucIons	
  at	
  least	
  two	
  Imes.”

...
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...

...
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  edi
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  dword	
  ptr	
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jnz	
  0x401325
add	
  ebx,	
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jnz	
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Loop
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  on	
  a	
  set	
  of	
  data.
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...
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  edi
sub	
  edx,	
  ebx
dec	
  dword	
  ptr	
  [ebp+0xc]
jnz	
  0x401325
add	
  ebx,	
  edi
sub	
  edx,	
  ebx
dec	
  dword	
  ptr	
  [ebp+0xc]
jnz	
  0x401325
...

IteraIon	
  1

IteraIon	
  2

ExecuIon	
  Trace

Loop

It	
  corresponds	
  to	
  the	
  language	
  L={ww}, which	
  is	
  non-­‐context	
  free...

• We	
  look	
  for	
  the	
  same	
  opera2ons	
  applied	
  repeatedly	
  on	
  a	
  set	
  of	
  data.
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What	
  About	
  Nested	
  Loops	
  ?

Simplified	
  CFG

37
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  trace

Simplified	
  CFG

37

jeudi 1 novembre 2012



What	
  About	
  Nested	
  Loops	
  ?

A
B
B
B
C
A
B
B
C

Loop	
  B
3	
  iteraIons

Loop	
  B
2	
  iteraIons

ExecuIon	
  trace

Simplified	
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What	
  About	
  Nested	
  Loops	
  ?
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B
B
B
C
A
B
B
C

Different
at	
  each	
  
iteraIon!

ExecuIon	
  trace

Simplified	
  CFG
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What	
  About	
  Nested	
  Loops	
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X
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Trace
RewriIng
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Loop	
  DetecIon	
  Algorithm

1.Detects	
   two	
   repeIIons	
   of	
   a	
   loop	
   body	
   in	
   the	
  
execuIon	
  trace.

(non	
  trivial,	
  non-­‐context	
  free	
  language)

2.	
   Replaces	
   in	
   the	
   trace	
   the	
   detected	
   loop	
   by	
   a	
  
symbol	
  represenIng	
  their	
  body.

3.	
   Goes	
   back	
   to	
   step	
   1	
   if	
   new	
   loops	
   have	
   been	
  
detected.

38
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We	
  extracted	
  possible	
  cryptographic	
  code	
  from	
  

execuIon	
   traces	
   thanks	
   to	
   a	
   parIcular	
   loop	
  
definiIon.

	
  

39

I/O	
  IdenIficaIon	
  (1)
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   thanks	
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   loop	
  
definiIon.

	
  
	
  But	
  our	
  idenIficaIon	
  method	
  needs	
  the	
  input-­‐
output	
  values	
  of	
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  crypto	
  code.
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We	
  extracted	
  possible	
  cryptographic	
  code	
  from	
  

execuIon	
   traces	
   thanks	
   to	
   a	
   parIcular	
   loop	
  
definiIon.

	
  
	
  But	
  our	
  idenIficaIon	
  method	
  needs	
  the	
  input-­‐
output	
  values	
  of	
  this	
  crypto	
  code.

	
   How	
   can	
   we	
   define	
   such	
   input-­‐output	
  
parameters	
   from	
   the	
   bytes	
   read	
   and	
  wrijen	
   in	
  
execuIon	
  traces	
  ?

39

I/O	
  IdenIficaIon	
  (1)
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   DisIncIon	
   between	
   input	
   and	
   output	
   bytes	
   in	
  
the	
  execuIon	
  trace:
	
   Input	
   bytes	
   have	
   been	
   read	
   without	
   having	
  
been	
  previously	
  wriAen.
	
  Output	
  bytes	
  have	
  been	
  wriAen.

40

I/O	
  IdenIficaIon	
  (2)

A	
  reasonable	
  hypothesis
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   Grouping	
   of	
   several	
   bytes	
   into	
   the	
   same	
  
parameter:
1. If	
  they	
  are	
  adjacent	
  in	
  memory	
  (too	
  large!)
2. And	
  if	
  they	
  are	
  manipulated	
  by	
  the	
  same	
  instruc2on	
  

in	
  the	
  loop	
  body.

41

add	
  [ecx],	
  edi
mov	
  eax,	
  [ebx]
...
add	
  [ecx],	
  edi
mov	
  eax,	
  [ebx]
...

IteraIon	
  1

IteraIon	
  2

IdenIficaIon	
  (3)
Loop	
  parameters
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• A	
   crypto	
   implementaIon	
   can	
   contain	
   several	
  
loops.

42

Loop	
  Data	
  Flow
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• A	
   crypto	
   implementaIon	
   can	
   contain	
   several	
  
loops.

•We	
  consider	
  that	
  two	
  loops	
  L1	
  and	
  L2	
  are	
  in	
  the	
  
same	
  crypto	
  implementaIon:
–If	
  L1	
  started	
  before	
  L2	
  in	
  the	
  trace.

–If	
  L2	
  uses	
  as	
  an	
  input	
  parameter	
  an	
  output	
  parameter	
  
of	
  L1.

42

Loop	
  Data	
  Flow
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43

Loop	
  Data	
  Flow	
  Graph	
  (oriented,	
  acyclic)

L1 L2 L3
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44

L1 L2 L3

We	
  consider	
  each	
  path	
  in	
  the	
  graph	
  as	
  a	
  possible	
  
cryptographic	
  algorithm!

(in	
  order	
  to	
  deal	
  with	
  algorithm	
  combina;ons)
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Method	
  Recap
1. We	
  collect	
  an	
  execuIon	
  trace.

2. We	
  extract	
  possible	
  cryptographic	
  algorithms	
  with	
  their	
  
parameter	
  values.

3. We	
  compare	
   the	
   input-­‐output	
  relaIonship	
  with	
   known	
  
cryptographic	
  algorithms.

	
  

45

We	
   can	
   demonstrate	
   that	
   a	
   program	
   behaves	
   like	
   a	
  
known	
  crypto	
  algorithm	
  during	
  one	
  par2cular	
  execu2on.
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   Let’s	
   illustrate	
   this	
   process	
   on	
   our	
   Sality	
  
sample...

46
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Step	
  1	
  :	
  Gather	
  ExecuIon	
  Trace
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47

Step	
  1	
  :	
  Gather	
  ExecuIon	
  Trace

Sality
Sample
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Step	
  1	
  :	
  Gather	
  ExecuIon	
  Trace

TRACER

Sality
Sample
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47

First	
  
instruc2on

Last	
  
instruc2on

Step	
  1	
  :	
  Gather	
  ExecuIon	
  Trace

TRACER

Sality
Sample
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L1 L2 L3

Step	
  2	
  :	
  Recognize	
  Loops	
  on	
  the	
  Trace
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L1 L2 L3

Step	
  2	
  :	
  Recognize	
  Loops	
  on	
  the	
  Trace
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Step	
  3	
  :	
  Define	
  Loop	
  I/O	
  Parameters

L1 L2 L3
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Step	
  4	
  :	
  Connect	
  Loops	
  With	
  Data-­‐Flow

L1 L2 L3
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Unknown	
  Algorithm	
  Extracted

52
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We	
  sIll	
  have	
  the	
  last	
  mile	
  to	
  do...

53
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Comparison	
  Algorithm

1. Build	
   the	
   set	
  I	
  of	
   possible	
   input	
   values	
  with	
  all	
  
possible	
  orderings	
  of	
  A	
  input	
  parameters.

2. Build	
  the	
  set	
  O	
  of	
  possible	
  output	
  values	
   in	
  the	
  
same	
  manner	
  with	
  A	
  output	
  parameters.

3. Evaluate	
  each	
  S	
   funcIon	
  on	
  all	
   values	
   in	
  I and	
  
check	
  if	
  the	
  result	
  produced	
  is	
  in	
  O.

	
  If	
  yes,	
  this	
  is	
  a	
  success!

54
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Input	
  1:	
  unknown	
  algorithm	
  A	
  with	
  its	
  parameter	
  values

55
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Input	
  1:	
  unknown	
  algorithm	
  A	
  with	
  its	
  parameter	
  values

Input	
  2:

55

Finite	
  set	
  of	
  
known	
  

cryptographic	
  
func2ons

S

AES

RC4

TEA
MD5

Custom
Cipher	
  X

Custom
Cipher	
  Y
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QuesIon

56
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QuesIon
• Some	
  difficulIes,	
  for	
  example:
–Parameter	
  division:	
  a	
  same	
  cryptographic	
  parameter	
  can	
  
be	
  divided	
  into	
  several	
  loop	
  parameter.
–Parameter	
   number:	
   we	
   collect	
   more	
   than	
   the	
  
cryptographic	
  parameters.

56
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   In	
  pracIce,	
   the	
   complexity	
  of	
   this	
  algorithm	
  
can	
   be	
   greatly	
   reduced	
   with	
   some	
   simple	
  
rules:
–Do	
  not	
  consider	
  memory	
  addresses	
  as	
  valid	
  parameters.
–Do	
   not	
   consider	
   common	
   constant	
   values	
   (0,FF)	
  as	
   valid	
  
parameters.

57
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Let’s	
  Recap	
  the	
  Process

58

TRACER

ExecuIon
Trace

EXTRACTIONSample

Unknown	
  
Algorithms

IDENTIFICATION

Reference
ImplementaIons

Result

Describes	
  if	
  the	
  sample	
  
behaved	
  	
  as	
  a	
  known	
  
cryptographic	
  funcIon	
  	
  
during	
  the	
  observed	
  

execuIon

jeudi 1 novembre 2012



59

jeudi 1 novembre 2012



More	
  Results

60

(cf.	
  paper)
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LimitaIons

• As	
  we	
  analyze	
  execuIon	
  traces,	
  we	
  have	
  to	
  know	
  
how	
  to	
  exhibit	
  interesIng	
  execuIon	
  paths.

• The	
   tool	
   is	
   as	
   good	
   as	
   the	
   reference	
  
implementaIon	
  database.

• It	
   is	
   easy	
   to	
   bypass,	
   like	
   any	
   program	
   analysis	
  
technique.

61
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Future	
  Work

• Extract	
   reference	
   implementaIons	
   directly	
   from	
  
binary	
  programs.

• Implement	
  other	
  extracIon	
  criteria	
  than	
  our	
  loop	
  
model.

62

Code	
  is	
  available	
  at	
  
hjps://code.google.com/p/aligot/
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https://code.google.com/p/aligot/
https://code.google.com/p/aligot/


High Security Lab @ Nancy.fr

Other subjects
•Morphological analysis
•Botnet counter- attacks

Telescope & honeypots
In vitro experiment clusters

Thanks !
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BONUS	
  SLIDES

64
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Morphological analysis in a nutshell
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Morphological analysis in a nutshell

Signatures are abstract 
flow graph
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Morphological analysis in a nutshell

Signatures are abstract 
flow graph

Detection of subgraph in program flow graph 
abstraction

jeudi 1 novembre 2012



Automatic construction of signatures
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Reduction of signatures by graph rewriting
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Morphological detection : Results

• False negative

• No experiment on unknown malware

• Signatures with < 18 nodes are potential false negative

• Restricted signatures of 20 nodes are efficient

• Less than 3 sec. for signatures of 500 nodes 

jeudi 1 novembre 2012



Conclusion about morphological detection

• Benchmarks are good

• Pro

• More robust on local mutation and obfuscation

• Detect easily variants of the same malware family

• Try to take into account program semantics

• Quasi-automatic generation of signatures

• Cons

• Difficult to determine flow graph statically of self-modifying programs

• Use of combination of static and dynamic analysis
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Performances
Sality	
  1 Sality	
  2

Trace	
  Size
(instrucIons)

~1M ~4M

Time	
  To	
  Trace 5mn 10mn

Time	
  To	
  Extract	
  Crypto	
  Algoritm 4h 10h

Time	
  To	
  IdenIfy 3mn 4mn

•	
  The	
  tool	
  is	
  just	
  a	
  PoC,	
  no	
  opImizaIon	
  at	
  all.	
  

•	
  When	
  the	
  analysts	
  knows	
  where	
  the	
  algorithm	
  is,	
  it	
  
will	
  reduce	
  the	
  trace	
  size.
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ExisIng	
  Tools	
  For	
  Crypto	
  IdenIficaIon

Tools Answers	
  on	
  Sality	
  sample
Crypto	
  Searcher Ø
Draca	
  v0.5.7b Ø
Findcrypt	
  v2 Ø

Hash	
  &	
  Crypto	
  Detector	
  v1.4 Ø
PEiD	
  KANAL	
  v2.92 Ø

Kerckhoffs Ø
Signsrch	
  0.1.7 Ø

SnD	
  Crypto	
  Scanner	
  v0.5b Ø
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